Add some example scripts for pyboard (some can run on PC).

This commit is contained in:
Damien George 2014-01-07 17:14:05 +00:00
parent 7b21c2d8f0
commit fd04bb3bac
6 changed files with 146 additions and 12 deletions

14
examples/accellog.py Normal file
View File

@ -0,0 +1,14 @@
# log the accelerometer values to a file, 1 per second
f = open('motion.dat', 'w') # open the file for writing
for i in range(60): # loop 60 times
time = pyb.time() # get the current time
accel = pyb.accel() # get the accelerometer data
# write time and x,y,z values to the file
f.write('{} {} {} {}\n'.format(time, accel[0], accel[1], accel[2]))
pyb.delay(1000) # wait 1000 ms = 1 second
f.close() # close the file

43
examples/conwaylife.py Normal file
View File

@ -0,0 +1,43 @@
# do 1 iteration of Conway's Game of Life
def conway_step():
for x in range(128): # loop over x coordinates
for y in range(32): # loop over y coordinates
# count number of neigbours
num_neighbours = (lcd.get(x - 1, y - 1) +
lcd.get(x, y - 1) +
lcd.get(x + 1, y - 1) +
lcd.get(x - 1, y) +
lcd.get(x + 1, y) +
lcd.get(x + 1, y + 1) +
lcd.get(x, y + 1) +
lcd.get(x - 1, y + 1))
# check if the centre cell is alive or not
self = lcd.get(x, y)
# apply the rules of life
if self and not (2 <= num_neighbours <= 3):
lcd.reset(x, y) # not enough, or too many neighbours: cell dies
elif not self and num_neighbours == 3:
lcd.set(x, y) # exactly 3 neigbours around an empty cell: cell is born
# randomise the start
def conway_rand():
lcd.clear() # clear the LCD
for x in range(128): # loop over x coordinates
for y in range(32): # loop over y coordinates
if pyb.rand() & 1: # get a 1-bit random number
lcd.set(x, y) # set the pixel randomly
# loop for a certain number of frames, doing iterations of Conway's Game of Life
def conway_go(num_frames):
for i in range(num_frames):
conway_step() # do 1 iteration
lcd.show() # update the LCD
# PC testing
import lcd
import pyb
lcd = lcd.LCD(128, 32)
conway_rand()
conway_go(100)

36
examples/lcd.py Normal file
View File

@ -0,0 +1,36 @@
# LCD testing object for PC
# uses double buffering
class LCD:
def __init__(self, width, height):
self.width = width
self.height = height
self.buf1 = [[0 for x in range(self.width)] for y in range(self.height)]
self.buf2 = [[0 for x in range(self.width)] for y in range(self.height)]
def clear(self):
for y in range(self.height):
for x in range(self.width):
self.buf1[y][x] = self.buf2[y][x] = 0
def show(self):
print('') # blank line to separate frames
for y in range(self.height):
for x in range(self.width):
self.buf1[y][x] = self.buf2[y][x]
for y in range(self.height):
row = ''.join(['*' if self.buf1[y][x] else ' ' for x in range(self.width)])
print(row)
def get(self, x, y):
if 0 <= x < self.width and 0 <= y < self.height:
return self.buf1[y][x]
else:
return 0
def reset(self, x, y):
if 0 <= x < self.width and 0 <= y < self.height:
self.buf2[y][x] = 0
def set(self, x, y):
if 0 <= x < self.width and 0 <= y < self.height:
self.buf2[y][x] = 1

22
examples/ledangle.py Normal file
View File

@ -0,0 +1,22 @@
def led_angle(seconds_to_run_for):
# make LED objects
l1 = pyb.Led(1)
l2 = pyb.Led(2)
for i in range(20 * seconds_to_run_for):
# get x-axis
accel = pyb.accel()[0]
# turn on LEDs depending on angle
if accel < -10:
l1.on()
l2.off()
elif accel > 10:
l1.off()
l2.on()
else:
l1.off()
l2.off()
# delay so that loop runs at at 1/50ms = 20Hz
pyb.delay(50)

View File

@ -1,3 +1,5 @@
def mandelbrot():
# returns True if c, complex, is in the Mandelbrot set
@micropython.native
def in_set(c):
z = 0
@ -7,8 +9,14 @@ def in_set(c):
return False
return True
for v in range(31):
line = []
lcd.clear()
for u in range(91):
line.append('*' if in_set((u / 30 - 2) + (v / 15 - 1) * 1j) else ' ')
print(''.join(line))
for v in range(31):
if in_set((u / 30 - 2) + (v / 15 - 1) * 1j):
lcd.set(u, v)
lcd.show()
# PC testing
import lcd
lcd = lcd.LCD(128, 32)
mandelbrot()

11
examples/pyb.py Normal file
View File

@ -0,0 +1,11 @@
# pyboard testing functions for PC
def delay(n):
pass
rand_seed = 1
def rand():
global rand_seed
# for these choice of numbers, see P L'Ecuyer, "Tables of linear congruential generators of different sizes and good lattice structure"
rand_seed = (rand_seed * 653276) % 8388593
return rand_seed