coroutines don't have __next__; they also call themselves coroutines.
This does not change the fact that `async def` methods are generators,
but it does make them behave more like CPython.
The config variable MICROPY_MODULE_FROZEN is now made of two separate
parts: MICROPY_MODULE_FROZEN_STR and MICROPY_MODULE_FROZEN_MPY. This
allows to have none, either or both of frozen strings and frozen mpy
files (aka frozen bytecode).
This new compile-time option allows to make the bytecode compiler
configurable at runtime by setting the fields in the mp_dynamic_compiler
structure. By using this feature, the compiler can generate bytecode
that targets any MicroPython runtime/VM, regardless of the host and
target compile-time settings.
Options so far that fall under this dynamic setting are:
- maximum number of bits that a small int can hold;
- whether caching of lookups is used in the bytecode;
- whether to use unicode strings or not (lexer behaviour differs, and
therefore generated string constants differ).
This allows the mp_obj_t type to be configured to something other than a
pointer-sized primitive type.
This patch also includes additional changes to allow the code to compile
when sizeof(mp_uint_t) != sizeof(void*), such as using size_t instead of
mp_uint_t, and various casts.
MICROPY_PERSISTENT_CODE must be enabled, and then enabling
MICROPY_PERSISTENT_CODE_LOAD/SAVE (either or both) will allow loading
and/or saving of code (at the moment just bytecode) from/to a .mpy file.
This patch gets full function argument passing working with native
emitter. Includes named args, keyword args, default args, var args
and var keyword args. Fully Python compliant.
It reuses the bytecode mp_setup_code_state function to do all the hard
work. This function is slightly adjusted to accommodate native calls,
and the native emitter is forced a bit to emit similar prelude and
code-info as bytecode.
This saves a lot of RAM for 2 reasons:
1. For functions that don't have default values, var args or var kw
args (which is a large number of functions in the general case), the
mp_obj_fun_bc_t type now fits in 1 GC block (previously needed 2 because
of the extra pointer to point to the arg_names array). So this saves 16
bytes per function (32 bytes on 64-bit machines).
2. Combining separate memory regions generally saves RAM because the
unused bytes at the end of the GC block are saved for 1 of the blocks
(since that block doesn't exist on its own anymore). So generally this
saves 8 bytes per function.
Tested by importing lots of modules:
- 64-bit Linux gave about an 8% RAM saving for 86k of used RAM.
- pyboard gave about a 6% RAM saving for 31k of used RAM.
With a file with 1 line (and an error on that line), used to show the
line as number 0. Now shows it correctly as line number 1.
But, when line numbers are disabled, it now prints line number 1 for any
line that has an error (instead of 0 as previously). This might end up
being confusing, but requires extra RAM and/or hack logic to make it
print something special in the case of no line numbers.
Because (for Thumb) a function pointer has the LSB set, pointers to
dynamic functions in RAM (eg native, viper or asm functions) were not
being traced by the GC. This patch is a comprehensive fix for this.
Addresses issue #820.