stmhal, SPI and I2C: Improvements to functionality and consistency.

This commit is contained in:
Damien George 2014-04-21 00:10:04 +01:00
parent 64ba6ca127
commit eb8bdf4df3
8 changed files with 418 additions and 136 deletions

View File

@ -97,6 +97,7 @@ SRC_C = \
servo.c \
dac.c \
adc.c \
bufhelper.c \
i2c.c \
spi.c \

View File

@ -35,7 +35,15 @@ void accel_init(void) {
}
STATIC void accel_start(void) {
// start the I2C bus
// start the I2C bus in master mode
I2CHandle1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
I2CHandle1.Init.ClockSpeed = 400000;
I2CHandle1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLED;
I2CHandle1.Init.DutyCycle = I2C_DUTYCYCLE_16_9;
I2CHandle1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLED;
I2CHandle1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLED;
I2CHandle1.Init.OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
I2CHandle1.Init.OwnAddress2 = 0xfe; // unused
i2c_init(&I2CHandle1);
// turn off AVDD, wait 20ms, turn on AVDD, wait 20ms again

29
stmhal/bufhelper.c Normal file
View File

@ -0,0 +1,29 @@
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "bufhelper.h"
void pyb_buf_get_for_send(mp_obj_t o, mp_buffer_info_t *bufinfo, uint8_t *tmp_data) {
if (MP_OBJ_IS_INT(o)) {
tmp_data[0] = mp_obj_get_int(o);
bufinfo->buf = tmp_data;
bufinfo->len = 1;
bufinfo->typecode = 'B';
} else {
mp_get_buffer_raise(o, bufinfo, MP_BUFFER_READ);
}
}
mp_obj_t pyb_buf_get_for_recv(mp_obj_t o, mp_buffer_info_t *bufinfo) {
if (MP_OBJ_IS_INT(o)) {
// allocate a new bytearray of given length
bufinfo->len = mp_obj_get_int(o);
bufinfo->typecode = 'B';
return mp_obj_str_builder_start(&mp_type_bytes, bufinfo->len, (byte**)&bufinfo->buf);
} else {
// get the existing buffer
mp_get_buffer_raise(o, bufinfo, MP_BUFFER_WRITE);
return MP_OBJ_NULL;
}
}

2
stmhal/bufhelper.h Normal file
View File

@ -0,0 +1,2 @@
void pyb_buf_get_for_send(mp_obj_t o, mp_buffer_info_t *bufinfo, uint8_t *tmp_data);
mp_obj_t pyb_buf_get_for_recv(mp_obj_t o, mp_buffer_info_t *bufinfo);

View File

@ -11,8 +11,12 @@
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "i2c.h"
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE (1)
#if MICROPY_HW_ENABLE_I2C1
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
@ -65,15 +69,6 @@ void i2c_init(I2C_HandleTypeDef *i2c) {
}
// init the I2C device
i2c->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
i2c->Init.ClockSpeed = 400000;
i2c->Init.DualAddressMode = I2C_DUALADDRESS_DISABLED;
i2c->Init.DutyCycle = I2C_DUTYCYCLE_16_9;
i2c->Init.GeneralCallMode = I2C_GENERALCALL_DISABLED;
i2c->Init.NoStretchMode = I2C_NOSTRETCH_DISABLED;
i2c->Init.OwnAddress1 = 0xfe; // unused
i2c->Init.OwnAddress2 = 0xfe; // unused
if (HAL_I2C_Init(i2c) != HAL_OK) {
// init error
// TODO should raise an exception, but this function is not necessarily going to be
@ -83,6 +78,22 @@ void i2c_init(I2C_HandleTypeDef *i2c) {
}
}
void i2c_deinit(I2C_HandleTypeDef *i2c) {
HAL_I2C_DeInit(i2c);
if (0) {
#if MICROPY_HW_ENABLE_I2C1
} else if (i2c->Instance == I2C1) {
__I2C1_FORCE_RESET();
__I2C1_RELEASE_RESET();
__I2C1_CLK_DISABLE();
#endif
} else if (i2c->Instance == I2C2) {
__I2C2_FORCE_RESET();
__I2C2_RELEASE_RESET();
__I2C2_CLK_DISABLE();
}
}
/******************************************************************************/
/* Micro Python bindings */
@ -91,6 +102,8 @@ typedef struct _pyb_i2c_obj_t {
I2C_HandleTypeDef *i2c;
} pyb_i2c_obj_t;
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }
STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if MICROPY_HW_ENABLE_I2C1
{{&pyb_i2c_type}, &I2CHandle1},
@ -101,9 +114,64 @@ STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
};
#define PYB_NUM_I2C (sizeof(pyb_i2c_obj) / sizeof(pyb_i2c_obj[0]))
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_i2c_obj_t *self = self_in;
uint i2c_num;
if (self->i2c->Instance == I2C1) { i2c_num = 1; }
else { i2c_num = 2; }
if (self->i2c->State == HAL_I2C_STATE_RESET) {
print(env, "I2C(%u)", i2c_num);
} else {
if (in_master_mode(self)) {
print(env, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, self->i2c->Init.ClockSpeed);
} else {
print(env, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
}
}
}
STATIC const mp_arg_parse_t pyb_i2c_init_accepted_args[] = {
{ MP_QSTR_mode, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_INT, {.u_int = 0} },
{ MP_QSTR_addr, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 0x12} },
{ MP_QSTR_baudrate, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 400000} },
{ MP_QSTR_gencall, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_BOOL, {.u_bool = false} },
};
#define PYB_I2C_INIT_NUM_ARGS (sizeof(pyb_i2c_init_accepted_args) / sizeof(pyb_i2c_init_accepted_args[0]))
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_parse_val_t vals[PYB_I2C_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_accepted_args, vals);
// set the I2C configuration values
I2C_InitTypeDef *init = &self->i2c->Init;
if (vals[0].u_int == PYB_I2C_MASTER) {
// use a special address to indicate we are a master
init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
} else {
init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe;
}
init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
init->ClockSpeed = MIN(vals[2].u_int, 400000);
init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
init->DutyCycle = I2C_DUTYCYCLE_16_9;
init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
init->NoStretchMode = I2C_NOSTRETCH_DISABLED;
init->OwnAddress2 = 0xfe; // unused
// init the I2C bus
i2c_init(self->i2c);
return mp_const_none;
}
STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get i2c number
machine_int_t i2c_id = mp_obj_get_int(args[0]) - 1;
@ -113,18 +181,39 @@ STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "I2C bus %d does not exist", i2c_id + 1));
}
// get i2c object
// get I2C object
const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id];
// start the peripheral
i2c_init(i2c_obj->i2c);
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)i2c_obj;
}
STATIC mp_obj_t pyb_i2c_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
pyb_i2c_obj_t *self = self_in;
i2c_deinit(self->i2c);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);
// Check if an I2C device responds to the given address.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
pyb_i2c_obj_t *self = self_in;
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
machine_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
for (int i = 0; i < 10; i++) {
@ -136,13 +225,16 @@ STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);
// Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
pyb_i2c_obj_t *self = self_in;
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
mp_obj_t list = mp_obj_new_list(0, NULL);
for (uint addr = 1; addr <= 127; addr++) {
@ -157,88 +249,156 @@ STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);
STATIC mp_obj_t pyb_i2c_read(mp_obj_t self_in, mp_obj_t i2c_addr_in, mp_obj_t n_in) {
pyb_i2c_obj_t *self = self_in;
machine_uint_t i2c_addr = mp_obj_get_int(i2c_addr_in) << 1;
machine_uint_t n = mp_obj_get_int(n_in);
STATIC const mp_arg_parse_t pyb_i2c_send_accepted_args[] = {
{ MP_QSTR_send, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_PARSE_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_I2C_SEND_NUM_ARGS (sizeof(pyb_i2c_send_accepted_args) / sizeof(pyb_i2c_send_accepted_args[0]))
byte *data;
mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, n, &data);
HAL_StatusTypeDef status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, data, n, 500);
STATIC mp_obj_t pyb_i2c_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Master_Receive failed with code %d", status));
}
// parse args
mp_arg_parse_val_t vals[PYB_I2C_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_accepted_args, vals);
return mp_obj_str_builder_end(o);
}
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_i2c_read_obj, pyb_i2c_read);
STATIC mp_obj_t pyb_i2c_write(mp_obj_t self_in, mp_obj_t i2c_addr_in, mp_obj_t data_in) {
pyb_i2c_obj_t *self = self_in;
machine_uint_t i2c_addr = mp_obj_get_int(i2c_addr_in) << 1;
// send the data
HAL_StatusTypeDef status;
if (MP_OBJ_IS_INT(data_in)) {
uint8_t data[1] = {mp_obj_get_int(data_in)};
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, data, 1, 500);
if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
}
machine_uint_t i2c_addr = vals[1].u_int << 1;
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
} else {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data_in, &bufinfo, MP_BUFFER_READ);
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, 500);
status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
}
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Master_Transmit failed with code %d", status));
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Transmit failed with code %d", status));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_i2c_write_obj, pyb_i2c_write);
STATIC const mp_arg_parse_t pyb_i2c_recv_accepted_args[] = {
{ MP_QSTR_recv, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_PARSE_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_I2C_RECV_NUM_ARGS (sizeof(pyb_i2c_recv_accepted_args) / sizeof(pyb_i2c_recv_accepted_args[0]))
STATIC mp_obj_t pyb_i2c_mem_read(uint n_args, const mp_obj_t *args) {
STATIC mp_obj_t pyb_i2c_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
machine_uint_t i2c_addr = mp_obj_get_int(args[1]) << 1;
machine_uint_t mem_addr = mp_obj_get_int(args[2]);
machine_uint_t n = mp_obj_get_int(args[3]);
byte *data;
mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, n, &data);
HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, data, n, 200);
// parse args
mp_arg_parse_val_t vals[PYB_I2C_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_accepted_args, vals);
//printf("Read got %d\n", status);
// get the buffer to receive into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// receive the data
HAL_StatusTypeDef status;
if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
}
machine_uint_t i2c_addr = vals[1].u_int << 1;
status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
} else {
status = HAL_I2C_Slave_Receive(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
}
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Receive failed with code %d", status));
}
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
STATIC const mp_arg_parse_t pyb_i2c_mem_read_accepted_args[] = {
{ MP_QSTR_data, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_I2C_MEM_READ_NUM_ARGS (sizeof(pyb_i2c_mem_read_accepted_args) / sizeof(pyb_i2c_mem_read_accepted_args[0]))
STATIC mp_obj_t pyb_i2c_mem_read(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
// parse args
mp_arg_parse_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_accepted_args, vals);
// get the buffer to read into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// get the addresses
machine_uint_t i2c_addr = vals[1].u_int << 1;
machine_uint_t mem_addr = vals[2].u_int;
HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, bufinfo.buf, bufinfo.len, vals[3].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Mem_Read failed with code %d", status));
}
return mp_obj_str_builder_end(o);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_i2c_mem_read_obj, 4, 4, pyb_i2c_mem_read);
STATIC mp_obj_t pyb_i2c_mem_write(uint n_args, const mp_obj_t *args) {
pyb_i2c_obj_t *self = args[0];
machine_uint_t i2c_addr = mp_obj_get_int(args[1]) << 1;
machine_uint_t mem_addr = mp_obj_get_int(args[2]);
HAL_StatusTypeDef status;
if (MP_OBJ_IS_INT(args[3])) {
uint8_t data[1] = {mp_obj_get_int(args[3])};
status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, data, 1, 200);
// return the read data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[3], &bufinfo, MP_BUFFER_READ);
status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, bufinfo.buf, bufinfo.len, 200);
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
STATIC mp_obj_t pyb_i2c_mem_write(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
//printf("Write got %d\n", status);
// parse args (same as mem_read)
mp_arg_parse_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_accepted_args, vals);
// get the buffer to write from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// get the addresses
machine_uint_t i2c_addr = vals[1].u_int << 1;
machine_uint_t mem_addr = vals[2].u_int;
HAL_StatusTypeDef status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, bufinfo.buf, bufinfo.len, vals[3].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
@ -247,16 +407,22 @@ STATIC mp_obj_t pyb_i2c_mem_write(uint n_args, const mp_obj_t *args) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_i2c_mem_write_obj, 4, 4, pyb_i2c_mem_write);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&pyb_i2c_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_i2c_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);
@ -264,6 +430,7 @@ STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);
const mp_obj_type_t pyb_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.print = pyb_i2c_print,
.make_new = pyb_i2c_make_new,
.locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
};

View File

@ -1,3 +1,6 @@
// use this for OwnAddress1 to configure I2C in master mode
#define PYB_I2C_MASTER_ADDRESS (0xfe)
extern I2C_HandleTypeDef I2CHandle1;
extern I2C_HandleTypeDef I2CHandle2;
extern const mp_obj_type_t pyb_i2c_type;

View File

@ -106,8 +106,19 @@ Q(EVT_RISING_FALLING)
// for I2C object
Q(I2C)
Q(mode)
Q(addr)
Q(baudrate)
Q(gencall)
Q(data)
Q(memaddr)
Q(timeout)
Q(init)
Q(deinit)
Q(is_ready)
Q(scan)
Q(send)
Q(recv)
Q(mem_read)
Q(mem_write)
@ -120,16 +131,18 @@ Q(recv)
Q(send_recv)
Q(mode)
Q(baudrate)
Q(clkpol)
Q(clkphase)
Q(polarity)
Q(phase)
Q(dir)
Q(size)
Q(nss)
Q(firstbit)
Q(ti)
Q(crcpoly)
Q(crc)
Q(MASTER)
Q(SLAVE)
Q(MSB)
Q(LSB)
// for Accel object
Q(Accel)

View File

@ -11,6 +11,7 @@
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "spi.h"
#if MICROPY_HW_ENABLE_SPI1
@ -41,7 +42,7 @@ void spi_init(SPI_HandleTypeDef *spi) {
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Pull = GPIO_PULLUP; // ST examples use PULLUP
GPIO_InitStructure.Pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? GPIO_PULLDOWN : GPIO_PULLUP;
const pin_obj_t *pins[4];
if (0) {
@ -100,12 +101,18 @@ void spi_deinit(SPI_HandleTypeDef *spi) {
if (0) {
#if MICROPY_HW_ENABLE_SPI1
} else if (spi->Instance == SPI1) {
__SPI1_FORCE_RESET();
__SPI1_RELEASE_RESET();
__SPI1_CLK_DISABLE();
#endif
} else if (spi->Instance == SPI2) {
__SPI2_FORCE_RESET();
__SPI2_RELEASE_RESET();
__SPI2_CLK_DISABLE();
#if MICROPY_HW_ENABLE_SPI3
} else if (spi->Instance == SPI3) {
__SPI3_FORCE_RESET();
__SPI3_RELEASE_RESET();
__SPI3_CLK_DISABLE();
#endif
}
@ -156,29 +163,34 @@ STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *
spi_clock = HAL_RCC_GetPCLK1Freq();
}
uint baudrate = spi_clock >> ((self->spi->Init.BaudRatePrescaler >> 3) + 1);
print(env, "SPI(%u, SPI.MASTER, clock=%u, baudrate=%u)", spi_num, spi_clock, baudrate);
print(env, "SPI(%u, SPI.MASTER, baudrate=%u", spi_num, baudrate);
} else {
print(env, "SPI(%u, SPI.SLAVE)", spi_num);
print(env, "SPI(%u, SPI.SLAVE", spi_num);
}
print(env, ", polarity=%u, phase=%u, size=%u", self->spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, self->spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 1 : 2, self->spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16);
if (self->spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLED) {
print(env, ", crc=0x%x", self->spi->Init.CRCPolynomial);
}
print(env, ")");
}
}
STATIC const mp_arg_parse_t pyb_spi_init_accepted_args[] = {
{ MP_QSTR_mode, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_INT, {.u_int = 0} },
{ MP_QSTR_baudrate, MP_ARG_PARSE_INT, {.u_int = 328125} },
{ MP_QSTR_clkpol, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = SPI_POLARITY_LOW} },
{ MP_QSTR_clkphase, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = SPI_PHASE_1EDGE} },
{ MP_QSTR_baudrate, MP_ARG_PARSE_INT, {.u_int = 328125} },
{ MP_QSTR_polarity, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 1} },
{ MP_QSTR_phase, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 1} },
{ MP_QSTR_dir, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = SPI_DIRECTION_2LINES} },
{ MP_QSTR_size, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 8} },
{ MP_QSTR_nss, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = SPI_NSS_SOFT} },
{ MP_QSTR_firstbit, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_ti, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_BOOL, {.u_bool = false} },
{ MP_QSTR_crcpoly, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_crc, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_OBJ, {.u_obj = mp_const_none} },
};
#define PYB_SPI_INIT_NUM_ARGS (sizeof(pyb_spi_init_accepted_args) / sizeof(pyb_spi_init_accepted_args[0]))
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse keyword args
// parse args
mp_arg_parse_val_t vals[PYB_SPI_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PYB_SPI_INIT_NUM_ARGS, pyb_spi_init_accepted_args, vals);
@ -206,8 +218,8 @@ STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, uint n_args, cons
else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }
init->CLKPolarity = vals[2].u_int;
init->CLKPhase = vals[3].u_int;
init->CLKPolarity = vals[2].u_int == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH;
init->CLKPhase = vals[3].u_int == 1 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE;
init->Direction = vals[4].u_int;
init->DataSize = (vals[5].u_int == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
init->NSS = vals[6].u_int;
@ -264,24 +276,28 @@ STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);
STATIC mp_obj_t pyb_spi_send(mp_obj_t self_in, mp_obj_t data_in) {
STATIC const mp_arg_parse_t pyb_spi_send_accepted_args[] = {
{ MP_QSTR_send, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_SPI_SEND_NUM_ARGS (sizeof(pyb_spi_send_accepted_args) / sizeof(pyb_spi_send_accepted_args[0]))
STATIC mp_obj_t pyb_spi_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
// TODO accept timeout as keyword argument
pyb_spi_obj_t *self = self_in;
pyb_spi_obj_t *self = args[0];
uint8_t data[1];
// parse args
mp_arg_parse_val_t vals[PYB_SPI_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_NUM_ARGS, pyb_spi_send_accepted_args, vals);
// get the buffer to send from
mp_buffer_info_t bufinfo;
if (MP_OBJ_IS_INT(data_in)) {
data[0] = mp_obj_get_int(data_in);
bufinfo.buf = data;
bufinfo.len = 1;
bufinfo.typecode = 'B';
} else {
mp_get_buffer_raise(data_in, &bufinfo, MP_BUFFER_READ);
}
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
HAL_StatusTypeDef status = HAL_SPI_Transmit(self->spi, bufinfo.buf, bufinfo.len, 1000);
// send the data
HAL_StatusTypeDef status = HAL_SPI_Transmit(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
@ -290,57 +306,104 @@ STATIC mp_obj_t pyb_spi_send(mp_obj_t self_in, mp_obj_t data_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_send_obj, pyb_spi_send);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);
STATIC mp_obj_t pyb_spi_recv(mp_obj_t self_in, mp_obj_t n_in) {
STATIC const mp_arg_parse_t pyb_spi_recv_accepted_args[] = {
{ MP_QSTR_recv, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_SPI_RECV_NUM_ARGS (sizeof(pyb_spi_recv_accepted_args) / sizeof(pyb_spi_recv_accepted_args[0]))
STATIC mp_obj_t pyb_spi_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
// TODO accept timeout as keyword argument
pyb_spi_obj_t *self = self_in;
machine_uint_t n = mp_obj_get_int(n_in);
pyb_spi_obj_t *self = args[0];
byte *data;
mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, n, &data);
HAL_StatusTypeDef status = HAL_SPI_Receive(self->spi, data, n, 1000);
// parse args
mp_arg_parse_val_t vals[PYB_SPI_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_RECV_NUM_ARGS, pyb_spi_recv_accepted_args, vals);
// get the buffer to receive into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// receive the data
HAL_StatusTypeDef status = HAL_SPI_Receive(self->spi, bufinfo.buf, bufinfo.len, vals[1].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_Receive failed with code %d", status));
}
return mp_obj_str_builder_end(o);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_recv_obj, pyb_spi_recv);
STATIC mp_obj_t pyb_spi_send_recv(mp_obj_t self_in, mp_obj_t data_in) {
// TODO assumes transmission size is 8-bits wide
// TODO accept timeout as keyword argument
pyb_spi_obj_t *self = self_in;
uint8_t data_send[1];
mp_buffer_info_t bufinfo;
if (MP_OBJ_IS_INT(data_in)) {
data_send[0] = mp_obj_get_int(data_in);
bufinfo.buf = data_send;
bufinfo.len = 1;
bufinfo.typecode = 'B';
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
mp_get_buffer_raise(data_in, &bufinfo, MP_BUFFER_READ);
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);
STATIC const mp_arg_parse_t pyb_spi_send_recv_accepted_args[] = {
{ MP_QSTR_send, MP_ARG_PARSE_REQUIRED | MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_recv, MP_ARG_PARSE_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_PARSE_KW_ONLY | MP_ARG_PARSE_INT, {.u_int = 5000} },
};
#define PYB_SPI_SEND_RECV_NUM_ARGS (sizeof(pyb_spi_send_recv_accepted_args) / sizeof(pyb_spi_send_recv_accepted_args[0]))
STATIC mp_obj_t pyb_spi_send_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
pyb_spi_obj_t *self = args[0];
// parse args
mp_arg_parse_val_t vals[PYB_SPI_SEND_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_SPI_SEND_RECV_NUM_ARGS, pyb_spi_send_recv_accepted_args, vals);
// get buffers to send from/receive to
mp_buffer_info_t bufinfo_send;
uint8_t data_send[1];
mp_buffer_info_t bufinfo_recv;
mp_obj_t o_ret;
if (vals[0].u_obj == vals[1].u_obj) {
// same object for send and receive, it must be a r/w buffer
mp_get_buffer_raise(vals[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
bufinfo_recv = bufinfo_send;
o_ret = MP_OBJ_NULL;
} else {
// get the buffer to send from
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo_send, data_send);
// get the buffer to receive into
if (vals[1].u_obj == MP_OBJ_NULL) {
// only send argument given, so create a fresh buffer of the send length
bufinfo_recv.len = bufinfo_send.len;
bufinfo_recv.typecode = 'B';
o_ret = mp_obj_str_builder_start(&mp_type_bytes, bufinfo_recv.len, (byte**)&bufinfo_recv.buf);
} else {
// recv argument given
mp_get_buffer_raise(vals[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
o_ret = MP_OBJ_NULL;
}
}
byte *data_recv;
mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, bufinfo.len, &data_recv);
HAL_StatusTypeDef status = HAL_SPI_TransmitReceive(self->spi, bufinfo.buf, data_recv, bufinfo.len, 1000);
// send and receive the data
HAL_StatusTypeDef status = HAL_SPI_TransmitReceive(self->spi, bufinfo_send.buf, bufinfo_recv.buf, bufinfo_send.len, vals[2].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_SPI_TransmitReceive failed with code %d", status));
}
return mp_obj_str_builder_end(o);
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[1].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_send_recv_obj, pyb_spi_send_recv);
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);
STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = {
// instance methods
@ -351,21 +414,17 @@ STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(SPI_MODE_SLAVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(SPI_MODE_SLAVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_MSB) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LSB), MP_OBJ_NEW_SMALL_INT(SPI_FIRSTBIT_LSB) },
/* TODO
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
{ MP_OBJ_NEW_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLARITY_LOW ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLARITY_HIGH SPI_CR1_CPOL
{ MP_OBJ_NEW_QSTR(MP_QSTR_PHASE_1EDGE ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_PHASE_2EDGE SPI_CR1_CPHA
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_FIRSTBIT_MSB ((uint32_t)0x00000000)
{ MP_OBJ_NEW_QSTR(MP_QSTR_FIRSTBIT_LSB SPI_CR1_LSBFIRST
*/
};