Add method for drawing polygons.
For non-filled polygons, uses the existing line-drawing code to render
arbitrary polygons using the given coords list, at the given x,y position,
in the given colour.
For filled polygons, arbitrary closed polygons are rendered using a fast
point-in-polygon algorithm to determine where the edges of the polygon lie
on each pixel row.
Tests and documentation updates are also included.
Signed-off-by: Mat Booth <mat.booth@gmail.com>
We plan to add `ellipse` and `poly` methods, but rather than having to
implement a `fill_xyz` version of each, we can make them take an optional
fill argument. This commit add this to `rect` as a starting point.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Several methods extract mp_int_t from adjacent arguments. This reduces
code size for the repeated calls to mp_obj_get_int.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This allows a remote file to be edited locally by copying it over, running
the local editor, then copying it back.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Since commit e65d1e69e8 there is no longer an
io.FileIO class, so this option is no longer needed.
This option also controlled whether or not files supported being opened in
binary mode (eg 'rb'), and could, if disabled, lead to confusion as to why
opening a file in binary mode silently did the wrong thing (it would just
open in text mode if MICROPY_PY_IO_FILEIO was disabled).
The various VFS implementations (POSIX, FAT, LFS) were the only places
where enabling this option made a difference, and in almost all cases where
one of these filesystems were enabled, MICROPY_PY_IO_FILEIO was also
enabled. So it makes sense to just unconditionally enable this feature
(ability to open a file in binary mode) in all cases, and so just remove
this config option altogether. That makes configuration simpler and means
binary file support always exists (and opening a file in binary mode is
arguably more fundamental than opening in text mode, so if anything should
be configurable then it should be the ability to open in text mode).
Signed-off-by: Damien George <damien@micropython.org>
It seems sometimes gcc with LTO will generate otherwise valid assembly
listings that cause 'as' to error out when generating DWARF debug info; see
https://sourceware.org/bugzilla/show_bug.cgi?id=29494
Therefore, don't enable -g by default if LTO is on.
Enabling LTO=1 DEBUG=1 is still possible but may result in random errors
at link time due to 'as' (the error in this case is "Error: unaligned
opcodes detected in executable segment", and the only other easy workaround
is CFLAGS+=-fno-jump-tables which may increase code size significantly).
Follows on from fdfe4eca74
Rework the conversion of floats to decimal strings so it aligns precisely
with the conversion of strings to floats in parsenum.c. This is to avoid
rendering 1eX as 9.99999eX-1 etc. This is achieved by removing the power-
of-10 tables and using pow() to compute the exponent directly, and that's
done efficiently by first estimating the power-of-10 exponent from the
power-of-2 exponent in the floating-point representation.
Code size is reduced by roughly 100 to 200 bytes by this commit.
Signed-off-by: Dan Ellis <dan.ellis@gmail.com>
Prior to this commit, parsenum would calculate "1e-20" as 1.0*pow(10, -20),
and "1.000e-20" as 1000.0*pow(10, -23); in certain cases, this could make
seemingly-identical values compare as not equal. This commit watches for
trailing zeros as a special case, and ignores them when appropriate, so
"1.000e-20" is also calculated as 1.0*pow(10, -20).
Fixes issue #5831.
This is useful in situations where the ThreadSafeFlag is reused and needs
to be cleared of any previous, unwanted event.
For example, clear the flag at the start of an operation, trigger the
operation (eg an I2C write), then (a)wait for an external event to set the
flag (eg a pin IRQ). Further events may trigger the flag again but these
are unwanted and should be cleared before the next cycle starts.
Otherwise if the `mpy-cross/build/` directory doesn't exist then
`mpy-cross/build/..` won't work.
Signed-off-by: Damien George <damien@micropython.org>
Since f7f56d4285 consolidated all uses of
these to a single locals dict, they no longer need to be made public.
Signed-off-by: Damien George <damien@micropython.org>
These were added in Python 3.5.
Enabled via MICROPY_PY_BUILTINS_BYTES_HEX, and enabled by default for all
ports that currently have ubinascii.
Rework ubinascii to use the implementation of these methods.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit adds the bytes methods to bytearray, matching CPython. The
existing implementations of these methods for str/bytes are reused for
bytearray with minor updates to match CPython return types.
For details on the CPython behaviour see
https://docs.python.org/3/library/stdtypes.html#bytes-and-bytearray-operations
The work to merge locals tables for str/bytes/bytearray/array was done by
@jimmo. Because of this merging of locals the change in code size for this
commit is mostly negative:
bare-arm: +0 +0.000%
minimal x86: +29 +0.018%
unix x64: -792 -0.128% standard[incl -448(data)]
unix nanbox: -436 -0.078% nanbox[incl -448(data)]
stm32: -40 -0.010% PYBV10
cc3200: -32 -0.017%
esp8266: -28 -0.004% GENERIC
esp32: -72 -0.005% GENERIC[incl -200(data)]
mimxrt: -40 -0.011% TEENSY40
renesas-ra: -40 -0.006% RA6M2_EK
nrf: -16 -0.009% pca10040
rp2: -64 -0.013% PICO
samd: +148 +0.105% ADAFRUIT_ITSYBITSY_M4_EXPRESS
The hash is either 8 or 16 bits (depending on MICROPY_QSTR_BYTES_IN_HASH)
so will fit in a size_t.
This saves 268 bytes on the unix nanbox build. Non-nanbox configurations
are unchanged because mp_uint_t is the same size as size_t.
Signed-off-by: Damien George <damien@micropython.org>
PR #9012 (b2e8240268) changed the output to
$(BUILD)/$(PROG) but the tests are still looking for $(PROG).
Also remove the now-unnecessary override of $(PROG) in the standard
variant.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The separate A and RM toolchains have been discontinued and replaced
by a single toolchain. This updates the links to the RM toolchain to
the new toolchain.
Signed-off-by: David Lechner <david@pybricks.com>
Figure out path to arm-none-eabi-size the same way it's done for the
other binaries, instead of assuming it to be in the user's $PATH.
Signed-off-by: Jacob Siverskog <jacob@teenage.engineering>
Create a new linker section .unitialized_bss for bss that does not need
zero-initialising.
Move gc_heap to this section, which saves ~30ms from rising edge of RESET
to setting a pin HIGH in MicroPython.
Zero fill happens in Pico SDK crt0.S before ROSC is configured. It's very,
very slow.
Signed-off-by: Phil Howard <phil@gadgetoid.com>
stty can provide the current terminal settings, so that they can be
stored in a shell variable and restored after running the firmware. This
avoids the complete "blanking" of the terminal, and thus also removes the
need for the sleep call.
The run target now references the firmware file using the BUILD variable
instead of using the hard coded "build/" path.
Due to inline assembly, wrong instructions were generated. Use
corresponding 32 bit instructions and fix the offsets used.
Signed-off-by: Efi Weiss <efiwiss@gmail.com>
The executable now lives in the build directory, and since the build
directory already contains the variant name there is no need to also add
it to the executable.
Signed-off-by: Damien George <damien@micropython.org>
Binaries built using the Make build system now no longer appear in the
working directory of the build, but rather in the build directory. Thus
some paths had to be adjusted.
The rules for lib (static library with name $(LIBMICROPYTHON)) and the
default rule to build a binary (name $(PROG)) produced outputs in the
current working directory. Change this to build these files in the build
directory.
Note: An empty BUILD variable can cause issues (references to the root
directory); this is not addressed by this commit due to multiple other
places having the same issue.
Instead of using the fixed machine_spi_type entity to get the SPI transfer
function, this transfer function is now extracted dynamically from the type
of the SPI object.
This allows the SPI object used to communicate with the WIZNET5K hardware
to be SoftSPI or hardware SPI, or anything that has the SPI protocol (at
the C level).
Signed-off-by: Damien George <damien@micropython.org>