The aapcs-linux ABI is not required, instead the default aapcs ABI is
enough. And using the default ABI means that the provided libgcc will now
link with the firmware without warnings about variable vs fixed enums.
Although the binary size increases by about 1k, RAM usage is slightly
decreased. And libgcc may prove useful in the future for things like
long-long division.
It seems that the gcc toolchain on the RaspberryPi
likes %progbits instead of @progbits. I verified that
%progbits also works under x86, so this should
fix#2848 and fix#2842
I verified that unix and mpy-cross both compile
on my RaspberryPi and on my x64 machine.
The internal map/set functions now use size_t exclusively for computing
addresses. size_t is enough to reach all of available memory when
computing addresses so is the right type to use. In particular, for
nanbox builds it saves quite a bit of code size and RAM compared to the
original use of mp_uint_t (which is 64-bits on nanbox builds).
For archs that have 16-bit pointers, the asmxtensa.h file can give compiler
warnings about left-shift being greater than the width of the type (due to
the inline functions in this header file). Explicitly casting the
constants to uint32_t stops these warnings.
SPI needs to be fast, and calling the EVENT_POLL_HOOK every byte makes it
unusable for ports that need to do non-trivial work in the EVENT_POLL_HOOK
call. And individual SPI transfers should be short enough in time that
EVENT_POLL_HOOK doesn't need to be called.
If something like this proves to be needed in practice then we will need
to introduce separate event hook macros, one for "slow" loops (eg
select/poll) and one for "fast" loops (eg software I2C, SPI).
A few tests still fail on PYBLITE, and that's due to differences in the
available peripheral block numbers on the different MCUs (eg I2C(2)
exists on one, but it's I2C(3) on the other).
This new function controls what happens on a hard-fault:
- debugging disabled: board will do a reset
- debugging enabled: board will print registers and stack and flash LEDs
The default is disabled, ie to do a reset. This is different to previous
behaviour which flashed the LEDs and waited indefinitely.
The port now uses the common mp_utime_ticks_{ms,us,cpu,add,diff} functions
from extmod/utime_mphal.c.
The mp_utime_sleep_XXX functions are still cc3200-specific because they
handle the GIL differently to the ones in extmod.
The files misc/mpsystick.[ch] have been removed because they contain 2
unused functions, and the other remaining function is renamed to
mp_hal_ticks_us and moved to hal/cc3200_hal.c.
machine.time_pulse_us() is intended to provide very fine timing, including
while working with signal bursts, where each transition is tracked in row.
Throwing and handling an exception may take too much time and "signal loss".
So instead, in case of a timeout, just return negative value. Cases of
timeout while waiting for initial signal stabilization, and during actual
timing, are recognized.
The documentation is updated accordingly, and rewritten somewhat to clarify
the function behavior.
This patch fixes two main things:
- dicts can be printed directly using '%s' % dict
- %-formatting should not crash when passed a non-dict to, eg, '%(foo)s'
Updated modbuiltin.c to add conditional support for 3-arg calls to
pow() using MICROPY_PY_BUILTINS_POW3 config parameter. Added support in
objint_mpz.c for for optimised implementation.
This patch brings the _thread module to stmhal/pyboard. There is a very
simple round-robin thread scheduler, which is disabled if there is only
one thread (for efficiency when threading is not used).
The scheduler currently switches threads at a rate of 250Hz using the
systick timer and the pend-SV interrupt.
The GIL is disabled so one must be careful to use lock objects to prevent
concurrent access of objects.
The threading is disabled by default, one can enabled it with the config
option MICROPY_PY_THREAD to test it out.