Merge pull request #2613 from dhalbert/spim3

nrf: add SPIM3 support
This commit is contained in:
Limor "Ladyada" Fried 2020-02-11 22:55:44 -05:00 committed by GitHub
commit fb8fbbf42e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 79 additions and 30 deletions

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2020-02-07 10:02-0500\n"
"POT-Creation-Date: 2020-02-11 19:18-0500\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"

View File

@ -22,7 +22,9 @@ MEMORY
/* SoftDevice 6.1.0 with 5 connections and various increases takes just under 64kiB.
/* To measure the minimum required amount of memory for given configuration, set this number
high enough to work and then check the mutation of the value done by sd_ble_enable. */
RAM (xrw) : ORIGIN = 0x20000000 + 64K, LENGTH = 256K - 64K
SPIM3_RAM (rw) : ORIGIN = 0x20000000 + 64K, LENGTH = 8K
RAM (xrw) : ORIGIN = 0x20000000 + 64K + 8K, LENGTH = 256K - 64K -8K
}
/* produce a link error if there is not this amount of RAM available */
@ -37,6 +39,10 @@ _estack = ORIGIN(RAM) + LENGTH(RAM);
_ram_end = ORIGIN(RAM) + LENGTH(RAM);
_heap_end = 0x20020000; /* tunable */
/* nrf52840 SPIM3 needs its own area to work around hardware problems. Nothing else may use this space. */
_spim3_ram = ORIGIN(SPIM3_RAM);
_spim3_ram_end = ORIGIN(SPIM3_RAM) + LENGTH(RAM);
/* define output sections */
SECTIONS
{

View File

@ -22,6 +22,8 @@
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
@ -29,33 +31,34 @@
#include "nrfx_spim.h"
#include "nrf_gpio.h"
// These are in order from ighest available frequency to lowest (32MHz first, then 8MHz).
STATIC spim_peripheral_t spim_peripherals[] = {
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
// SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max.
// Allocate SPIM3 first.
{ .spim = NRFX_SPIM_INSTANCE(3),
.max_frequency_MHz = 32,
.max_frequency = 32000000,
.max_xfer_size = SPIM3_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
// SPIM2 is not shared with a TWIM, so allocate before the shared ones.
{ .spim = NRFX_SPIM_INSTANCE(2),
.max_frequency_MHz = 8,
.max_frequency = 8000000,
.max_xfer_size = SPIM2_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
// SPIM1 and TWIM1 share an address.
{ .spim = NRFX_SPIM_INSTANCE(1),
.max_frequency_MHz = 8,
.max_frequency = 8000000,
.max_xfer_size = SPIM1_EASYDMA_MAXCNT_SIZE,
},
#endif
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
// SPIM0 and TWIM0 share an address.
{ .spim = NRFX_SPIM_INSTANCE(0),
.max_frequency_MHz = 8,
.max_frequency = 8000000,
.max_xfer_size = SPIM0_EASYDMA_MAXCNT_SIZE,
},
#endif
@ -63,6 +66,11 @@ STATIC spim_peripheral_t spim_peripherals[] = {
STATIC bool never_reset[MP_ARRAY_SIZE(spim_peripherals)];
// Separate RAM area for SPIM3 transmit buffer to avoid SPIM3 hardware errata.
// https://infocenter.nordicsemi.com/index.jsp?topic=%2Ferrata_nRF52840_Rev2%2FERR%2FnRF52840%2FRev2%2Flatest%2Fanomaly_840_198.html
extern uint32_t _spim3_ram;
STATIC uint8_t *spim3_transmit_buffer = (uint8_t *) &_spim3_ram;
void spi_reset(void) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if (never_reset[i]) {
@ -122,7 +130,7 @@ static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate)
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) {
// Find a free instance.
// Find a free instance, with most desirable (highest freq and not shared) allocated first.
self->spim_peripheral = NULL;
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) {
@ -137,7 +145,8 @@ void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t *
nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG(NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED,
NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED);
config.frequency = NRF_SPIM_FREQ_8M;
config.frequency = baudrate_to_spim_frequency(self->spim_peripheral->max_frequency);
config.sck_pin = clock->number;
self->clock_pin_number = clock->number;
@ -189,8 +198,7 @@ bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, ui
// Set desired frequency, rounding down, and don't go above available frequency for this SPIM.
nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg,
baudrate_to_spim_frequency(MIN(baudrate,
self->spim_peripheral->max_frequency_MHz * 1000000)));
baudrate_to_spim_frequency(MIN(baudrate, self->spim_peripheral->max_frequency)));
nrf_spim_mode_t mode = NRF_SPIM_MODE_0;
if (polarity) {
@ -224,21 +232,36 @@ void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) {
if (len == 0)
if (len == 0) {
return true;
}
const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + i * max_xfer_size, max_xfer_size);
uint8_t *start = (uint8_t *) (data + i * max_xfer_size);
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, start, max_xfer_size);
start = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(start, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(data + parts * max_xfer_size, remainder);
uint8_t *start = (uint8_t *) (data + parts * max_xfer_size);
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, start, remainder);
start = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(start, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
@ -247,8 +270,9 @@ bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0)
if (len == 0) {
return true;
}
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
@ -270,23 +294,37 @@ bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len,
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0)
if (len == 0) {
return true;
}
const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3;
const uint32_t max_xfer_size = self->spim_peripheral->max_xfer_size;
const uint32_t parts = len / max_xfer_size;
const uint32_t remainder = len % max_xfer_size;
for (uint32_t i = 0; i < parts; ++i) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + i * max_xfer_size, max_xfer_size,
uint8_t *out_start = (uint8_t *) (data_out + i * max_xfer_size);
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, out_start, max_xfer_size);
out_start = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(out_start, max_xfer_size,
data_in + i * max_xfer_size, max_xfer_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
}
if (remainder > 0) {
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(data_out + parts * max_xfer_size, remainder,
uint8_t *out_start = (uint8_t *) (data_out + parts * max_xfer_size);
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, out_start, remainder);
out_start = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(out_start, remainder,
data_in + parts * max_xfer_size, remainder);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS)
return false;
@ -325,9 +363,9 @@ uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
return 0;
return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPHA_Msk) >> SPIM_CONFIG_CPHA_Pos;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
return 0;
return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPOL_Msk) >> SPIM_CONFIG_CPOL_Pos;
}

View File

@ -32,7 +32,7 @@
typedef struct {
nrfx_spim_t spim;
uint8_t max_frequency_MHz;
uint32_t max_frequency;
uint8_t max_xfer_size;
} spim_peripheral_t;

View File

@ -26,10 +26,9 @@
// CIRCUITPY_NRF_NUM_I2C is 1 or 2 to choose how many I2C (TWIM) peripherals
// to provide.
// This can go away once we have SPIM3 working: then we can have two
// I2C and two SPI.
// With SPIM3 working we can have two I2C and two SPI.
#ifndef CIRCUITPY_NRF_NUM_I2C
#define CIRCUITPY_NRF_NUM_I2C 1
#define CIRCUITPY_NRF_NUM_I2C 2
#endif
#if CIRCUITPY_NRF_NUM_I2C != 1 && CIRCUITPY_NRF_NUM_I2C != 2
@ -42,13 +41,12 @@
#define NRFX_SPIM1_ENABLED 1
#endif
#define NRFX_SPIM2_ENABLED 1
// DON'T ENABLE SPIM3 DUE TO ANOMALY WORKAROUND FAILURE (SEE ABOVE).
// #ifdef NRF52840_XXAA
// #define NRFX_SPIM_EXTENDED_ENABLED 1
// #define NRFX_SPIM3_ENABLED 1
// #else
// #define NRFX_SPIM3_ENABLED 0
// #endif
#ifdef NRF52840_XXAA
#define NRFX_SPIM_EXTENDED_ENABLED 1
#define NRFX_SPIM3_ENABLED 1
#else
#define NRFX_SPIM3_ENABLED 0
#endif
#define NRFX_SPIM_DEFAULT_CONFIG_IRQ_PRIORITY 7

View File

@ -57,6 +57,13 @@
//|
//| Construct an SPI object on the given pins.
//|
//| ..note:: The SPI peripherals allocated in order of desirability, if possible,
//| such as highest speed and not shared use first. For instance, on the nRF52840,
//| there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals,
//| some of which may also be used for I2C. The 32MHz SPI peripheral is returned
//| first, then the exclusive 8MHz SPI peripheral, and finally the shared 8MHz
//| peripherals.
//|
//| .. seealso:: Using this class directly requires careful lock management.
//| Instead, use :class:`~adafruit_bus_device.spi_device.SPIDevice` to
//| manage locks.