commit
f9831b3bbc
|
@ -1992,10 +1992,6 @@ msgstr ""
|
|||
msgid "Stopping AP is not supported."
|
||||
msgstr ""
|
||||
|
||||
#: ports/mimxrt10xx/common-hal/busio/UART.c ports/stm/common-hal/busio/UART.c
|
||||
msgid "Supply at least one UART pin"
|
||||
msgstr ""
|
||||
|
||||
#: shared-bindings/alarm/time/TimeAlarm.c
|
||||
msgid "Supply one of monotonic_time or epoch_time"
|
||||
msgstr ""
|
||||
|
@ -4153,8 +4149,6 @@ msgstr ""
|
|||
msgid "twai_start returned esp-idf error #%d"
|
||||
msgstr ""
|
||||
|
||||
#: ports/atmel-samd/common-hal/busio/UART.c
|
||||
#: ports/espressif/common-hal/busio/UART.c ports/nrf/common-hal/busio/UART.c
|
||||
#: shared-bindings/busio/UART.c shared-bindings/canio/CAN.c
|
||||
msgid "tx and rx cannot both be None"
|
||||
msgstr ""
|
||||
|
|
|
@ -58,6 +58,8 @@ static void usart_async_rxc_callback(const struct usart_async_descriptor *const
|
|||
// Nothing needs to be done by us.
|
||||
}
|
||||
|
||||
// shared-bindings validates that the tx and rx are not both missing,
|
||||
// and that the pins are distinct.
|
||||
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
||||
const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx,
|
||||
const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts,
|
||||
|
@ -92,10 +94,6 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
bool have_rts = rts != NULL;
|
||||
bool have_cts = cts != NULL;
|
||||
|
||||
if (!have_tx && !have_rx) {
|
||||
mp_raise_ValueError(translate("tx and rx cannot both be None"));
|
||||
}
|
||||
|
||||
if (have_rx && receiver_buffer_size > 0 && (receiver_buffer_size & (receiver_buffer_size - 1)) != 0) {
|
||||
mp_raise_ValueError_varg(translate("%q must be power of 2"), MP_QSTR_receiver_buffer_size);
|
||||
}
|
||||
|
@ -107,6 +105,20 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
// This assignment is only here because the usart_async routines take a *const argument.
|
||||
struct usart_async_descriptor *const usart_desc_p = (struct usart_async_descriptor *const)&self->usart_desc;
|
||||
|
||||
// Allowed pads for USART. See the SAMD21 and SAMx5x datasheets.
|
||||
// TXPO:
|
||||
// (both) 0x0: TX pad 0; no RTS/CTS
|
||||
// (SAMD21) 0x1: TX pad 2; no RTS/CTS
|
||||
// (SAMx5x) 0x1: reserved
|
||||
// (both) 0x2: TX pad 0; RTS: pad 2, CTS: pad 3
|
||||
// (SAMD21) 0x3: reserved
|
||||
// (SAMx5x) 0x3: TX pad 0; RTS: pad 2; no CTS
|
||||
// RXPO:
|
||||
// 0x0: RX pad 0
|
||||
// 0x1: RX pad 1
|
||||
// 0x2: RX pad 2
|
||||
// 0x3: RX pad 3
|
||||
|
||||
for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) {
|
||||
Sercom *potential_sercom = NULL;
|
||||
if (have_tx) {
|
||||
|
@ -115,29 +127,71 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
continue;
|
||||
}
|
||||
potential_sercom = sercom_insts[sercom_index];
|
||||
|
||||
// SAMD21 and SAMx5x have different requirements.
|
||||
|
||||
#ifdef SAMD21
|
||||
if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 ||
|
||||
!(tx->sercom[i].pad == 0 ||
|
||||
tx->sercom[i].pad == 2)) {
|
||||
if (potential_sercom->USART.CTRLA.bit.ENABLE != 0) {
|
||||
// In use.
|
||||
continue;
|
||||
}
|
||||
if (tx->sercom[i].pad != 0 &&
|
||||
tx->sercom[i].pad != 2) {
|
||||
// TX must be on pad 0 or 2.
|
||||
continue;
|
||||
}
|
||||
if (have_rts) {
|
||||
if (rts->sercom[i].pad != 2 ||
|
||||
tx->sercom[i].pad == 2) {
|
||||
// RTS pin must be on pad 2, so if TX is also on pad 2, not possible
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (have_cts) {
|
||||
if (cts->sercom[i].pad != 3 ||
|
||||
(have_rx && rx->sercom[i].pad == 3)) {
|
||||
// CTS pin must be on pad 3, so if RX is also on pad 3, not possible
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SAM_D5X_E5X
|
||||
if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 ||
|
||||
!(tx->sercom[i].pad == 0)) {
|
||||
if (potential_sercom->USART.CTRLA.bit.ENABLE != 0) {
|
||||
// In use.
|
||||
continue;
|
||||
}
|
||||
if (tx->sercom[i].pad != 0) {
|
||||
// TX must be on pad 0
|
||||
continue;
|
||||
}
|
||||
|
||||
if (have_rts && rts->sercom[i].pad != 2) {
|
||||
// RTS pin must be on pad 2
|
||||
continue;
|
||||
}
|
||||
if (have_cts) {
|
||||
if (cts->sercom[i].pad != 3 ||
|
||||
(have_rx && rx->sercom[i].pad == 3)) {
|
||||
// CTS pin must be on pad 3, so if RX is also on pad 3, not possible
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
tx_pinmux = PINMUX(tx->number, (i == 0) ? MUX_C : MUX_D);
|
||||
tx_pad = tx->sercom[i].pad;
|
||||
if (have_rts) {
|
||||
rts_pinmux = PINMUX(rts->number, (i == 0) ? MUX_C : MUX_D);
|
||||
}
|
||||
if (rx == NULL) {
|
||||
if (!have_rx) {
|
||||
// TX only, so don't need to look further.
|
||||
sercom = potential_sercom;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Have TX, now look for RX match. We know have_rx is true at this point.
|
||||
for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) {
|
||||
if (((!have_tx && rx->sercom[j].index < SERCOM_INST_NUM &&
|
||||
sercom_insts[rx->sercom[j].index]->USART.CTRLA.bit.ENABLE == 0) ||
|
||||
|
@ -160,20 +214,10 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
if (sercom == NULL) {
|
||||
raise_ValueError_invalid_pins();
|
||||
}
|
||||
if (!have_tx) {
|
||||
tx_pad = 0;
|
||||
if (rx_pad == 0) {
|
||||
tx_pad = 2;
|
||||
}
|
||||
}
|
||||
if (!have_rx) {
|
||||
rx_pad = (tx_pad + 1) % 4;
|
||||
}
|
||||
|
||||
// Set up clocks on SERCOM.
|
||||
samd_peripherals_sercom_clock_init(sercom, sercom_index);
|
||||
|
||||
if (rx && receiver_buffer_size > 0) {
|
||||
if (have_rx && receiver_buffer_size > 0) {
|
||||
self->buffer_length = receiver_buffer_size;
|
||||
if (NULL != receiver_buffer) {
|
||||
self->buffer = receiver_buffer;
|
||||
|
@ -204,36 +248,41 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
// which don't necessarily match what we need. After calling it, set the values
|
||||
// specific to this instantiation of UART.
|
||||
|
||||
// Set pads computed for this SERCOM. Refer to the datasheet for details on pads.
|
||||
// TXPO:
|
||||
// 0x0: TX pad 0; no RTS/CTS
|
||||
// 0x1: reserved
|
||||
// 0x2: TX pad 0; RTS: pad 2, CTS: pad 3
|
||||
// 0x3: TX pad 0; RTS: pad 2; no CTS
|
||||
// RXPO:
|
||||
// 0x0: RX pad 0
|
||||
// 0x1: RX pad 1
|
||||
// 0x2: RX pad 2
|
||||
// 0x3: RX pad 3
|
||||
// See the TXPO/RXPO table above for how RXPO and TXPO are chosen below.
|
||||
|
||||
// Default to TXPO with no RTS/CTS
|
||||
uint8_t computed_txpo = 0;
|
||||
// If we have both CTS (with or without RTS), use second pinout
|
||||
if (have_cts) {
|
||||
computed_txpo = 2;
|
||||
}
|
||||
// If we have RTS only, use the third pinout
|
||||
if (have_rts && !have_cts) {
|
||||
computed_txpo = 3;
|
||||
// rxpo maps directly to rx_pad.
|
||||
// Set to 0x0 if no RX, but it doesn't matter because RX will not be enabled.
|
||||
const uint8_t rxpo = have_rx ? rx_pad : 0x0;
|
||||
|
||||
#ifdef SAMD21
|
||||
// SAMD21 has only one txpo value when using either CTS or RTS or both.
|
||||
// TX is on pad 0 or 2, or there is no TX.
|
||||
// 0x0 for pad 0, 0x1 for pad 2.
|
||||
uint8_t txpo;
|
||||
if (tx_pad == 2) {
|
||||
txpo = 0x1;
|
||||
} else {
|
||||
txpo = (have_cts || have_rts) ? 0x2 : 0x0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SAM_D5X_E5X
|
||||
// SAMx5x has two different possibilities, per the chart above.
|
||||
// We already know TX is on pad 0, or there is no TX.
|
||||
|
||||
// Without RTS or CTS, txpo can be 0x0.
|
||||
// It's not clear if 0x2 would cover all our cases, but this is known to be safe.
|
||||
uint8_t txpo = (have_rts || have_cts) ? 0x2: 0x0;
|
||||
#endif
|
||||
|
||||
// Doing a group mask and set of the registers saves 60 bytes over setting the bitfields individually.
|
||||
|
||||
sercom->USART.CTRLA.reg &= ~(SERCOM_USART_CTRLA_TXPO_Msk |
|
||||
SERCOM_USART_CTRLA_RXPO_Msk |
|
||||
SERCOM_USART_CTRLA_FORM_Msk);
|
||||
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(computed_txpo) |
|
||||
SERCOM_USART_CTRLA_RXPO(rx_pad) |
|
||||
// See chart above for TXPO values and RXPO values.
|
||||
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(txpo) |
|
||||
SERCOM_USART_CTRLA_RXPO(rxpo) |
|
||||
(parity == BUSIO_UART_PARITY_NONE ? 0 : SERCOM_USART_CTRLA_FORM(1));
|
||||
|
||||
// Enable tx and/or rx based on whether the pins were specified.
|
||||
|
|
|
@ -112,9 +112,8 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
|
||||
uart_config_t uart_config = {0};
|
||||
bool have_rs485_dir = rs485_dir != NULL;
|
||||
if (!have_tx && !have_rx) {
|
||||
mp_raise_ValueError(translate("tx and rx cannot both be None"));
|
||||
}
|
||||
|
||||
// shared-bindings checks that TX and RX are not both None, so we don't need to check here.
|
||||
|
||||
// Filter for sane settings for RS485
|
||||
if (have_rs485_dir) {
|
||||
|
|
|
@ -179,7 +179,8 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
break;
|
||||
}
|
||||
} else {
|
||||
mp_raise_ValueError(translate("Supply at least one UART pin"));
|
||||
// TX and RX are both None. But this is already handled in shared-bindings, so
|
||||
// we won't get here.
|
||||
}
|
||||
|
||||
if (rx && !rx_config) {
|
||||
|
|
|
@ -183,9 +183,7 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
mp_raise_ValueError(translate("All UART peripherals are in use"));
|
||||
}
|
||||
|
||||
if ((tx == NULL) && (rx == NULL)) {
|
||||
mp_raise_ValueError(translate("tx and rx cannot both be None"));
|
||||
}
|
||||
// shared-bindings checks that TX and RX are not both None, so we don't need to check here.
|
||||
|
||||
mp_arg_validate_int_min(receiver_buffer_size, 1, MP_QSTR_receiver_buffer_size);
|
||||
|
||||
|
|
|
@ -260,8 +260,8 @@ mp_uint_t common_hal_ssl_sslsocket_recv_into(ssl_sslsocket_obj_t *self, uint8_t
|
|||
// renegotation.
|
||||
ret = MP_EWOULDBLOCK;
|
||||
}
|
||||
DEBUG("returning [error case] %d\n", -ret);
|
||||
return -ret;
|
||||
DEBUG("raising errno [error case] %d\n", ret);
|
||||
mp_raise_OSError(ret);
|
||||
}
|
||||
|
||||
mp_uint_t common_hal_ssl_sslsocket_send(ssl_sslsocket_obj_t *self, const uint8_t *buf, uint32_t len) {
|
||||
|
@ -279,8 +279,8 @@ mp_uint_t common_hal_ssl_sslsocket_send(ssl_sslsocket_obj_t *self, const uint8_t
|
|||
// renegotation.
|
||||
ret = MP_EWOULDBLOCK;
|
||||
}
|
||||
DEBUG("returning [error case] %d\n", -ret);
|
||||
return -ret;
|
||||
DEBUG("raising errno [error case] %d\n", ret);
|
||||
mp_raise_OSError(ret);
|
||||
}
|
||||
|
||||
bool common_hal_ssl_sslsocket_bind(ssl_sslsocket_obj_t *self, const char *host, size_t hostlen, uint32_t port) {
|
||||
|
|
|
@ -60,6 +60,7 @@
|
|||
#define LWIP_NUM_NETIF_CLIENT_DATA 1
|
||||
#define LWIP_NETIF_EXT_STATUS_CALLBACK 1
|
||||
#define MDNS_MAX_SECONDARY_HOSTNAMES 1
|
||||
#define MEMP_NUM_SYS_TIMEOUT (8 + 3 * (LWIP_IPV4 + LWIP_IPV6))
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
|
|
|
@ -85,7 +85,7 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
bool sigint_enabled) {
|
||||
|
||||
// match pins to UART objects
|
||||
USART_TypeDef *USARTx;
|
||||
USART_TypeDef *USARTx = NULL;
|
||||
|
||||
uint8_t tx_len = MP_ARRAY_SIZE(mcu_uart_tx_list);
|
||||
uint8_t rx_len = MP_ARRAY_SIZE(mcu_uart_rx_list);
|
||||
|
@ -159,8 +159,8 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
|
|||
USARTx = assign_uart_or_throw(self, (self->tx != NULL),
|
||||
periph_index, uart_taken);
|
||||
} else {
|
||||
// both pins cannot be empty
|
||||
mp_raise_ValueError(translate("Supply at least one UART pin"));
|
||||
// TX and RX are both None. But this is already handled in shared-bindings, so
|
||||
// we won't get here.
|
||||
}
|
||||
|
||||
// Other errors
|
||||
|
|
|
@ -218,9 +218,6 @@ STATIC const mp_rom_map_elem_t mp_builtin_module_table[] = {
|
|||
#if MICROPY_PY_UJSON && !CIRCUITPY
|
||||
{ MP_ROM_QSTR(MP_QSTR_ujson), MP_ROM_PTR(&mp_module_ujson) },
|
||||
#endif
|
||||
#if CIRCUITPY_ULAB
|
||||
{ MP_ROM_QSTR(MP_QSTR_ulab), MP_ROM_PTR(&ulab_user_cmodule) },
|
||||
#endif
|
||||
#if MICROPY_PY_URE && !CIRCUITPY
|
||||
{ MP_ROM_QSTR(MP_QSTR_ure), MP_ROM_PTR(&mp_module_ure) },
|
||||
#endif
|
||||
|
|
|
@ -48,9 +48,13 @@
|
|||
//|
|
||||
//| def __init__(
|
||||
//| self,
|
||||
//| tx: microcontroller.Pin,
|
||||
//| rx: microcontroller.Pin,
|
||||
//| tx: Optional[microcontroller.Pin] = None,
|
||||
//| rx: Optional[microcontroller.Pin] = None,
|
||||
//| *,
|
||||
//| rts: Optional[microcontroller.Pin] = None,
|
||||
//| cts: Optional[microcontroller.Pin] = None,
|
||||
//| rs485_dir: Optional[microcontroller.Pin] = None,
|
||||
//| rs485_invert: bool = False,
|
||||
//| baudrate: int = 9600,
|
||||
//| bits: int = 8,
|
||||
//| parity: Optional[Parity] = None,
|
||||
|
@ -74,11 +78,13 @@
|
|||
//| :param float timeout: the timeout in seconds to wait for the first character and between subsequent characters when reading. Raises ``ValueError`` if timeout >100 seconds.
|
||||
//| :param int receiver_buffer_size: the character length of the read buffer (0 to disable). (When a character is 9 bits the buffer will be 2 * receiver_buffer_size bytes.)
|
||||
//|
|
||||
//| ``tx`` and ``rx`` cannot both be ``None``.
|
||||
//|
|
||||
//| *New in CircuitPython 4.0:* ``timeout`` has incompatibly changed units from milliseconds to seconds.
|
||||
//| The new upper limit on ``timeout`` is meant to catch mistaken use of milliseconds.
|
||||
//|
|
||||
//| **Limitations:** RS485 is not supported on SAMD, nRF, Broadcom, Spresense, or STM.
|
||||
//| On i.MX and Raspberry Pi RP2040 support is implemented in software:
|
||||
//| On i.MX and Raspberry Pi RP2040, RS485 support is implemented in software:
|
||||
//| The timing for the ``rs485_dir`` pin signal is done on a best-effort basis, and may not meet
|
||||
//| RS485 specifications intermittently.
|
||||
//| """
|
||||
|
@ -118,11 +124,21 @@ STATIC mp_obj_t busio_uart_make_new(const mp_obj_type_t *type, size_t n_args, si
|
|||
|
||||
const mcu_pin_obj_t *rx = validate_obj_is_free_pin_or_none(args[ARG_rx].u_obj, MP_QSTR_rx);
|
||||
const mcu_pin_obj_t *tx = validate_obj_is_free_pin_or_none(args[ARG_tx].u_obj, MP_QSTR_tx);
|
||||
|
||||
const mcu_pin_obj_t *rts = validate_obj_is_free_pin_or_none(args[ARG_rts].u_obj, MP_QSTR_rts);
|
||||
const mcu_pin_obj_t *cts = validate_obj_is_free_pin_or_none(args[ARG_cts].u_obj, MP_QSTR_cts);
|
||||
const mcu_pin_obj_t *rs485_dir = validate_obj_is_free_pin_or_none(args[ARG_rs485_dir].u_obj, MP_QSTR_rs485_dir);
|
||||
if ((tx == NULL) && (rx == NULL)) {
|
||||
mp_raise_ValueError(translate("tx and rx cannot both be None"));
|
||||
}
|
||||
|
||||
// Pins must be distinct.
|
||||
if ((tx != NULL && (tx == rx || tx == rts || tx == cts || tx == rs485_dir)) ||
|
||||
(rx != NULL && (rx == rts || rx == cts || rx == rs485_dir)) ||
|
||||
(rts != NULL && (rts == cts || rts == rs485_dir)) ||
|
||||
(cts != NULL && (cts == rs485_dir))) {
|
||||
raise_ValueError_invalid_pins();
|
||||
}
|
||||
|
||||
uint8_t bits = (uint8_t)mp_arg_validate_int_range(args[ARG_bits].u_int, 5, 9, MP_QSTR_bits);
|
||||
|
||||
busio_uart_parity_t parity = BUSIO_UART_PARITY_NONE;
|
||||
|
@ -137,10 +153,6 @@ STATIC mp_obj_t busio_uart_make_new(const mp_obj_type_t *type, size_t n_args, si
|
|||
mp_float_t timeout = mp_obj_get_float(args[ARG_timeout].u_obj);
|
||||
validate_timeout(timeout);
|
||||
|
||||
const mcu_pin_obj_t *rts = validate_obj_is_free_pin_or_none(args[ARG_rts].u_obj, MP_QSTR_rts);
|
||||
const mcu_pin_obj_t *cts = validate_obj_is_free_pin_or_none(args[ARG_cts].u_obj, MP_QSTR_cts);
|
||||
const mcu_pin_obj_t *rs485_dir = validate_obj_is_free_pin_or_none(args[ARG_rs485_dir].u_obj, MP_QSTR_rs485_dir);
|
||||
|
||||
const bool rs485_invert = args[ARG_rs485_invert].u_bool;
|
||||
|
||||
// Always initially allocate the UART object within the long-lived heap.
|
||||
|
|
|
@ -73,10 +73,8 @@ STATIC mp_obj_t displayio_colorconverter_obj_convert(mp_obj_t self_in, mp_obj_t
|
|||
displayio_colorconverter_t *self = MP_OBJ_TO_PTR(self_in);
|
||||
|
||||
mp_int_t color = mp_arg_validate_type_int(color_obj, MP_QSTR_color);
|
||||
_displayio_colorspace_t colorspace;
|
||||
colorspace.depth = 16;
|
||||
uint32_t output_color;
|
||||
common_hal_displayio_colorconverter_convert(self, &colorspace, color, &output_color);
|
||||
common_hal_displayio_colorconverter_convert(self, &self->output_colorspace, color, &output_color);
|
||||
return MP_OBJ_NEW_SMALL_INT(output_color);
|
||||
}
|
||||
MP_DEFINE_CONST_FUN_OBJ_2(displayio_colorconverter_convert_obj, displayio_colorconverter_obj_convert);
|
||||
|
|
|
@ -45,6 +45,7 @@ void common_hal_displayio_colorconverter_construct(displayio_colorconverter_t *s
|
|||
self->dither = dither;
|
||||
self->transparent_color = NO_TRANSPARENT_COLOR;
|
||||
self->input_colorspace = input_colorspace;
|
||||
self->output_colorspace.depth = 16;
|
||||
}
|
||||
|
||||
uint16_t displayio_colorconverter_compute_rgb565(uint32_t color_rgb888) {
|
||||
|
|
|
@ -37,6 +37,7 @@ typedef struct displayio_colorconverter {
|
|||
mp_obj_base_t base;
|
||||
bool dither;
|
||||
uint8_t input_colorspace;
|
||||
_displayio_colorspace_t output_colorspace;
|
||||
uint32_t transparent_color;
|
||||
|
||||
// Cache the last computed color in case the are the same.
|
||||
|
|
Loading…
Reference in New Issue