remove micropython asyncio doc; update libraries page and links

This commit is contained in:
Dan Halbert 2022-12-08 20:18:20 -05:00
parent 4fa0c4d108
commit fa96bcce84
5 changed files with 32 additions and 358 deletions

View File

@ -1,33 +0,0 @@
Additional CircuitPython Libraries and Drivers on GitHub
=========================================================
These are libraries and drivers available in separate GitHub repos. They are
designed for use with CircuitPython and may or may not work with
`MicroPython <https://micropython.org>`_.
Adafruit CircuitPython Library Bundle
--------------------------------------
We provide a bundle of all our libraries to ease installation of drivers and
their dependencies. The bundle is primarily geared to the Adafruit Express line
of boards which feature a relatively large external flash. With Express boards,
it's easy to copy them all onto the filesystem. However, if you don't have
enough space simply copy things over as they are needed.
- The Adafruit bundles are available on GitHub: <https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases>.
- Documentation for the bundle, which includes links to documentation for all
libraries, is available here: <https://circuitpython.readthedocs.io/projects/bundle/en/latest/>.
CircuitPython Community Library Bundle
---------------------------------------
This bundle contains non-Adafruit sponsored libraries, that are written and submitted
by members of the community.
- The Community bundles are available on GitHub: <https://github.com/adafruit/CircuitPython_Community_Bundle/releases>.
- Documentation is not available on ReadTheDocs at this time. See each library for any
included documentation.

View File

@ -21,7 +21,7 @@ Full Table of Contents
../shared-bindings/index.rst
supported_ports.rst
troubleshooting.rst
drivers.rst
libraries.rst
workflows
environment.rst

31
docs/libraries.rst Normal file
View File

@ -0,0 +1,31 @@
Adafruit CircuitPython Libraries
================================
Documentation for all Adafruit-sponsored CircuitPython libraries is at:
<https://docs.circuitpython.org/projects/bundle/en/latest/drivers.html>.
CircuitPython Library Bundles
=============================
Many Python libraries, including device drivers, have been written for use with CircuitPython.
They are maintained in separate GitHub repos, one per library.
Libraries are packaged in *bundles*, which are ZIP files that are snapshots in time of a group of libraries.
Adafruit sponsors and maintains several hundred libraries, packaged in the **Adafruit Library Bundle**.
Adafruit-sponsored libraries are also available on <https://pypi.org>.
Yet other libraries are maintained by members of the CircuitPython community,
and are packaged in the **CircuitPython Community Library Bundle**.
The Adafruit bundles are available on GitHub: <https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases>.
The Community bundles are available at: <https://github.com/adafruit/CircuitPython_Community_Bundle/releases>.
More detailed information about the bundles, and download links for the latest bundles
are at <https://circuitpython.org/libraries>.
Documentation about bundle construction is at: <https://circuitpython.readthedocs.io/projects/bundle/en/latest/>.
Documentation for Community Libraries is not available on ReadTheDocs at this time. See the GitHub repository
for each library for any included documentation.

View File

@ -1,323 +0,0 @@
:mod:`uasyncio` --- asynchronous I/O scheduler
==============================================
.. module:: uasyncio
:synopsis: asynchronous I/O scheduler for writing concurrent code
|see_cpython_module|
`asyncio <https://docs.python.org/3.8/library/asyncio.html>`_
Example::
import uasyncio
async def blink(led, period_ms):
while True:
led.on()
await uasyncio.sleep_ms(5)
led.off()
await uasyncio.sleep_ms(period_ms)
async def main(led1, led2):
uasyncio.create_task(blink(led1, 700))
uasyncio.create_task(blink(led2, 400))
await uasyncio.sleep_ms(10_000)
# Running on a pyboard
from pyb import LED
uasyncio.run(main(LED(1), LED(2)))
# Running on a generic board
from machine import Pin
uasyncio.run(main(Pin(1), Pin(2)))
Core functions
--------------
.. function:: create_task(coro)
Create a new task from the given coroutine and schedule it to run.
Returns the corresponding `Task` object.
.. function:: current_task()
Return the `Task` object associated with the currently running task.
.. function:: run(coro)
Create a new task from the given coroutine and run it until it completes.
Returns the value returned by *coro*.
.. function:: sleep(t)
Sleep for *t* seconds (can be a float).
This is a coroutine.
.. function:: sleep_ms(t)
Sleep for *t* milliseconds.
This is a coroutine, and a MicroPython extension.
Additional functions
--------------------
.. function:: wait_for(awaitable, timeout)
Wait for the *awaitable* to complete, but cancel it if it takes longer
that *timeout* seconds. If *awaitable* is not a task then a task will be
created from it.
If a timeout occurs, it cancels the task and raises ``asyncio.TimeoutError``:
this should be trapped by the caller.
Returns the return value of *awaitable*.
This is a coroutine.
.. function:: wait_for_ms(awaitable, timeout)
Similar to `wait_for` but *timeout* is an integer in milliseconds.
This is a coroutine, and a MicroPython extension.
.. function:: gather(*awaitables, return_exceptions=False)
Run all *awaitables* concurrently. Any *awaitables* that are not tasks are
promoted to tasks.
Returns a list of return values of all *awaitables*.
This is a coroutine.
class Task
----------
.. class:: Task()
This object wraps a coroutine into a running task. Tasks can be waited on
using ``await task``, which will wait for the task to complete and return
the return value of the task.
Tasks should not be created directly, rather use `create_task` to create them.
.. method:: Task.cancel()
Cancel the task by injecting a ``CancelledError`` into it. The task may
or may not ignore this exception.
class Event
-----------
.. class:: Event()
Create a new event which can be used to synchronise tasks. Events start
in the cleared state.
.. method:: Event.is_set()
Returns ``True`` if the event is set, ``False`` otherwise.
.. method:: Event.set()
Set the event. Any tasks waiting on the event will be scheduled to run.
.. method:: Event.clear()
Clear the event.
.. method:: Event.wait()
Wait for the event to be set. If the event is already set then it returns
immediately.
This is a coroutine.
class Lock
----------
.. class:: Lock()
Create a new lock which can be used to coordinate tasks. Locks start in
the unlocked state.
In addition to the methods below, locks can be used in an ``async with`` statement.
.. method:: Lock.locked()
Returns ``True`` if the lock is locked, otherwise ``False``.
.. method:: Lock.acquire()
Wait for the lock to be in the unlocked state and then lock it in an atomic
way. Only one task can acquire the lock at any one time.
This is a coroutine.
.. method:: Lock.release()
Release the lock. If any tasks are waiting on the lock then the next one in the
queue is scheduled to run and the lock remains locked. Otherwise, no tasks are
waiting an the lock becomes unlocked.
TCP stream connections
----------------------
.. function:: open_connection(host, port)
Open a TCP connection to the given *host* and *port*. The *host* address will be
resolved using `socket.getaddrinfo`, which is currently a blocking call.
Returns a pair of streams: a reader and a writer stream.
Will raise a socket-specific ``OSError`` if the host could not be resolved or if
the connection could not be made.
This is a coroutine.
.. function:: start_server(callback, host, port, backlog=5)
Start a TCP server on the given *host* and *port*. The *callback* will be
called with incoming, accepted connections, and be passed 2 arguments: reader
and writer streams for the connection.
Returns a `Server` object.
This is a coroutine.
.. class:: Stream()
This represents a TCP stream connection. To minimise code this class implements
both a reader and a writer, and both ``StreamReader`` and ``StreamWriter`` alias to
this class.
.. method:: Stream.get_extra_info(v)
Get extra information about the stream, given by *v*. The valid values for *v* are:
``peername``.
.. method:: Stream.close()
Close the stream.
.. method:: Stream.wait_closed()
Wait for the stream to close.
This is a coroutine.
.. method:: Stream.read(n)
Read up to *n* bytes and return them.
This is a coroutine.
.. method:: Stream.readinto(buf)
Read up to n bytes into *buf* with n being equal to the length of *buf*.
Return the number of bytes read into *buf*.
This is a coroutine, and a MicroPython extension.
.. method:: Stream.readexactly(n)
Read exactly *n* bytes and return them as a bytes object.
Raises an ``EOFError`` exception if the stream ends before reading *n* bytes.
This is a coroutine.
.. method:: Stream.readline()
Read a line and return it.
This is a coroutine.
.. method:: Stream.write(buf)
Accumulated *buf* to the output buffer. The data is only flushed when
`Stream.drain` is called. It is recommended to call `Stream.drain` immediately
after calling this function.
.. method:: Stream.drain()
Drain (write) all buffered output data out to the stream.
This is a coroutine.
.. class:: Server()
This represents the server class returned from `start_server`. It can be used
in an ``async with`` statement to close the server upon exit.
.. method:: Server.close()
Close the server.
.. method:: Server.wait_closed()
Wait for the server to close.
This is a coroutine.
Event Loop
----------
.. function:: get_event_loop()
Return the event loop used to schedule and run tasks. See `Loop`.
.. function:: new_event_loop()
Reset the event loop and return it.
Note: since MicroPython only has a single event loop this function just
resets the loop's state, it does not create a new one.
.. class:: Loop()
This represents the object which schedules and runs tasks. It cannot be
created, use `get_event_loop` instead.
.. method:: Loop.create_task(coro)
Create a task from the given *coro* and return the new `Task` object.
.. method:: Loop.run_forever()
Run the event loop until `stop()` is called.
.. method:: Loop.run_until_complete(awaitable)
Run the given *awaitable* until it completes. If *awaitable* is not a task
then it will be promoted to one.
.. method:: Loop.stop()
Stop the event loop.
.. method:: Loop.close()
Close the event loop.
.. method:: Loop.set_exception_handler(handler)
Set the exception handler to call when a Task raises an exception that is not
caught. The *handler* should accept two arguments: ``(loop, context)``.
.. method:: Loop.get_exception_handler()
Get the current exception handler. Returns the handler, or ``None`` if no
custom handler is set.
.. method:: Loop.default_exception_handler(context)
The default exception handler that is called.
.. method:: Loop.call_exception_handler(context)
Call the current exception handler. The argument *context* is passed through and
is a dictionary containing keys: ``'message'``, ``'exception'``, ``'future'``.

View File

@ -35,7 +35,6 @@ These libraries are not currently enabled in any CircuitPython build, but may be
json.rst
re.rst
sys.rst
asyncio.rst
ctypes.rst
select.rst