This adapts the "inline assembler" code from the UF2 bootloader, which
in turn is said to be adapted from the arduino neopixel library.
This requires the cache remain ON when using M0, and be turned OFF on M4
(determined by trial and error)
Testing performed on a Metro M4:
* measured timings using o'scope and found all values within
datasheet tolerance.
* Drove a string of 96 neopixels without visible glitches
* on-board neopixel worked
Testing performed on a Circuit Playground Express (M0):
* Color wheel code works on built-in neopixels
* Color wheel code works on 96 neopixel strip
As a bonus, this may have freed up a bit of flash on M0 targets. (2988 ->
3068 bytes free on Trinket M0)
Closes: #2297
.. inline-unit-growth was the same across all boards, and the highest
max-inline-insns-auto parameter was shared across 2 of 5 boards, so it's
worth a little work to follow the DRY principle
If you define MONITOR_BACKGROUND_TASK, then a physical output pin
(Metro M4 Express's "SCL" pin by default) will be set HIGH while in
the background task and LOW at other times
This code is shared by most parts, except where not all the #ifdefs
inside the tick function were present in all ports. This mostly would
have broken gamepad tick support on non-samd ports.
The "ms32" and "ms64" variants of the tick functions are introduced
because there is no 64-bit atomic read. Disabling interrupts avoids
a low probability bug where milliseconds could be off by ~49.5 days
once every ~49.5 days (2^32 ms).
Avoiding disabling interrupts when only the low 32 bits are needed is a minor
optimization.
Testing performed: on metro m4 express, USB still works and
time.monotonic_ns() still counts up