Merge tag 'v1.8.7'

Support for Xtensa emitter and assembler, and upgraded F4 and F7 STM HAL

This release adds support for the Xtensa architecture as a target for the
native emitter, as well as Xtensa inline assembler.  The int.from_bytes
and int.to_bytes methods now require a second argument (the byte order)
per CPython (only "little" is supported at this time).  The "readall"
method has been removed from all stream classes that used it; "read" with
no arguments should be used instead.  There is now support for importing
packages from compiled .mpy files.  Test coverage is increased to 96%.

The generic I2C driver has improvements: configurable clock stretching
timeout, "stop" argument added to readfrom/writeto methods, "nack"
argument added to readinto, and write[to] now returns num of ACKs
received.  The framebuf module now handles 16-bit depth (generic colour
format) and has hline, vline, rect, line methods.  A new utimeq module is
added for efficient queue ordering defined by modulo time (to be
compatible with time.ticks_xxx functions).  The pyboard.py script has been
modified so that the target board is not reset between scripts or commands
that are given on a single command line.

For the stmhal port the STM Cube HAL has been upgraded: Cube F4 HAL to
v1.13.1 (CMSIS 2.5.1, HAL v1.5.2) and Cube F7 HAL to v1.1.2.  There is a
more robust pyb.I2C implementation (DMA is now disabled by default, can be
enabled via an option), and there is an implementation of machine.I2C with
robust error handling and hardware acceleration on F4 MCUs.  It is now
recommended to use machine.I2C instead of pyb.I2C.  The UART class is now
more robust with better handling of errors/timeouts.  There is also more
accurate VBAT and VREFINT measurements for the ADC.  New boards that are
supported include: NUCLEO_F767ZI, STM32F769DISC and NUCLEO_L476RG.

For the esp8266 port select/poll is now supported for sockets using the
uselect module.  There is support for native and viper emitters, as well
as an inline assembler (with limited iRAM for storage of native functions,
or the option to store code to flash).  There is improved software I2C
with a slight API change: scl/sda pins can be specified as positional only
when "-1" is passed as the first argument to indicate the use of software
I2C.  It is recommended to use keyword arguments for scl/sda.  There is
very early support for over-the-air (OTA) updates using the yaota8266
project.

A detailed list of changes follows.

py core:
- emitnative: fix native import emitter when in viper mode
- remove readall() method, which is equivalent to read() w/o args
- objexcept: allow clearing traceback with 'exc.__traceback__ = None'
- runtime: mp_resume: handle exceptions in Python __next__()
- mkrules.mk: rework find command so it works on OSX
- *.mk: replace uses of 'sed' with $(SED)
- parse: move function to check for const parse node to parse.[ch]
- parse: make mp_parse_node_new_leaf an inline function
- parse: add code to fold logical constants in or/and/not operations
- factor persistent code load/save funcs into persistentcode.[ch]
- factor out persistent-code reader into separate files
- lexer: rewrite mp_lexer_new_from_str_len in terms of mp_reader_mem
- lexer: provide generic mp_lexer_new_from_file based on mp_reader
- lexer: rewrite mp_lexer_new_from_fd in terms of mp_reader
- lexer: make lexer use an mp_reader as its source
- objtype: implement __call__ handling for an instance w/o heap alloc
- factor out common code from assemblers into asmbase.[ch]
- stream: move ad-hoc ioctl constants to stream.h and rename them
- compile: simplify configuration of native emitter
- emit.h: remove long-obsolete declarations for cpython emitter
- move arch-specific assembler macros from emitnative to asmXXX.h
- asmbase: add MP_PLAT_COMMIT_EXEC option for handling exec code
- asmxtensa: add low-level Xtensa assembler
- integrate Xtensa assembler into native emitter
- allow inline-assembler emitter to be generic
- add inline Xtensa assembler
- emitinline: embed entire asm struct instead of a pointer to it
- emitinline: move inline-asm align and data methods to compiler
- emitinline: move common code for end of final pass to compiler
- asm: remove need for dummy_data when doing initial assembler passes
- objint: from_bytes, to_bytes: require byteorder arg, require "little"
- binary: do zero extension when storing a value larger than word size
- builtinimport: support importing packages from compiled .mpy files
- mpz: remove unreachable code in mpn_or_neg functions
- runtime: zero out fs_user_mount array in mp_init
- mpconfig.h: enable MICROPY_PY_SYS_EXIT by default
- add MICROPY_KBD_EXCEPTION config option to provide mp_kbd_exception
- compile: add an extra pass for Xtensa inline assembler
- modbuiltins: remove unreachable code
- objint: rename mp_obj_int_as_float to mp_obj_int_as_float_impl
- emitglue: refactor to remove assert(0), to improve coverage
- lexer: remove unreachable code in string tokeniser
- lexer: remove unnecessary check for EOF in lexer's next_char func
- lexer: permanently disable the mp_lexer_show_token function
- parsenum: simplify and generalise decoding of digit values
- mpz: fix assertion in mpz_set_from_str which checks value of base
- mpprint: add assertion for, and comment about, valid base values
- objint: simplify mp_int_format_size and remove unreachable code
- unicode: comment-out unused function unichar_isprint
- consistently update signatures of .make_new and .call methods
- mkrules.mk: add MPY_CROSS_FLAGS option to pass flags to mpy-cross
- builtinimport: fix bug when importing names from frozen packages

extmod:
- machine_i2c: make the clock stretching timeout configurable
- machine_i2c: raise an error when clock stretching times out
- machine_i2c: release SDA on bus error
- machine_i2c: add a C-level I2C-protocol, refactoring soft I2C
- machine_i2c: add argument to C funcs to control stop generation
- machine_i2c: rewrite i2c.scan in terms of C-level protocol
- machine_i2c: rewrite mem xfer funcs in terms of C-level protocol
- machine_i2c: remove unneeded i2c_write_mem/i2c_read_mem funcs
- machine_i2c: make C-level functions return -errno on I2C error
- machine_i2c: add 'nack' argument to i2c.readinto
- machine_i2c: make i2c.write[to] methods return num of ACKs recvd
- machine_i2c: add 'stop' argument to i2c readfrom/writeto meths
- machine_i2c: remove trivial function wrappers
- machine_i2c: expose soft I2C obj and readfrom/writeto funcs
- machine_i2c: add hook to constructor to call port-specific code
- modurandom: allow to build with float disabled
- modframebuf: make FrameBuffer handle 16bit depth
- modframebuf: add back legacy FrameBuffer1 "class"
- modframebuf: optimise fill and fill_rect methods
- vfs_fat: implement POSIX behaviour of rename, allow to overwrite
- moduselect: use stream helper function instead of ad-hoc code
- moduselect: use configurable EVENT_POLL_HOOK instead of WFI
- modlwip: add ioctl method to socket, with poll implementation
- vfs_fat_file: allow file obj to respond to ioctl flush request
- modbtree: add method to sync the database
- modbtree: rename "sync" method to "flush" for consistency
- modframebuf: add hline, vline, rect and line methods
- machine_spi: provide reusable software SPI class
- modframebuf: make framebuf implement the buffer protocol
- modframebuf: store underlying buffer object to prevent GC free
- modutimeq: copy of current moduheapq with timeq support for refactoring
- modutimeq: refactor into optimized class
- modutimeq: make time_less_than be actually "less than", not less/eq

lib:
- utils/interrupt_char: use core-provided mp_kbd_exception if enabled

drivers:
- display/ssd1306.py: update to use FrameBuffer not FrameBuffer1
- onewire: enable pull up on data pin
- onewire/ds18x20: fix negative temperature calc for DS18B20

tools:
- tinytest-codegen: blacklist recently added uheapq_timeq test (qemu-arm)
- pyboard.py: refactor so target is not reset between scripts/cmd
- mpy-tool.py: add support for OPT_CACHE_MAP_LOOKUP_IN_BYTECODE

tests:
- micropython: add test for import from within viper function
- use read() instead of readall()
- basics: add test for logical constant folding
- micropython: add test for creating traceback without allocation
- micropython: move alloc-less traceback test to separate test file
- extmod: improve ujson coverage
- basics: improve user class coverage
- basics: add test for dict.fromkeys where arg is a generator
- basics: add tests for if-expressions
- basics: change dict_fromkeys test so it doesn't use generators
- basics: enable tests for list slice getting with 3rd arg
- extmod/vfs_fat_fileio: add test for constructor of FileIO type
- extmod/btree1: exercise btree.flush()
- extmod/framebuf1: add basics tests for hline, vline, rect, line
- update for required byteorder arg for int.from_bytes()/to_bytes()
- extmod: improve moductypes test coverage
- extmod: improve modframebuf test coverage
- micropython: get heapalloc_traceback test running on baremetal
- struct*: make skippable
- basics: improve mpz test coverage
- float/builtin_float_round: test round() with second arg
- basics/builtin_dir: add test for dir() of a type
- basics: add test for builtin locals()
- basics/set_pop: improve coverage of set functions
- run-tests: for REPL tests make sure the REPL is exited at the end
- basics: improve test coverage for generators
- import: add a test which uses ... in from-import statement
- add tests to improve coverage of runtime.c
- add tests to improve coverage of objarray.c
- extmod: add test for utimeq module
- basics/lexer: add a test for newline-escaping within a string
- add a coverage test for printing the parse-tree
- utimeq_stable: test for partial stability of utimeq queuing
- heapalloc_inst_call: test for no alloc for simple object calls
- basics: add tests for parsing of ints with base 36
- basics: add tests to improve coverage of binary.c
- micropython: add test for micropython.stack_use() function
- extmod: improve ubinascii.c test coverage
- thread: improve modthread.c test coverage
- cmdline: improve repl.c autocomplete test coverage
- unix: improve runtime_utils.c test coverage
- pyb/uart: update test to match recent change to UART timeout_char
- run-tests: allow to skip set tests
- improve warning.c test coverage
- float: improve formatfloat.c test coverage using Python
- unix: improve formatfloat.c test coverage using C
- unix/extra_coverage: add basic tests to import frozen str and mpy
- types1: split out set type test to set_types
- array: allow to skip test if "array" is unavailable
- unix/extra_coverage: add tests for importing frozen packages

unix port:
- rename define for unix moduselect to MICROPY_PY_USELECT_POSIX
- Makefile: update freedos target for change of USELECT config name
- enable utimeq module
- main: allow to print the parse tree in coverage build
- Makefile: make "coverage_test" target mirror Travis test actions
- moduselect: if file object passed to .register(), return it in .poll()
- Makefile: split long line for coverage target, easier to modify
- enable and add basic frozen str and frozen mpy in coverage build
- Makefile: allow cache-map-lookup optimisation with frozen bytecode

windows port:
- enable READER_POSIX to get access to lexer_new_from_file

stmhal port:
- dma: de-init the DMA peripheral properly before initialising
- i2c: add option to I2C to enable/disable use of DMA transfers
- i2c: reset the I2C peripheral if there was an error on the bus
- rename mp_hal_pin_set_af to _config_alt, to simplify alt config
- upgrade to STM32CubeF4 v1.13.0 - CMSIS/Device 2.5.1
- upgrade to STM32CubeF4 v1.13.0 - HAL v1.5.1
- apply STM32CubeF4 v1.13.1 patch - upgrade HAL driver to v1.5.2
- hal/i2c: reapply HAL commit ea040a4 for f4
- hal/sd: reapply HAL commit 1d7fb82 for f4
- hal: reapply HAL commit 9db719b for f4
- hal/rcc: reapply HAL commit c568a2b for f4
- hal/sd: reapply HAL commit 09de030 for f4
- boards: configure all F4 boards to work with new HAL
- make-stmconst.py: fix regex's to work with current CMSIS
- i2c: handle I2C IRQs
- dma: precalculate register base and bitshift on handle init
- dma: mark DMA sate as READY even if HAL_DMA_Init is skipped
- can: clear FIFO flags in IRQ handler
- i2c: provide custom IRQ handlers
- hal: do not include <stdio.h> in HAL headers
- mphalport.h: use single GPIOx->BSRR register
- make-stmconst.py: add support for files with invalid utf8 bytes
- update HALCOMMITS due to change to hal
- make-stmconst.py: restore Python 2 compatibility
- update HALCOMMITS due to change to hal
- moduselect: move to extmod/ for reuse by other ports
- i2c: use the HAL's I2C IRQ handler for F7 and L4 MCUs
- updates to get F411 MCUs compiling with latest ST HAL
- i2c: remove use of legacy I2C_NOSTRETCH_DISABLED option
- add beginnings of port-specific machine.I2C implementation
- i2c: add support for I2C4 hardware block on F7 MCUs
- i2c: expose the pyb_i2c_obj_t struct and some relevant functions
- machine_i2c: provide HW implementation of I2C peripherals for F4
- add support for flash storage on STM32F415
- add back GPIO_BSRRL and GPIO_BSRRH constants to stm module
- add OpenOCD configuration for STM32L4
- add address parameters to openocd config files
- adc: add "mask" selection parameter to pyb.ADCAll constructor
- adc: provide more accurate measure of VBAT and VREFINT
- adc: make ADCAll.read_core_temp return accurate float value
- adc: add ADCAll.read_vref method, returning "3.3v" value
- adc: add support for F767 MCU
- adc: make channel "16" always map to the temperature sensor
- sdcard: clean/invalidate cache before DMA transfers with SD card
- moduos: implement POSIX behaviour of rename, allow to overwrite
- adc: use constants from new HAL version
- refactor UART configuration to use pin objects
- uart: add support for UART7 and UART8 on F7 MCUs
- uart: add check that UART id is valid for the given board
- cmsis: update STM32F7 CMSIS device include files to V1.1.2
- hal: update ST32CubeF7 HAL files to V1.1.2
- port of f4 hal commit c568a2b to updated f7 hal
- port of f4 hal commit 09de030 to updated f7 hal
- port of f4 hal commit 1d7fb82 to updated f7 hal
- declare and initialise PrescTables for F7 MCUs
- boards/STM32F7DISC: define LSE_STARTUP_TIMEOUT
- hal: update HALCOMMITS due to change in f7 hal files
- refactor to use extmod implementation of software SPI class
- cmsis: add CMSIS file stm32f767xx.h, V1.1.2
- add NUCLEO_F767ZI board, with openocd config for stm32f7
- cmsis: add CMSIS file stm32f769xx.h, V1.1.2
- add STM32F769DISC board files
- move PY_SYS_PLATFORM config from board to general config file
- mpconfigport: add weak-module links for io, collections, random
- rename mp_const_vcp_interrupt to mp_kbd_exception
- usb: always use the mp_kbd_exception object for VCP interrupt
- use core-provided keyboard exception object
- led: properly initialise timer handle to zero before using it
- mphalport.h: explicitly use HAL's GPIO constants for pull modes
- usrsw: use mp_hal_pin_config function instead of HAL_GPIO_Init
- led: use mp_hal_pin_config function instead of HAL_GPIO_Init
- sdcard: use mp_hal_pin_config function instead of HAL_GPIO_Init
- add support for STM32 Nucleo64 L476RG
- uart: provide a custom function to transmit over UART
- uart: increase inter-character timeout by 1ms
- enable utimeq module

cc3200 port:
- tools/smoke.py: change readall() to read()
- pybspi: remove static mode=SPI.MASTER parameter for latest HW API
- mods/pybspi: remove SPI.MASTER constant, it's no longer needed
- update for moduselect moved to extmod/
- re-add support for UART REPL (MICROPY_STDIO_UART setting)
- enable UART REPL by default
- README: (re)add information about accessing REPL on serial
- make: rename "deploy" target to "deploy-ota"
- add targets to erase flash, deploy firmware using cc3200tool
- README: reorganize and update to the current state of affairs
- modwlan: add network.WLAN.print_ver() diagnostic function

esp8266 port:
- enable uselect module
- move websocket_helper.py from scripts to modules for frozen BC
- refactor to use extmod implementation of software SPI class
- mpconfigport_512k: disable framebuf module for 512k build
- enable native emitter for Xtensa arch
- enable inline Xtensa assembler
- add "ota" target to produce firmware binary for use with yaota8266
- use core-provided keyboard exception object
- add "erase" target to Makefile, to erase entire flash
- when doing GC be sure to trace the memory holding native code
- modesp: flash_user_start(): support configuration with yaota8266
- force relinking OTA firmware image if built after normal one
- scripts/inisetup: dump FS starting sector/size on error
- Makefile: produce OTA firmware as firmware-ota.bin
- modesp: make check_fw() work with OTA firmware
- enable utimeq module
- Makefile: put firmware-ota.bin in build/, for consistency
- modules/flashbdev: add RESERVED_SECS before the filesystem
- modules/flashbdev: remove code to patch bootloader flash size
- modules/flashbdev: remove now-unused function set_bl_flash_size
- modules/flashbdev: change RESERVED_SECS to 0

zephyr port:
- add .gitignore to ignore Zephyr's "outdir" directory
- zephyr_getchar: update to Zephyr 1.6 unified kernel API
- switch to Zephyr 1.6 unified kernel API
- support raw REPL
- implement soft reset feature
- main: initialize sys.path and sys.argv
- use core-provided keyboard exception object
- uart_core: access console UART directly instead of printk() hack
- enable slice subscription

docs:
- remove references to readall() and update stream read() docs
- library/index: elaborate on u-modules
- library/machine.I2C: refine definitions of I2C methods
- library/pyb.Accel: add hardware note about pins used by accel
- library/pyb.UART: added clarification about timeouts
- library/pyb.UART: moved writechar doc to sit with other writes
- esp8266/tutorial: update intro to add Getting the firmware section
- library/machine.I2C: fix I2C constructor docs to match impl
- esp8266/tutorial: close socket after reading page content
- esp8266/general: add "Scarcity of runtime resources" section
- library/esp: document esp.set_native_code_location() function
- library/esp: remove para and add further warning about flash
- usocket: clarify that socket timeout raises OSError exception

travis:
- build STM32 F7 and L4 boards under Travis CI
- include persistent bytecode with floats in coverage tests

examples:
- hwapi: button_led: Add GPIO pin read example
- hwapi: add soft_pwm example converted to uasyncio
- http_client: use read() instead of readall()
- hwapi: add uasyncio example of fading 2 LEDs in parallel
- hwapi: add example for machine.time_pulse_us()
- hwapi: add hwconfig for console tracing of LED operations
- accellog.py: change 1: to /sd/, and update comment about FS
- hwapi/hwconfig_console: don't alloc memory in value()
This commit is contained in:
Scott Shawcroft 2017-01-10 09:56:09 -08:00
commit dfb61f01db
551 changed files with 220169 additions and 95187 deletions

View File

@ -54,6 +54,13 @@ script:
#- (cd tests && MICROPY_CPYTHON3=python3.4 ./run-tests)
#- (cd tests && MICROPY_CPYTHON3=python3.4 ./run-tests --emit native)
# run tests with coverage info
- make -C unix coverage
- (cd tests && MICROPY_CPYTHON3=python3.4 MICROPY_MICROPYTHON=../unix/micropython_coverage ./run-tests)
- (cd tests && MICROPY_CPYTHON3=python3.4 MICROPY_MICROPYTHON=../unix/micropython_coverage ./run-tests -d thread)
- (cd tests && MICROPY_CPYTHON3=python3.4 MICROPY_MICROPYTHON=../unix/micropython_coverage ./run-tests --emit native)
- (cd tests && MICROPY_CPYTHON3=python3.4 MICROPY_MICROPYTHON=../unix/micropython_coverage ./run-tests --via-mpy -d basics float)
after_success:
- (cd unix && coveralls --root .. --build-root . --gcov $(which gcov) --gcov-options '\-o build-coverage/' --include py --include extmod)

View File

@ -8,6 +8,9 @@ endif
# Make 'release' the default build type
BTYPE ?= release
# Port for flashing firmware
PORT ?= /dev/ttyUSB1
# If the build directory is not given, make it reflect the board name.
BUILD ?= build/$(BOARD)/$(BTYPE)
@ -23,6 +26,9 @@ CFLAGS += -Iboards/$(BOARD)
LDFLAGS = -Wl,-nostdlib -Wl,--gc-sections -Wl,-Map=$@.map
FLASH_SIZE_WIPY = 2M
FLASH_SIZE_LAUNCHXL = 1M
ifeq ($(BTARGET), application)
# qstr definitions (must come before including py.mk)
QSTR_DEFS = qstrdefsport.h $(BUILD)/pins_qstr.h
@ -39,3 +45,18 @@ endif
# always include MicroPython make rules
include ../py/mkrules.mk
erase:
cc3200tool -p $(PORT) format_flash --size $(FLASH_SIZE_$(BOARD))
deploy:
cc3200tool -p $(PORT) \
write_file bootmgr/build/$(BOARD)/$(BTYPE)/bootloader.bin /sys/mcuimg.bin \
write_file build/$(BOARD)/$(BTYPE)/mcuimg.bin /sys/factimg.bin
# Files *.ucf and *ucf.signed.bin come from CC3200SDK-SERVICEPACK
# package from http://www.ti.com/tool/cc3200sdk
servicepack:
cc3200tool -p $(PORT) \
write_file --file-size=0x20000 --signature ota_1.0.1.6-2.7.0.0.ucf.signed.bin \
ota_1.0.1.6-2.7.0.0.ucf /sys/servicepack.ucf

View File

@ -1,36 +1,66 @@
# Build Instructions for the CC3200
MicroPython port to CC3200 WiFi SoC
===================================
Currently the CC3200 port of MicroPython builds under Linux and OSX **but not under Windows**.
This is a MicroPython port to Texas Instruments CC3200 WiFi SoC (ARM Cortex-M4
architecture). This port supports 2 boards: WiPy and TI CC3200-LAUNCHXL.
The tool chain required for the build can be found at <https://launchpad.net/gcc-arm-embedded>.
## Build Instructions for the CC3200
In order to download the image to the CC3200 you will need the CCS_Uniflash tool from TI, which at this
moment is only available for Windows, so, you need Linux/OSX to build and Windows to flash the image.
Currently the CC3200 port of MicroPython builds under Linux and OSX,
but not under Windows.
## To build an image suitable for debugging:
The toolchain required for the build can be found at
<https://launchpad.net/gcc-arm-embedded>.
In order to flash the image to the CC3200 you will need the
[cc3200tool](https://github.com/ALLTERCO/cc3200tool). An alternative is
to use CCS_Uniflash tool from TI, which works only under Windows, and all
support is provided by TI itself.
Building the bootloader:
```
make BTARGET=bootloader BTYPE=release BOARD=LAUNCHXL
```
Building the "release" image:
```
make BTARGET=application BTYPE=release BOARD=LAUNCHXL
```
To build an image suitable for debugging:
In order to debug the port specific code, optimizations need to be disabled on the
port file (check the Makefile for specific details). You can use CCS from TI.
Use the CC3200.ccxml file supplied with this distribution for the debuuger configuration.
```bash
```
make BTARGET=application BTYPE=debug BOARD=LAUNCHXL
```
## To build an image suitable to be flashed to the device:
```bash
make BTARGET=application BTYPE=release BOARD=LAUNCHXL
```
## Building the bootloader
```bash
make BTARGET=bootloader BTYPE=release BOARD=LAUNCHXL
```
## Regarding old revisions of the CC3200-LAUNCHXL
First silicon (pre-release) revisions of the CC3200 had issues with the ram blocks, and MicroPython cannot run
there. Make sure to use a **v4.1 (or higer) LAUNCHXL board** when trying this port, otherwise it won't work.
## Flashing the CC3200-LAUNCHXL
Note that WiPy comes factory programmed with a default version of MicroPython,
it cannot be programmed via serial, and can be upgraded only with OTA (see
below).
## Flashing the CC3200
- Make sure that you have built both the *bootloader* and the *application* in **release** mode.
- Make sure the SOP2 jumper is in position.
- Make sure you Linux system recognized the board and created `ttyUSB*`
devices (see below for configuration of `ftdi_sio` driver).
- Run "make erase" and immediately press Reset button on the device.
- Wait few seconds.
- Run "make deploy" and immediately press Reset button on the device.
- You are recommended to install the latest vendor WiFi firmware
servicepack from http://www.ti.com/tool/cc3200sdk. Download
CC3200SDK-SERVICEPACK package, install it, and locate `ota_*.ucf`
and `ota_*.ucf.signed.bin` files. Copy them to the port's directory
and run "make servicepack", with immediate press of Reset button.
- Remove the SOP2 jumper and reset the board.
Flashing process using TI Uniflash:
- Open CCS_Uniflash and connect to the board (by default on port 22).
- Format the serial flash (select 1MB size in case of the CC3200-LAUNCHXL, 2MB in case of the WiPy, leave the rest unchecked).
- Mark the following files for erasing: `/cert/ca.pem`, `/cert/client.pem`, `/cert/private.key` and `/tmp/pac.bin`.
@ -40,15 +70,6 @@ there. Make sure to use a **v4.1 (or higer) LAUNCHXL board** when trying this po
- Flash the latest service pack (servicepack_1.0.0.10.0.bin) using the "Service Pack Update" button.
- Close CCS_Uniflash, remove the SOP2 jumper and reset the board.
## Updating the board to with new software version
- Make sure the board is running and connected to the same network as the computer.
```bash
make BTARGET=application BTYPE=release BOARD=LAUNCHXL WIPY_IP=192.168.1.1 WIPY_USER=micro WIPY_PWD=python deploy
```
If `WIPY_IP`, `WIPY_USER` or `WIPY_PWD` are omitted the default values (the ones shown above) will be used.
## Playing with MicroPython and the CC3200:
Once the software is running, you have two options to access the MicroPython REPL:
@ -60,6 +81,19 @@ Once the software is running, you have two options to access the MicroPython REP
* Use your favourite telnet client with the following settings: **host = 192.168.1.1, port = 23.**
* Log in with **user = "micro" and password = "python"**
- Through UART (serial).
* This is enabled by default in the standard configuration, for UART0 (speed 115200).
* For CC3200-LAUNCHXL, you will need to configure Linux `ftdi_sio` driver as described
in the [blog post](http://www.achanceofbrainshowers.com/blog/tech/2014/8/19/cc3200-development-under-linux/).
After that, connecting a board will create two `/dev/ttyUSB*` devices, a serial
console is available on the 2nd one (usually `/dev/ttyUSB1`).
* WiPy doesn't have onboard USB-UART converter, so you will need an external one,
connected to GPIO01 (Tx) and GPIO02 (Rx).
* Usage of UART port for REPL is controlled by MICROPY_STDIO_UART setting (and
is done at the high level, using a suitable call to `os.dupterm()` function
in boot.py, so you can override it at runtime regardless of MICROPY_STDIO_UART
setting).
The board has a small file system of 192K (WiPy) or 64K (Launchpad) located in the serial flash connected to the CC3200.
SD cards are also supported, you can connect any SD card and configure the pinout using the SD class API.
@ -68,15 +102,19 @@ SD cards are also supported, you can connect any SD card and configure the pinou
To upload your MicroPython scripts to the FTP server, open your FTP client of choice and connect to:
**ftp://192.168.1.1, user = "micro", password = "python"**
I have tested the FTP server with **FileZilla, FireFTP, FireFox, IE and Chrome,** other clients should work as well, but I am
not 100% sure of it.
Tested FTP clients are: FileZilla, FireFTP, FireFox, IE and Chrome. Other
clients should work as well, but you may need to configure them to use a
single connection (this should be the default for any compliant FTP client).
## Upgrading the firmware Over The Air:
## Upgrading the firmware Over The Air (OTA)
OTA software updates can be performed through the FTP server. After building a new **mcuimg.bin** in release mode, upload it to:
`/flash/sys/mcuimg.bin` it will take around 6s (The TI simplelink file system is quite slow because every file is mirrored for
safety). You won't see the file being stored inside `/flash/sys/` because it's actually saved bypassing FatFS, but rest assured that
the file was successfully transferred, and it has been signed with a MD5 checksum to verify its integrity.
OTA software updates can be performed through the builtin FTP server. After
building a new `mcuimg.bin` in release mode, upload it to:
`/flash/sys/mcuimg.bin`. It will take around 6s (The TI SimpleLink file
system is quite slow because every file is mirrored for safety). You won't
see the file being stored inside `/flash/sys/` because it's actually saved
bypassing FatFS, but rest assured that the file was successfully transferred,
and it has been signed with a MD5 checksum to verify its integrity.
Now, reset the MCU by pressing the switch on the board, or by typing:
```python
@ -84,10 +122,27 @@ import machine
machine.reset()
```
### Note regarding FileZilla:
There's a script which automates this process from the host side:
- Make sure the board is running and connected to the same network as the computer.
```bash
make BTARGET=application BTYPE=release BOARD=LAUNCHXL WIPY_IP=192.168.1.1 WIPY_USER=micro WIPY_PWD=python deploy-ota
```
If `WIPY_IP`, `WIPY_USER` or `WIPY_PWD` are omitted the default values (the ones shown above) will be used.
## Notes and known issues
## Regarding old revisions of the CC3200-LAUNCHXL
First silicon (pre-release) revisions of the CC3200 had issues with the ram blocks, and MicroPython cannot run
there. Make sure to use a **v4.1 (or higer) LAUNCHXL board** when trying this port, otherwise it won't work.
### Note regarding FileZilla
Do not use the quick connect button, instead, open the site manager and create a new configuration. In the "General" tab make
sure that encryption is set to: "Only use plain FTP (insecure)". In the Transfer Settings tab limit the max number of connections
to one, otherwise FileZilla will try to open a second command connection when retrieving and saving files, and for simplicity and
to reduce code size, only one command and one data connections are possible.

View File

@ -162,8 +162,6 @@ APP_STM_SRC_C = $(addprefix stmhal/,\
import.c \
input.c \
irq.c \
lexerfatfs.c \
moduselect.c \
pybstdio.c \
)
@ -208,9 +206,9 @@ WIPY_PWD ?= 'python'
all: $(BUILD)/mcuimg.bin
.PHONY: deploy
.PHONY: deploy-ota
deploy: $(BUILD)/mcuimg.bin
deploy-ota: $(BUILD)/mcuimg.bin
$(ECHO) "Writing $< to the board"
$(Q)$(PYTHON) $(UPDATE_WIPY) --verify --ip $(WIPY_IP) --user $(WIPY_USER) --password $(WIPY_PWD) --file $<

View File

@ -32,7 +32,7 @@
#define MICROPY_HW_ANTENNA_DIVERSITY (0)
#define MICROPY_STDIO_UART 0
#define MICROPY_STDIO_UART 1
#define MICROPY_STDIO_UART_BAUD 115200
#define MICROPY_SYS_LED_PRCM PRCM_GPIOA1

View File

@ -32,6 +32,9 @@
#define MICROPY_HW_ANTENNA_DIVERSITY (1)
#define MICROPY_STDIO_UART 1
#define MICROPY_STDIO_UART_BAUD 115200
#define MICROPY_SYS_LED_PRCM PRCM_GPIOA3
#define MICROPY_SAFE_BOOT_PRCM PRCM_GPIOA3
#define MICROPY_SYS_LED_PORT GPIOA3_BASE

View File

@ -176,7 +176,7 @@ STATIC mp_obj_t mp_irq_flags (mp_obj_t self_in) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_irq_flags_obj, mp_irq_flags);
STATIC mp_obj_t mp_irq_call (mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t mp_irq_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 0, false);
mp_irq_handler (self_in);
return mp_const_none;

View File

@ -91,7 +91,7 @@ STATIC const mp_arg_t network_server_args[] = {
{ MP_QSTR_login, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t network_server_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t network_server_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);

View File

@ -121,7 +121,7 @@ STATIC mp_obj_t hash_read (mp_obj_t self_in) {
/// \classmethod \constructor([data[, block_size]])
/// initial data must be given if block_size wants to be passed
STATIC mp_obj_t hash_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t hash_make_new(mp_obj_t type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 2, false);
mp_obj_hash_t *self = m_new0(mp_obj_hash_t, 1);
self->base.type = type_in;

View File

@ -127,7 +127,7 @@ void modusocket_close_all_user_sockets (void) {
// socket class
// constructor socket(family=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP, fileno=None)
STATIC mp_obj_t socket_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 4, false);
// create socket object
@ -434,7 +434,6 @@ STATIC const mp_map_elem_t socket_locals_dict_table[] = {
// stream methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&mp_stream_write_obj },
@ -446,7 +445,7 @@ STATIC mp_uint_t socket_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *e
mod_network_socket_obj_t *self = self_in;
mp_int_t ret = wlan_socket_recv(self, buf, size, errcode);
if (ret < 0) {
// we need to ignore the socket closed error here because a readall() or read() without params
// we need to ignore the socket closed error here because a read() without params
// only returns when the socket is closed by the other end
if (*errcode != SL_ESECCLOSED) {
ret = MP_STREAM_ERROR;

View File

@ -830,7 +830,7 @@ STATIC const mp_arg_t wlan_init_args[] = {
{ MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_antenna, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = ANTENNA_TYPE_INTERNAL} },
};
STATIC mp_obj_t wlan_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t wlan_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
@ -1250,6 +1250,21 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_KW(wlan_irq_obj, 1, wlan_irq);
//}
//STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(wlan_urn_obj, 1, 2, wlan_urn);
STATIC mp_obj_t wlan_print_ver(void) {
SlVersionFull ver;
byte config_opt = SL_DEVICE_GENERAL_VERSION;
byte config_len = sizeof(ver);
sl_DevGet(SL_DEVICE_GENERAL_CONFIGURATION, &config_opt, &config_len, (byte*)&ver);
printf("NWP: %d.%d.%d.%d\n", ver.NwpVersion[0], ver.NwpVersion[1], ver.NwpVersion[2], ver.NwpVersion[3]);
printf("MAC: %d.%d.%d.%d\n", ver.ChipFwAndPhyVersion.FwVersion[0], ver.ChipFwAndPhyVersion.FwVersion[1],
ver.ChipFwAndPhyVersion.FwVersion[2], ver.ChipFwAndPhyVersion.FwVersion[3]);
printf("PHY: %d.%d.%d.%d\n", ver.ChipFwAndPhyVersion.PhyVersion[0], ver.ChipFwAndPhyVersion.PhyVersion[1],
ver.ChipFwAndPhyVersion.PhyVersion[2], ver.ChipFwAndPhyVersion.PhyVersion[3]);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(wlan_print_ver_fun_obj, wlan_print_ver);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(wlan_print_ver_obj, MP_ROM_PTR(&wlan_print_ver_fun_obj));
STATIC const mp_map_elem_t wlan_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&wlan_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&wlan_scan_obj },
@ -1266,6 +1281,7 @@ STATIC const mp_map_elem_t wlan_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&wlan_irq_obj },
// { MP_OBJ_NEW_QSTR(MP_QSTR_connections), (mp_obj_t)&wlan_connections_obj },
// { MP_OBJ_NEW_QSTR(MP_QSTR_urn), (mp_obj_t)&wlan_urn_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_print_ver), (mp_obj_t)&wlan_print_ver_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_STA), MP_OBJ_NEW_SMALL_INT(ROLE_STA) },
@ -1461,7 +1477,7 @@ int wlan_socket_settimeout(mod_network_socket_obj_t *s, mp_uint_t timeout_s, int
int wlan_socket_ioctl (mod_network_socket_obj_t *s, mp_uint_t request, mp_uint_t arg, int *_errno) {
mp_int_t ret;
if (request == MP_IOCTL_POLL) {
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
int32_t sd = s->sock_base.sd;
@ -1473,13 +1489,13 @@ int wlan_socket_ioctl (mod_network_socket_obj_t *s, mp_uint_t request, mp_uint_t
FD_ZERO(&xfds);
// set fds if needed
if (flags & MP_IOCTL_POLL_RD) {
if (flags & MP_STREAM_POLL_RD) {
FD_SET(sd, &rfds);
}
if (flags & MP_IOCTL_POLL_WR) {
if (flags & MP_STREAM_POLL_WR) {
FD_SET(sd, &wfds);
}
if (flags & MP_IOCTL_POLL_HUP) {
if (flags & MP_STREAM_POLL_HUP) {
FD_SET(sd, &xfds);
}
@ -1497,13 +1513,13 @@ int wlan_socket_ioctl (mod_network_socket_obj_t *s, mp_uint_t request, mp_uint_t
// check return of select
if (FD_ISSET(sd, &rfds)) {
ret |= MP_IOCTL_POLL_RD;
ret |= MP_STREAM_POLL_RD;
}
if (FD_ISSET(sd, &wfds)) {
ret |= MP_IOCTL_POLL_WR;
ret |= MP_STREAM_POLL_WR;
}
if (FD_ISSET(sd, &xfds)) {
ret |= MP_IOCTL_POLL_HUP;
ret |= MP_STREAM_POLL_HUP;
}
} else {
*_errno = EINVAL;

View File

@ -140,7 +140,7 @@ STATIC const mp_arg_t pyb_adc_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 12} },
};
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
@ -289,7 +289,7 @@ STATIC mp_obj_t adc_channel_value(mp_obj_t self_in) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_channel_value_obj, adc_channel_value);
STATIC mp_obj_t adc_channel_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t adc_channel_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 0, false);
return adc_channel_value (self_in);
}

View File

@ -332,7 +332,7 @@ STATIC const mp_arg_t pyb_i2c_init_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100000} },
{ MP_QSTR_pins, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);

View File

@ -647,7 +647,7 @@ STATIC void pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t
mp_printf(print, ", alt=%d)", alt);
}
STATIC mp_obj_t pin_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Run an argument through the mapper and return the result.
@ -747,7 +747,7 @@ STATIC mp_obj_t pin_drive(mp_uint_t n_args, const mp_obj_t *args) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_drive_obj, 1, 2, pin_drive);
STATIC mp_obj_t pin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_obj_t _args[2] = {self_in, *args};
return pin_value (n_args + 1, _args);

View File

@ -285,7 +285,7 @@ STATIC const mp_arg_t pyb_rtc_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_datetime, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);

View File

@ -64,7 +64,7 @@ STATIC const mp_obj_t pyb_sd_def_pin[3] = {&pin_GP10, &pin_GP11, &pin_GP15};
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void pyb_sd_hw_init (pybsd_obj_t *self);
STATIC mp_obj_t pyb_sd_make_new (const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args);
STATIC mp_obj_t pyb_sd_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args);
STATIC mp_obj_t pyb_sd_deinit (mp_obj_t self_in);
/******************************************************************************
@ -123,7 +123,7 @@ STATIC const mp_arg_t pyb_sd_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_pins, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_sd_make_new (const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_sd_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);

View File

@ -148,7 +148,7 @@ STATIC void pybspi_transfer (pyb_spi_obj_t *self, const char *txdata, char *rxda
STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = self_in;
if (self->baudrate > 0) {
mp_printf(print, "SPI(0, SPI.MASTER, baudrate=%u, bits=%u, polarity=%u, phase=%u, firstbit=SPI.MSB)",
mp_printf(print, "SPI(0, baudrate=%u, bits=%u, polarity=%u, phase=%u, firstbit=SPI.MSB)",
self->baudrate, (self->wlen * 8), self->polarity, self->phase);
} else {
mp_print_str(print, "SPI(0)");
@ -156,13 +156,8 @@ STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_ki
}
STATIC mp_obj_t pyb_spi_init_helper(pyb_spi_obj_t *self, const mp_arg_val_t *args) {
// verify that mode is master
if (args[0].u_int != SPI_MODE_MASTER) {
goto invalid_args;
}
uint bits;
switch (args[2].u_int) {
switch (args[1].u_int) {
case 8:
bits = SPI_WL_8;
break;
@ -177,27 +172,27 @@ STATIC mp_obj_t pyb_spi_init_helper(pyb_spi_obj_t *self, const mp_arg_val_t *arg
break;
}
uint polarity = args[3].u_int;
uint phase = args[4].u_int;
uint polarity = args[2].u_int;
uint phase = args[3].u_int;
if (polarity > 1 || phase > 1) {
goto invalid_args;
}
uint firstbit = args[5].u_int;
uint firstbit = args[4].u_int;
if (firstbit != PYBSPI_FIRST_BIT_MSB) {
goto invalid_args;
}
// build the configuration
self->baudrate = args[1].u_int;
self->wlen = args[2].u_int >> 3;
self->baudrate = args[0].u_int;
self->wlen = args[1].u_int >> 3;
self->config = bits | SPI_CS_ACTIVELOW | SPI_SW_CTRL_CS | SPI_4PIN_MODE | SPI_TURBO_OFF;
self->polarity = polarity;
self->phase = phase;
self->submode = (polarity << 1) | phase;
// assign the pins
mp_obj_t pins_o = args[6].u_obj;
mp_obj_t pins_o = args[5].u_obj;
if (pins_o != mp_const_none) {
mp_obj_t *pins;
if (pins_o == MP_OBJ_NULL) {
@ -223,7 +218,6 @@ invalid_args:
static const mp_arg_t pyb_spi_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_INT, {.u_int = SPI_MODE_MASTER} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000000} }, // 1MHz
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
@ -231,7 +225,7 @@ static const mp_arg_t pyb_spi_init_args[] = {
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PYBSPI_FIRST_BIT_MSB} },
{ MP_QSTR_pins, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
@ -379,7 +373,6 @@ STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_write_readinto), (mp_obj_t)&pyb_spi_write_readinto_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(PYBSPI_FIRST_BIT_MSB) },
};

View File

@ -322,7 +322,7 @@ error:
mp_raise_ValueError(mpexception_value_invalid_arguments);
}
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

View File

@ -46,7 +46,6 @@
#include "uart.h"
#include "pybuart.h"
#include "mpirq.h"
#include "py/ioctl.h"
#include "pybsleep.h"
#include "mpexception.h"
#include "py/mpstate.h"
@ -443,7 +442,7 @@ STATIC const mp_arg_t pyb_uart_init_args[] = {
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_pins, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
@ -570,8 +569,6 @@ STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
/// \method read([nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
/// \method readall()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readall), (mp_obj_t)&mp_stream_readall_obj },
/// \method readline()
{ MP_OBJ_NEW_QSTR(MP_QSTR_readline), (mp_obj_t)&mp_stream_unbuffered_readline_obj},
/// \method readinto(buf[, nbytes])
@ -632,14 +629,14 @@ STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t a
mp_uint_t ret;
uart_check_init(self);
if (request == MP_IOCTL_POLL) {
if (request == MP_STREAM_POLL) {
mp_uint_t flags = arg;
ret = 0;
if ((flags & MP_IOCTL_POLL_RD) && uart_rx_any(self)) {
ret |= MP_IOCTL_POLL_RD;
if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_IOCTL_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) {
ret |= MP_IOCTL_POLL_WR;
if ((flags & MP_STREAM_POLL_WR) && MAP_UARTSpaceAvail(self->reg)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = EINVAL;

View File

@ -92,7 +92,7 @@ STATIC const mp_arg_t pyb_wdt_init_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_timeout, MP_ARG_INT, {.u_int = 5000} }, // 5 s
};
STATIC mp_obj_t pyb_wdt_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) {
STATIC mp_obj_t pyb_wdt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// check the arguments
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);

View File

@ -55,6 +55,7 @@
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_NONE)
#define MICROPY_OPT_COMPUTED_GOTO (0)
#define MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE (0)
#define MICROPY_READER_FATFS (1)
#ifndef DEBUG // we need ram on the launchxl while debugging
#define MICROPY_CPYTHON_COMPAT (1)
#else
@ -112,6 +113,7 @@
#define MICROPY_PY_URE (1)
#define MICROPY_PY_UHEAPQ (0)
#define MICROPY_PY_UHASHLIB (0)
#define MICROPY_PY_USELECT (1)
#define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1)
#define MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE (0)
@ -192,6 +194,7 @@ typedef long mp_off_t;
#define MICROPY_BEGIN_ATOMIC_SECTION() disable_irq()
#define MICROPY_END_ATOMIC_SECTION(state) enable_irq(state)
#define MICROPY_EVENT_POLL_HOOK __WFI();
// assembly functions to handle critical sections, interrupt
// disabling/enabling and sleep mode enter/exit

View File

@ -98,7 +98,12 @@ static FATFS *sflash_fatfs;
static const char fresh_main_py[] = "# main.py -- put your code here!\r\n";
static const char fresh_boot_py[] = "# boot.py -- run on boot-up\r\n"
"# can run arbitrary Python, but best to keep it minimal\r\n";
"# can run arbitrary Python, but best to keep it minimal\r\n"
#if MICROPY_STDIO_UART
"import os, machine\r\n"
"os.dupterm(machine.UART(0, " MP_STRINGIFY(MICROPY_STDIO_UART_BAUD) "))\r\n"
#endif
;
/******************************************************************************
DECLARE PUBLIC FUNCTIONS

View File

@ -51,7 +51,7 @@ n_w = f.write(test_bytes)
print(n_w == len(test_bytes))
f.close()
f = open('test.txt', 'r')
r = bytes(f.readall(), 'ascii')
r = bytes(f.read(), 'ascii')
# check that we can write and read it correctly
print(r == test_bytes)
f.close()

View File

@ -58,6 +58,17 @@ For your convenience, some of technical specifications are provided below:
and always-available BootROM bootloader, ESP8266 is not brickable.
Scarcity of runtime resources
-----------------------------
ESP8266 has very modest resources (first of all, RAM memory). So, please
avoid allocating too big container objects (lists, dictionaries) and
buffers. There is also no full-fledged OS to keep track of resources
and automatically clean them up, so that's the task of a user/user
application: please be sure to close open files, sockets, etc. as soon
as possible after use.
Boot process
------------

View File

@ -35,11 +35,30 @@ If your board has a USB connector on it then most likely it is powered through
this when connected to your PC. Otherwise you will need to power it directly.
Please refer to the documentation for your board for further details.
Getting the firmware
--------------------
The first thing you need to do is download the most recent MicroPython firmware
.bin file to load onto your ESP8266 device. You can download it from the
`MicroPython downloads page <http://micropython.org/download#esp8266>`_.
From here, you have 3 main choices
* Stable firmware builds for 1024kb modules and above.
* Daily firmware builds for 1024kb modules and above.
* Daily firmware builds for 512kb modules.
The best bet is nearly always to go for the Stable firmware builds.
An exception to this though is if you have an ESP8266 module with only 512kb
of onboard storage. You can easily tell by trying to load a Stable firmware
build and if you get the error below, then you may have to use the Daily
firmware builds for 512kb modules.
WARNING: Unlikely to work as data goes beyond end of flash.
Deploying the firmware
----------------------
The very first thing you need to do is put the MicroPython firmware (compiled
code) on your ESP8266 device. There are two main steps to do this: first you
Once you have the MicroPython firmware (compiled code), you need to load it onto
your ESP8266 device. There are two main steps to do this: first you
need to put your device in boot-loader mode, and second you need to copy across
the firmware. The exact procedure for these steps is highly dependent on the
particular board and you will need to refer to its documentation for details.

View File

@ -72,6 +72,7 @@ Let's define a function that can download and print a URL::
print(str(data, 'utf8'), end='')
else:
break
s.close()
Make sure that you import the socket module before running this function. Then
you can try::

View File

@ -45,3 +45,39 @@ Functions
.. function:: flash_write(byte_offset, bytes)
.. function:: flash_erase(sector_no)
.. function:: set_native_code_location(start, length)
Set the location that native code will be placed for execution after it is
compiled. Native code is emitted when the ``@micropython.native``,
``@micropython.viper`` and ``@micropython.asm_xtensa`` decorators are applied
to a function. The ESP8266 must execute code from either iRAM or the lower
1MByte of flash (which is memory mapped), and this function controls the
location.
If `start` and `length` are both `None` then the native code location is
set to the unused portion of memory at the end of the iRAM1 region. The
size of this unused portion depends on the firmware and is typically quite
small (around 500 bytes), and is enough to store a few very small
functions. The advantage of using this iRAM1 region is that it does not
get worn out by writing to it.
If neither `start` nor `length` are `None` then they should be integers.
`start` should specify the byte offset from the beginning of the flash at
which native code should be stored. `length` specifies how many bytes of
flash from `start` can be used to store native code. `start` and `length`
should be multiples of the sector size (being 4096 bytes). The flash will
be automatically erased before writing to it so be sure to use a region of
flash that is not otherwise used, for example by the firmware or the
filesystem.
When using the flash to store native code `start+length` must be less
than or equal to 1MByte. Note that the flash can be worn out if repeated
erasures (and writes) are made so use this feature sparingly.
In particular, native code needs to be recompiled and rewritten to flash
on each boot (including wake from deepsleep).
In both cases above, using iRAM1 or flash, if there is no more room left
in the specified region then the use of a native decorator on a function
will lead to `MemoryError` exception being raised during compilation of
that function.

View File

@ -36,15 +36,20 @@ Python standard libraries and micro-libraries
The following standard Python libraries have been "micro-ified" to fit in with
the philosophy of MicroPython. They provide the core functionality of that
module and are intended to be a drop-in replacement for the standard Python
library.
library. Some modules below use a standard Python name, but prefixed with "u",
e.g. ``ujson`` instead of ``json``. This is to signify that such a module is
micro-library, i.e. implements only a subset of CPython module functionality.
By naming them differently, a user has a choice to write a Python-level module
to extend functionality for better compatibility with CPython (indeed, this is
what done by micropython-lib project mentioned above).
.. only:: not port_unix
The modules are available by their u-name, and also by their non-u-name. The
non-u-name can be overridden by a file of that name in your package path.
For example, ``import json`` will first search for a file ``json.py`` or
directory ``json`` and load that package if it is found. If nothing is found,
it will fallback to loading the built-in ``ujson`` module.
On some embedded platforms, where it may be cumbersome to add Python-level
wrapper modules to achieve naming compatibility with CPython, micro-modules
are available both by their u-name, and also by their non-u-name. The
non-u-name can be overridden by a file of that name in your package path.
For example, ``import json`` will first search for a file ``json.py`` or
directory ``json`` and load that package if it is found. If nothing is found,
it will fallback to loading the built-in ``ujson`` module.
.. only:: port_unix

View File

@ -49,12 +49,23 @@ Constructors
Construct an I2C object on the given bus. `bus` can only be 0.
If the bus is not given, the default one will be selected (0).
.. only:: port_esp8266
.. only:: not port_wipy
.. class:: I2C(scl, sda, \*, freq=400000)
.. class:: I2C(id=-1, \*, scl, sda, freq=400000)
Construct and return a new I2C object.
See the init method below for a description of the arguments.
Construct and return a new I2C object using the following parameters:
- `id` identifies the particular I2C peripheral. The default
value of -1 selects a software implementation of I2C which can
work (in most cases) with arbitrary pins for SCL and SDA.
If `id` is -1 then `scl` and `sda` must be specified. Other
allowed values for `id` depend on the particular port/board,
and specifying `scl` and `sda` may or may not be required or
allowed in this case.
- `scl` should be a pin object specifying the pin to use for SCL.
- `sda` should be a pin object specifying the pin to use for SDA.
- `freq` should be an integer which sets the maximum frequency
for SCL.
General Methods
---------------
@ -102,29 +113,31 @@ control over the bus, otherwise the standard methods (see below) can be used.
.. method:: I2C.start()
Send a start bit on the bus (SDA transitions to low while SCL is high).
Generate a START condition on the bus (SDA transitions to low while SCL is high).
Availability: ESP8266.
.. method:: I2C.stop()
Send a stop bit on the bus (SDA transitions to high while SCL is high).
Generate a STOP condition on the bus (SDA transitions to high while SCL is high).
Availability: ESP8266.
.. method:: I2C.readinto(buf)
.. method:: I2C.readinto(buf, nack=True)
Reads bytes from the bus and stores them into `buf`. The number of bytes
read is the length of `buf`. An ACK will be sent on the bus after
receiving all but the last byte, and a NACK will be sent following the last
byte.
receiving all but the last byte. After the last byte is received, if `nack`
is true then a NACK will be sent, otherwise an ACK will be sent (and in this
case the slave assumes more bytes are going to be read in a later call).
Availability: ESP8266.
.. method:: I2C.write(buf)
Write all the bytes from `buf` to the bus. Checks that an ACK is received
after each byte and raises an OSError if not.
Write the bytes from `buf` to the bus. Checks that an ACK is received
after each byte and stops transmitting the remaining bytes if a NACK is
received. The function returns the number of ACKs that were received.
Availability: ESP8266.
@ -134,29 +147,27 @@ Standard bus operations
The following methods implement the standard I2C master read and write
operations that target a given slave device.
.. method:: I2C.readfrom(addr, nbytes)
.. method:: I2C.readfrom(addr, nbytes, stop=True)
Read `nbytes` from the slave specified by `addr`.
If `stop` is true then a STOP condition is generated at the end of the transfer.
Returns a `bytes` object with the data read.
.. method:: I2C.readfrom_into(addr, buf)
.. method:: I2C.readfrom_into(addr, buf, stop=True)
Read into `buf` from the slave specified by `addr`.
The number of bytes read will be the length of `buf`.
If `stop` is true then a STOP condition is generated at the end of the transfer.
On WiPy the return value is the number of bytes read. Otherwise the
return value is `None`.
The method returns `None`.
.. method:: I2C.writeto(addr, buf, \*, stop=True)
.. method:: I2C.writeto(addr, buf, stop=True)
Write the bytes from `buf` to the slave specified by `addr`.
The `stop` argument (only available on WiPy) tells if a stop bit should be
sent at the end of the transfer. If `False` the transfer should be
continued later on.
On WiPy the return value is the number of bytes written. Otherwise the
return value is `None`.
Write the bytes from `buf` to the slave specified by `addr`. If a
NACK is received following the write of a byte from `buf` then the
remaining bytes are not sent. If `stop` is true then a STOP condition is
generated at the end of the transfer, even if a NACK is received.
The function returns the number of ACKs that were received.
Memory operations
-----------------

View File

@ -31,7 +31,7 @@ A UART object acts like a stream object and reading and writing is done
using the standard stream methods::
uart.read(10) # read 10 characters, returns a bytes object
uart.readall() # read all available characters
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters
@ -95,17 +95,12 @@ Methods
.. method:: UART.read([nbytes])
Read characters. If ``nbytes`` is specified then read at most that many bytes.
Read characters. If ``nbytes`` is specified then read at most that many bytes,
otherwise read as much data as possible.
Return value: a bytes object containing the bytes read in. Returns ``None``
on timeout.
.. method:: UART.readall()
Read as much data as possible.
Return value: a bytes object or ``None`` on timeout.
.. method:: UART.readinto(buf[, nbytes])
Read bytes into the ``buf``. If ``nbytes`` is specified then read at most

View File

@ -46,3 +46,11 @@ Methods
.. method:: Accel.z()
Get the z-axis value.
Hardware Note
-------------
The accelerometer uses I2C bus 1 to communicate with the processor. Consequently
when readings are being taken pins X9 and X10 should be unused (other than for
I2C). Other devices using those pins, and which therefore cannot be used
concurrently, are UART 1 and Timer 4 channels 1 and 2.

View File

@ -92,7 +92,7 @@ Methods
.. only:: port_pyboard
.. method:: I2C.init(mode, \*, addr=0x12, baudrate=400000, gencall=False)
.. method:: I2C.init(mode, \*, addr=0x12, baudrate=400000, gencall=False, dma=False)
Initialise the I2C bus with the given parameters:
@ -100,6 +100,9 @@ Methods
- ``addr`` is the 7-bit address (only sensible for a slave)
- ``baudrate`` is the SCL clock rate (only sensible for a master)
- ``gencall`` is whether to support general call mode
- ``dma`` is whether to allow the use of DMA for the I2C transfers (note
that DMA transfers have more precise timing but currently do not handle bus
errors properly)
.. method:: I2C.is_ready(addr)

View File

@ -27,7 +27,7 @@ A UART object acts like a stream object and reading and writing is done
using the standard stream methods::
uart.read(10) # read 10 characters, returns a bytes object
uart.readall() # read all available characters
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters
@ -87,8 +87,8 @@ Methods
- ``stop`` is the number of stop bits, 1 or 2.
- ``flow`` sets the flow control type. Can be 0, ``UART.RTS``, ``UART.CTS``
or ``UART.RTS | UART.CTS``.
- ``timeout`` is the timeout in milliseconds to wait for the first character.
- ``timeout_char`` is the timeout in milliseconds to wait between characters.
- ``timeout`` is the timeout in milliseconds to wait for writing/reading the first character.
- ``timeout_char`` is the timeout in milliseconds to wait between characters while writing or reading.
- ``read_buf_len`` is the character length of the read buffer (0 to disable).
This method will raise an exception if the baudrate could not be set within
@ -111,17 +111,15 @@ Methods
Returns the number of bytes waiting (may be 0).
.. method:: UART.writechar(char)
Write a single character on the bus. ``char`` is an integer to write.
Return value: ``None``. See note below if CTS flow control is used.
.. method:: UART.read([nbytes])
Read characters. If ``nbytes`` is specified then read at most that many bytes.
If ``nbytes`` are available in the buffer, returns immediately, otherwise returns
when sufficient characters arrive or the timeout elapses.
If ``nbytes`` is not given then the method reads as much data as possible. It
returns after the timeout has elapsed.
.. only:: port_pyboard
*Note:* for 9 bit characters each character takes two bytes, ``nbytes`` must
@ -130,12 +128,6 @@ Methods
Return value: a bytes object containing the bytes read in. Returns ``None``
on timeout.
.. method:: UART.readall()
Read as much data as possible. Returns after the timeout has elapsed.
Return value: a bytes object or ``None`` if timeout prevents any data being read.
.. method:: UART.readchar()
Receive a single character on the bus.
@ -170,6 +162,13 @@ Methods
Return value: number of bytes written. If a timeout occurs and no bytes
were written returns ``None``.
.. only:: port_pyboard
.. method:: UART.writechar(char)
Write a single character on the bus. ``char`` is an integer to write.
Return value: ``None``. See note below if CTS flow control is used.
.. method:: UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration

View File

@ -44,16 +44,12 @@ Methods
.. method:: USB_VCP.read([nbytes])
Read at most ``nbytes`` from the serial device and return them as a
bytes object. If ``nbytes`` is not specified then the method acts as
``readall()``. USB_VCP stream implicitly works in non-blocking mode,
bytes object. If ``nbytes`` is not specified then the method reads
all available bytes from the serial device.
USB_VCP stream implicitly works in non-blocking mode,
so if no pending data available, this method will return immediately
with ``None`` value.
.. method:: USB_VCP.readall()
Read all available bytes from the serial device and return them as
a bytes object, or ``None`` if no pending data available.
.. method:: USB_VCP.readinto(buf, [maxlen])
Read bytes from the serial device and store them into ``buf``, which

View File

@ -149,10 +149,18 @@ Methods
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating
point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations
will raise a timeout exception if the timeout period value has elapsed before the operation has
will raise an ``OSError`` exception if the timeout period value has elapsed before the operation has
completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket
is put in blocking mode.
.. admonition:: Difference to CPython
:class: attention
CPython raises a ``socket.timeout`` exception in case of timeout,
which is an ``OSError`` subclass. MicroPython raises an OSError directly
instead. If you use ``except OSError:`` to catch the exception,
your code will work both in MicroPython and CPython.
.. method:: socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking,
@ -178,14 +186,10 @@ Methods
Closing the file object returned by makefile() WILL close the
original socket as well.
.. method:: socket.read(size)
.. method:: socket.read([size])
Read up to size bytes from the socket. Return a bytes object. If ``size`` is not given, it
behaves just like ``socket.readall()``, see below.
.. method:: socket.readall()
Read all data available from the socket until ``EOF``. This function will not return until
reads all data available from the socket until ``EOF``; as such the method will not return until
the socket is closed.
.. method:: socket.readinto(buf[, nbytes])

View File

@ -93,6 +93,9 @@ class DS18X20(object):
temp = temp_read - 0.25 + (count_per_c - count_remain) / count_per_c
return temp
elif rom0 == 0x28:
return (temp_msb << 8 | temp_lsb) / 16
temp = (temp_msb << 8 | temp_lsb) / 16
if (temp_msb & 0xf8) == 0xf8: # for negative temperature
temp -= 0x1000
return temp
else:
assert False

View File

@ -60,7 +60,7 @@ class OneWire:
# cache a bunch of methods and attributes. This is necessary in _write_bit and
# _read_bit to achieve the timing required by the OneWire protocol.
self.cache = (pin.init, pin.value, pin.OUT_PP, pin.IN, pin.PULL_NONE)
self.cache = (pin.init, pin.value, pin.OUT_PP, pin.IN, pin.PULL_UP)
pin.init(pin.IN, pin.PULL_UP)

View File

@ -24,6 +24,7 @@ FROZEN_MPY_DIR = modules
# include py core make definitions
include ../py/py.mk
FWBIN = $(BUILD)/firmware-combined.bin
PORT ?= /dev/ttyACM0
BAUD ?= 115200
FLASH_MODE ?= qio
@ -92,7 +93,6 @@ SRC_C = \
machine_adc.c \
machine_uart.c \
machine_wdt.c \
machine_spi.c \
machine_hspi.c \
modesp.c \
modnetwork.c \
@ -200,7 +200,7 @@ SRC_QSTR += $(SRC_C) $(SRC_COMMON_HAL_EXPANDED) $(SRC_SHARED_MODULE_EXPANDED) $(
# Append any auto-generated sources that are needed by sources listed in SRC_QSTR
SRC_QSTR_AUTO_DEPS +=
all: $(BUILD)/libaxtls.a $(BUILD)/firmware-combined.bin
all: $(BUILD)/libaxtls.a $(FWBIN)
CONFVARS_FILE = $(BUILD)/confvars
@ -221,13 +221,18 @@ deploy: $(BUILD)/firmware-combined.bin
$(ECHO) "Writing $< to the board"
$(Q)esptool.py --port $(PORT) --baud $(BAUD) write_flash --verify --flash_size=$(FLASH_SIZE) --flash_mode=$(FLASH_MODE) 0 $<
erase:
$(ECHO) "Erase flash"
$(Q)esptool.py --port $(PORT) --baud $(BAUD) erase_flash
reset:
echo -e "\r\nimport machine; machine.reset()\r\n" >$(PORT)
$(BUILD)/firmware-combined.bin: $(BUILD)/firmware.elf
$(FWBIN): $(BUILD)/firmware.elf
$(ECHO) "Create $@"
$(Q)python2 $(shell which esptool.py) elf2image $^
$(Q)$(PYTHON) makeimg.py $(BUILD)/firmware.elf-0x00000.bin $(BUILD)/firmware.elf-0x0[1-f]000.bin $@
$(Q)$(PYTHON) makeimg.py $(BUILD)/firmware.elf-0x00000.bin $(BUILD)/firmware.elf-0x[0-5][1-f]000.bin $@
$(BUILD)/firmware.elf: $(OBJ)
$(ECHO) "LINK $@"
@ -237,6 +242,10 @@ $(BUILD)/firmware.elf: $(OBJ)
512k:
$(MAKE) LDSCRIPT=esp8266_512k.ld CFLAGS_EXTRA='-DMP_CONFIGFILE="<mpconfigport_512k.h>"' MICROPY_FATFS=0 MICROPY_PY_BTREE=0
ota:
rm -f $(BUILD)/firmware.elf $(BUILD)/firmware.elf*.bin
$(MAKE) LDSCRIPT=esp8266_ota.ld FWBIN=$(BUILD)/firmware-ota.bin
#MAKE_PINS = boards/make-pins.py
#BOARD_PINS = boards/$(BOARD)/pins.csv
#AF_FILE = boards/stm32f4xx_af.csv

View File

@ -91,9 +91,11 @@ SECTIONS
*py/builtin*.o*(.literal* .text*)
*py/compile.o*(.literal* .text*)
*py/emit*.o*(.literal* .text*)
*py/persistentcode*.o*(.literal* .text*)
*py/formatfloat.o*(.literal* .text*)
*py/frozenmod.o*(.literal* .text*)
*py/gc.o*(.literal* .text*)
*py/reader*.o*(.literal* .text*)
*py/lexer*.o*(.literal* .text*)
*py/malloc*.o*(.literal* .text*)
*py/map*.o*(.literal* .text*)

View File

@ -88,9 +88,11 @@ SECTIONS
*py/builtin*.o*(.literal* .text*)
*py/compile.o*(.literal* .text*)
*py/emit*.o*(.literal* .text*)
*py/persistentcode*.o*(.literal* .text*)
*py/formatfloat.o*(.literal* .text*)
*py/frozenmod.o*(.literal* .text*)
*py/gc.o*(.literal* .text*)
*py/reader*.o*(.literal* .text*)
*py/lexer*.o*(.literal* .text*)
*py/malloc*.o*(.literal* .text*)
*py/map*.o*(.literal* .text*)

306
esp8266/esp8266_ota.ld Normal file
View File

@ -0,0 +1,306 @@
/* GNU linker script for ESP8266 */
MEMORY
{
dport0_0_seg : org = 0x3ff00000, len = 0x10
dram0_0_seg : org = 0x3ffe8000, len = 0x14000
iram1_0_seg : org = 0x40100000, len = 0x8000
/* 0x3c000 is size of bootloader, 0x9000 is size of packed RAM segments */
irom0_0_seg : org = 0x40200000 + 0x3c000 + 0x9000, len = 0x87000
}
/* define the top of RAM */
_heap_end = ORIGIN(dram0_0_seg) + LENGTH(dram0_0_seg);
PHDRS
{
dport0_0_phdr PT_LOAD;
dram0_0_phdr PT_LOAD;
dram0_0_bss_phdr PT_LOAD;
iram1_0_phdr PT_LOAD;
irom0_0_phdr PT_LOAD;
}
ENTRY(firmware_start)
EXTERN(_DebugExceptionVector)
EXTERN(_DoubleExceptionVector)
EXTERN(_KernelExceptionVector)
EXTERN(_NMIExceptionVector)
EXTERN(_UserExceptionVector)
PROVIDE(_memmap_vecbase_reset = 0x40000000);
/* Various memory-map dependent cache attribute settings: */
_memmap_cacheattr_wb_base = 0x00000110;
_memmap_cacheattr_wt_base = 0x00000110;
_memmap_cacheattr_bp_base = 0x00000220;
_memmap_cacheattr_unused_mask = 0xFFFFF00F;
_memmap_cacheattr_wb_trapnull = 0x2222211F;
_memmap_cacheattr_wba_trapnull = 0x2222211F;
_memmap_cacheattr_wbna_trapnull = 0x2222211F;
_memmap_cacheattr_wt_trapnull = 0x2222211F;
_memmap_cacheattr_bp_trapnull = 0x2222222F;
_memmap_cacheattr_wb_strict = 0xFFFFF11F;
_memmap_cacheattr_wt_strict = 0xFFFFF11F;
_memmap_cacheattr_bp_strict = 0xFFFFF22F;
_memmap_cacheattr_wb_allvalid = 0x22222112;
_memmap_cacheattr_wt_allvalid = 0x22222112;
_memmap_cacheattr_bp_allvalid = 0x22222222;
PROVIDE(_memmap_cacheattr_reset = _memmap_cacheattr_wb_trapnull);
SECTIONS
{
.dport0.rodata : ALIGN(4)
{
_dport0_rodata_start = ABSOLUTE(.);
*(.dport0.rodata)
*(.dport.rodata)
_dport0_rodata_end = ABSOLUTE(.);
} >dport0_0_seg :dport0_0_phdr
.dport0.literal : ALIGN(4)
{
_dport0_literal_start = ABSOLUTE(.);
*(.dport0.literal)
*(.dport.literal)
_dport0_literal_end = ABSOLUTE(.);
} >dport0_0_seg :dport0_0_phdr
.dport0.data : ALIGN(4)
{
_dport0_data_start = ABSOLUTE(.);
*(.dport0.data)
*(.dport.data)
_dport0_data_end = ABSOLUTE(.);
} >dport0_0_seg :dport0_0_phdr
.irom0.text : ALIGN(4)
{
_irom0_text_start = ABSOLUTE(.);
*(.irom0.literal .irom.literal .irom.text.literal .irom0.text .irom.text)
/* we put some specific text in this section */
*py/argcheck.o*(.literal* .text*)
*py/asm*.o*(.literal* .text*)
*py/bc.o*(.literal* .text*)
*py/binary.o*(.literal* .text*)
*py/builtin*.o*(.literal* .text*)
*py/compile.o*(.literal* .text*)
*py/emit*.o*(.literal* .text*)
*py/persistentcode*.o*(.literal* .text*)
*py/formatfloat.o*(.literal* .text*)
*py/frozenmod.o*(.literal* .text*)
*py/gc.o*(.literal* .text*)
*py/reader*.o*(.literal* .text*)
*py/lexer*.o*(.literal* .text*)
*py/malloc*.o*(.literal* .text*)
*py/map*.o*(.literal* .text*)
*py/mod*.o*(.literal* .text*)
*py/mpprint.o*(.literal* .text*)
*py/mpstate.o*(.literal* .text*)
*py/mpz.o*(.literal* .text*)
*py/native*.o*(.literal* .text*)
*py/nlr*.o*(.literal* .text*)
*py/obj*.o*(.literal* .text*)
*py/opmethods.o*(.literal* .text*)
*py/parse*.o*(.literal* .text*)
*py/qstr.o*(.literal* .text*)
*py/repl.o*(.literal* .text*)
*py/runtime.o*(.literal* .text*)
*py/scope.o*(.literal* .text*)
*py/sequence.o*(.literal* .text*)
*py/showbc.o*(.literal* .text*)
*py/smallint.o*(.literal* .text*)
*py/stackctrl.o*(.literal* .text*)
*py/stream.o*(.literal* .text*)
*py/unicode.o*(.literal* .text*)
*py/vm.o*(.literal* .text*)
*py/vstr.o*(.literal* .text*)
*py/warning.o*(.literal* .text*)
*extmod/*.o*(.literal* .text*)
*lib/fatfs/*.o*(.literal*, .text*)
*/libaxtls.a:(.literal*, .text*)
*lib/berkeley-db-1.xx/*.o(.literal*, .text*)
*lib/libm/*.o*(.literal*, .text*)
*lib/mp-readline/*.o(.literal*, .text*)
*lib/netutils/*.o*(.literal*, .text*)
*lib/timeutils/*.o*(.literal*, .text*)
*lib/utils/*.o*(.literal*, .text*)
*stmhal/pybstdio.o(.literal*, .text*)
build/main.o(.literal* .text*)
*gccollect.o(.literal* .text*)
*gchelper.o(.literal* .text*)
*help.o(.literal* .text*)
*lexerstr32.o(.literal* .text*)
*utils.o(.literal* .text*)
*modpyb.o(.literal*, .text*)
*machine_pin.o(.literal*, .text*)
*machine_pwm.o(.literal*, .text*)
*machine_rtc.o(.literal*, .text*)
*machine_adc.o(.literal*, .text*)
*machine_uart.o(.literal*, .text*)
*modpybi2c.o(.literal*, .text*)
*modmachine.o(.literal*, .text*)
*machine_wdt.o(.literal*, .text*)
*machine_spi.o(.literal*, .text*)
*machine_hspi.o(.literal*, .text*)
*hspi.o(.literal*, .text*)
*modesp.o(.literal* .text*)
*modnetwork.o(.literal* .text*)
*moduos.o(.literal* .text*)
*modutime.o(.literal* .text*)
*modlwip.o(.literal* .text*)
*modsocket.o(.literal* .text*)
*modonewire.o(.literal* .text*)
/* we put as much rodata as possible in this section */
/* note that only rodata accessed as a machine word is allowed here */
*py/qstr.o(.rodata.const_pool)
*.o(.rodata.mp_type_*) /* catches type: mp_obj_type_t */
*.o(.rodata.*_locals_dict*) /* catches types: mp_obj_dict_t, mp_map_elem_t */
*.o(.rodata.mp_module_*) /* catches types: mp_obj_module_t, mp_obj_dict_t, mp_map_elem_t */
*/frozen.o(.rodata.mp_frozen_sizes) /* frozen modules */
*/frozen.o(.rodata.mp_frozen_content) /* frozen modules */
/* for -mforce-l32 */
build/*.o(.rodata*)
_irom0_text_end = ABSOLUTE(.);
} >irom0_0_seg :irom0_0_phdr
.text : ALIGN(4)
{
_stext = .;
_text_start = ABSOLUTE(.);
*(.UserEnter.text)
. = ALIGN(16);
*(.DebugExceptionVector.text)
. = ALIGN(16);
*(.NMIExceptionVector.text)
. = ALIGN(16);
*(.KernelExceptionVector.text)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
. = ALIGN(16);
*(.UserExceptionVector.text)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
. = ALIGN(16);
*(.DoubleExceptionVector.text)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
. = ALIGN (16);
*(.entry.text)
*(.init.literal)
*(.init)
*(.literal .text .literal.* .text.* .iram0.literal .iram0.text .iram0.text.*.literal .iram0.text.*)
*(.stub .gnu.warning .gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
*(.fini.literal)
*(.fini)
*(.gnu.version)
_text_end = ABSOLUTE(.);
_etext = .;
} >iram1_0_seg :iram1_0_phdr
.lit4 : ALIGN(4)
{
_lit4_start = ABSOLUTE(.);
*(*.lit4)
*(.lit4.*)
*(.gnu.linkonce.lit4.*)
_lit4_end = ABSOLUTE(.);
} >iram1_0_seg :iram1_0_phdr
.data : ALIGN(4)
{
_data_start = ABSOLUTE(.);
*(.data)
*(.data.*)
*(.gnu.linkonce.d.*)
*(.data1)
*(.sdata)
*(.sdata.*)
*(.gnu.linkonce.s.*)
*(.sdata2)
*(.sdata2.*)
*(.gnu.linkonce.s2.*)
*(.jcr)
_data_end = ABSOLUTE(.);
} >dram0_0_seg :dram0_0_phdr
.rodata : ALIGN(4)
{
_rodata_start = ABSOLUTE(.);
*(.sdk.version)
*(.rodata)
*(.rodata.*)
*(.gnu.linkonce.r.*)
*(.rodata1)
__XT_EXCEPTION_TABLE__ = ABSOLUTE(.);
*(.xt_except_table)
*(.gcc_except_table)
*(.gnu.linkonce.e.*)
*(.gnu.version_r)
*(.eh_frame)
/* C++ constructor and destructor tables, properly ordered: */
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
/* C++ exception handlers table: */
__XT_EXCEPTION_DESCS__ = ABSOLUTE(.);
*(.xt_except_desc)
*(.gnu.linkonce.h.*)
__XT_EXCEPTION_DESCS_END__ = ABSOLUTE(.);
*(.xt_except_desc_end)
*(.dynamic)
*(.gnu.version_d)
. = ALIGN(4); /* this table MUST be 4-byte aligned */
_bss_table_start = ABSOLUTE(.);
LONG(_bss_start)
LONG(_bss_end)
_bss_table_end = ABSOLUTE(.);
_rodata_end = ABSOLUTE(.);
} >dram0_0_seg :dram0_0_phdr
.bss ALIGN(8) (NOLOAD) : ALIGN(4)
{
. = ALIGN (8);
_bss_start = ABSOLUTE(.);
*(.dynsbss)
*(.sbss)
*(.sbss.*)
*(.gnu.linkonce.sb.*)
*(.scommon)
*(.sbss2)
*(.sbss2.*)
*(.gnu.linkonce.sb2.*)
*(.dynbss)
*(.bss)
*(.bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
. = ALIGN (8);
_bss_end = ABSOLUTE(.);
_heap_start = ABSOLUTE(.);
} >dram0_0_seg :dram0_0_bss_phdr
}
/* get ROM code address */
INCLUDE "eagle.rom.addr.v6.ld"

View File

@ -76,8 +76,10 @@ void ets_event_poll(void);
#include "etshal.h"
#include "gpio.h"
#include "esp8266/modmachine.h"
#define MP_HAL_PIN_FMT "%u"
#define mp_hal_pin_obj_t uint32_t
#define mp_hal_get_pin_obj(o) mp_obj_get_pin(o)
#define mp_hal_pin_name(p) (p)
void mp_hal_pin_input(mp_hal_pin_obj_t pin);
void mp_hal_pin_output(mp_hal_pin_obj_t pin);
void mp_hal_pin_open_drain(mp_hal_pin_obj_t pin);

View File

@ -46,6 +46,11 @@ void gc_collect(void) {
// trace the stack, including the registers (since they live on the stack in this function)
gc_collect_root((void**)sp, (STACK_END - sp) / sizeof(uint32_t));
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
// trace any native code because it can contain pointers to the heap
esp_native_code_gc_collect();
#endif
// end the GC
gc_collect_end();
}

View File

@ -38,3 +38,4 @@ extern uint32_t _heap_start;
extern uint32_t _heap_end;
void gc_collect(void);
void esp_native_code_gc_collect(void);

View File

@ -35,10 +35,11 @@ typedef struct _mp_lexer_str32_buf_t {
uint8_t byte_off;
} mp_lexer_str32_buf_t;
STATIC mp_uint_t str32_buf_next_byte(mp_lexer_str32_buf_t *sb) {
STATIC mp_uint_t str32_buf_next_byte(void *sb_in) {
mp_lexer_str32_buf_t *sb = (mp_lexer_str32_buf_t*)sb_in;
byte c = sb->val & 0xff;
if (c == 0) {
return MP_LEXER_EOF;
return MP_READER_EOF;
}
if (++sb->byte_off > 3) {
@ -51,7 +52,8 @@ STATIC mp_uint_t str32_buf_next_byte(mp_lexer_str32_buf_t *sb) {
return c;
}
STATIC void str32_buf_free(mp_lexer_str32_buf_t *sb) {
STATIC void str32_buf_free(void *sb_in) {
mp_lexer_str32_buf_t *sb = (mp_lexer_str32_buf_t*)sb_in;
m_del_obj(mp_lexer_str32_buf_t, sb);
}
@ -63,7 +65,8 @@ mp_lexer_t *mp_lexer_new_from_str32(qstr src_name, const char *str, mp_uint_t le
sb->byte_off = (uint32_t)str & 3;
sb->src_cur = (uint32_t*)(str - sb->byte_off);
sb->val = *sb->src_cur++ >> sb->byte_off * 8;
return mp_lexer_new(src_name, sb, (mp_lexer_stream_next_byte_t)str32_buf_next_byte, (mp_lexer_stream_close_t)str32_buf_free);
mp_reader_t reader = {sb, str32_buf_next_byte, str32_buf_free};
return mp_lexer_new(src_name, reader);
}
#endif // MICROPY_ENABLE_COMPILER

View File

@ -42,7 +42,7 @@ typedef struct _pyb_adc_obj_t {
STATIC pyb_adc_obj_t pyb_adc_vdd3 = {{&pyb_adc_type}, true};
STATIC pyb_adc_obj_t pyb_adc_adc = {{&pyb_adc_type}, false};
STATIC mp_obj_t pyb_adc_make_new(const mp_obj_type_t *type_in, mp_uint_t n_args, mp_uint_t n_kw,
STATIC mp_obj_t pyb_adc_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw,
const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);

View File

@ -36,21 +36,17 @@
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "hspi.h"
mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args,
size_t n_kw, const mp_obj_t *args);
typedef struct _pyb_hspi_obj_t {
typedef struct _machine_hspi_obj_t {
mp_obj_base_t base;
uint32_t baudrate;
uint8_t polarity;
uint8_t phase;
} pyb_hspi_obj_t;
} machine_hspi_obj_t;
STATIC void hspi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
STATIC void machine_hspi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
(void)self_in;
if (dest == NULL) {
@ -93,16 +89,17 @@ STATIC void hspi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src
/******************************************************************************/
// MicroPython bindings for HSPI
STATIC void pyb_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in);
STATIC void machine_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "HSPI(id=1, baudrate=%u, polarity=%u, phase=%u)",
self->baudrate, self->polarity, self->phase);
}
STATIC void pyb_hspi_init_helper(pyb_hspi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase };
STATIC void machine_hspi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_hspi_obj_t *self = (machine_hspi_obj_t*)self_in;
enum { ARG_baudrate, ARG_polarity, ARG_phase };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
@ -150,63 +147,35 @@ STATIC void pyb_hspi_init_helper(pyb_hspi_obj_t *self, size_t n_args, const mp_o
spi_mode(HSPI, self->phase, self->polarity);
}
mp_obj_t pyb_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, true);
mp_int_t id = -1;
if (n_args > 0) {
id = mp_obj_get_int(args[0]);
}
if (id == -1) {
// Multiplex to bitbanging SPI
if (n_args > 0) {
args++;
}
return pyb_spi_make_new(type, 0, n_kw, args);
}
if (id != 1) {
mp_obj_t machine_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// args[0] holds the id of the peripheral
if (args[0] != MP_OBJ_NEW_SMALL_INT(1)) {
// FlashROM is on SPI0, so far we don't support its usage
mp_raise_ValueError("");
}
pyb_hspi_obj_t *self = m_new_obj(pyb_hspi_obj_t);
self->base.type = &pyb_hspi_type;
machine_hspi_obj_t *self = m_new_obj(machine_hspi_obj_t);
self->base.type = &machine_hspi_type;
// set defaults
self->baudrate = 80000000L;
self->polarity = 0;
self->phase = 0;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_hspi_init_helper(self, n_args, args, &kw_args);
machine_hspi_init((mp_obj_base_t*)self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_hspi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_hspi_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_hspi_init_obj, 1, pyb_hspi_init);
STATIC const mp_rom_map_elem_t pyb_hspi_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_hspi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
STATIC const mp_machine_spi_p_t machine_hspi_p = {
.init = machine_hspi_init,
.transfer = machine_hspi_transfer,
};
STATIC MP_DEFINE_CONST_DICT(pyb_hspi_locals_dict, pyb_hspi_locals_dict_table);
STATIC const mp_machine_spi_p_t pyb_hspi_p = {
.transfer = hspi_transfer,
};
const mp_obj_type_t pyb_hspi_type = {
const mp_obj_type_t machine_hspi_type = {
{ &mp_type_type },
.name = MP_QSTR_HSPI,
.print = pyb_hspi_print,
.make_new = pyb_hspi_make_new,
.protocol = &pyb_hspi_p,
.locals_dict = (mp_obj_dict_t*)&pyb_hspi_locals_dict,
.print = machine_hspi_print,
.make_new = mp_machine_spi_make_new, // delegate to master constructor
.protocol = &machine_hspi_p,
.locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict,
};

View File

@ -276,7 +276,7 @@ STATIC mp_obj_t pyb_pin_obj_init_helper(pyb_pin_obj_t *self, mp_uint_t n_args, c
}
// constructor(id, ...)
STATIC mp_obj_t pyb_pin_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pyb_pin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get the wanted pin object
@ -300,7 +300,7 @@ STATIC mp_obj_t pyb_pin_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp
}
// fast method for getting/setting pin value
STATIC mp_obj_t pyb_pin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pyb_pin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
pyb_pin_obj_t *self = self_in;
if (n_args == 0) {

View File

@ -78,7 +78,7 @@ void mp_hal_rtc_init(void) {
pyb_rtc_alarm0_expiry = 0;
}
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);

View File

@ -1,142 +0,0 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
/******************************************************************************/
// MicroPython bindings for SPI
STATIC uint32_t baudrate_from_delay_half(uint32_t delay_half) {
return 500000 / delay_half;
}
STATIC uint32_t baudrate_to_delay_half(uint32_t baudrate) {
uint32_t delay_half = 500000 / baudrate;
// round delay_half up so that: actual_baudrate <= requested_baudrate
if (500000 % baudrate != 0) {
delay_half += 1;
}
return delay_half;
}
STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_machine_soft_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(baudrate=%u, polarity=%u, phase=%u, sck=%u, mosi=%u, miso=%u)",
baudrate_from_delay_half(self->delay_half),
self->polarity, self->phase, self->sck, self->mosi, self->miso);
}
STATIC void pyb_spi_init_helper(mp_machine_soft_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_baudrate].u_int != -1) {
self->delay_half = baudrate_to_delay_half(args[ARG_baudrate].u_int);
}
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
}
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
}
if (args[ARG_sck].u_obj != MP_OBJ_NULL) {
self->sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
}
if (args[ARG_mosi].u_obj != MP_OBJ_NULL) {
self->mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
}
if (args[ARG_miso].u_obj != MP_OBJ_NULL) {
self->miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
}
// configure pins
mp_hal_pin_write(self->sck, self->polarity);
mp_hal_pin_output(self->sck);
mp_hal_pin_output(self->mosi);
mp_hal_pin_input(self->miso);
}
mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true);
mp_machine_soft_spi_obj_t *self = m_new_obj(mp_machine_soft_spi_obj_t);
self->base.type = &pyb_spi_type;
// set defaults
self->delay_half = baudrate_to_delay_half(500000);
self->polarity = 0;
self->phase = 0;
self->sck = 14;
self->mosi = 13;
self->miso = 12;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_spi_init_helper(self, n_args, args, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);
STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);
STATIC const mp_machine_spi_p_t pyb_spi_p = {
.transfer = mp_machine_soft_spi_transfer,
};
const mp_obj_type_t pyb_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SoftSPI,
.print = pyb_spi_print,
.make_new = pyb_spi_make_new,
.protocol = &pyb_spi_p,
.locals_dict = (mp_obj_dict_t*)&pyb_spi_locals_dict,
};

View File

@ -197,7 +197,6 @@ STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readall), MP_ROM_PTR(&mp_stream_readall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },

View File

@ -41,7 +41,7 @@ typedef struct _machine_wdt_obj_t {
STATIC machine_wdt_obj_t wdt_default = {{&esp_wdt_type}};
STATIC mp_obj_t machine_wdt_make_new(const mp_obj_type_t *type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t machine_wdt_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_int_t id = 0;

View File

@ -53,13 +53,13 @@ STATIC void mp_reset(void) {
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
mp_obj_list_init(mp_sys_argv, 0);
#if MICROPY_VFS_FAT
memset(MP_STATE_PORT(fs_user_mount), 0, sizeof(MP_STATE_PORT(fs_user_mount)));
#endif
MP_STATE_PORT(mp_kbd_exception) = mp_obj_new_exception(&mp_type_KeyboardInterrupt);
MP_STATE_PORT(term_obj) = MP_OBJ_NULL;
MP_STATE_PORT(dupterm_arr_obj) = MP_OBJ_NULL;
reset_pins();
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
extern void esp_native_code_init(void);
esp_native_code_init();
#endif
pin_init0();
readline_init0();
dupterm_task_init();
@ -111,17 +111,13 @@ void user_init(void) {
system_init_done_cb(init_done);
}
mp_lexer_t *fat_vfs_lexer_new_from_file(const char *filename);
mp_import_stat_t fat_vfs_import_stat(const char *path);
#if !MICROPY_VFS_FAT
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
#if MICROPY_VFS_FAT
return fat_vfs_lexer_new_from_file(filename);
#else
(void)filename;
return NULL;
#endif
}
#endif
mp_import_stat_t mp_import_stat(const char *path) {
#if MICROPY_VFS_FAT

View File

@ -628,17 +628,35 @@ STATIC mp_obj_t esp_flash_size(void) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_size_obj, esp_flash_size);
// If there's just 1 loadable segment at the start of flash,
// we assume there's a yaota8266 bootloader.
#define IS_OTA_FIRMWARE() ((*(uint32_t*)0x40200000 & 0xff00) == 0x100)
STATIC mp_obj_t esp_flash_user_start(void) {
if (IS_OTA_FIRMWARE()) {
return MP_OBJ_NEW_SMALL_INT(0x3c000 + 0x90000);
} else {
return MP_OBJ_NEW_SMALL_INT(0x90000);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_user_start_obj, esp_flash_user_start);
STATIC mp_obj_t esp_check_fw(void) {
MD5_CTX ctx;
uint32_t *sz_p = (uint32_t*)0x40208ffc;
printf("size: %d\n", *sz_p);
char *fw_start = (char*)0x40200000;
if (IS_OTA_FIRMWARE()) {
// Skip yaota8266 bootloader
fw_start += 0x3c000;
}
uint32_t size = *(uint32_t*)(fw_start + 0x8ffc);
printf("size: %d\n", size);
if (size > 1024 * 1024) {
printf("Invalid size\n");
return mp_const_false;
}
MD5Init(&ctx);
MD5Update(&ctx, (char*)0x40200004, *sz_p - 4);
MD5Update(&ctx, fw_start + 4, size - 4);
unsigned char digest[16];
MD5Final(digest, &ctx);
printf("md5: ");
@ -646,7 +664,7 @@ STATIC mp_obj_t esp_check_fw(void) {
printf("%02x", digest[i]);
}
printf("\n");
return mp_obj_new_bool(memcmp(digest, (void*)(0x40200000 + *sz_p), sizeof(digest)) == 0);
return mp_obj_new_bool(memcmp(digest, fw_start + size, sizeof(digest)) == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_check_fw_obj, esp_check_fw);
@ -699,6 +717,111 @@ STATIC mp_obj_t esp_esf_free_bufs(mp_obj_t idx_in) {
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_esf_free_bufs_obj, esp_esf_free_bufs);
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
// We provide here a way of committing executable data to a region from
// which it can be executed by the CPU. There are 2 such writable regions:
// - iram1, which may have some space left at the end of it
// - memory-mapped flash rom
//
// By default the iram1 region (the space at the end of it) is used. The
// user can select iram1 or a section of flash by calling the
// esp.set_native_code_location() function; see below. If flash is selected
// then it is erased as needed.
#include "gccollect.h"
#define IRAM1_END (0x40108000)
#define FLASH_START (0x40200000)
#define FLASH_END (0x40300000)
#define FLASH_SEC_SIZE (4096)
#define ESP_NATIVE_CODE_IRAM1 (0)
#define ESP_NATIVE_CODE_FLASH (1)
extern uint32_t _lit4_end;
STATIC uint32_t esp_native_code_location;
STATIC uint32_t esp_native_code_start;
STATIC uint32_t esp_native_code_end;
STATIC uint32_t esp_native_code_cur;
STATIC uint32_t esp_native_code_erased;
void esp_native_code_init(void) {
esp_native_code_location = ESP_NATIVE_CODE_IRAM1;
esp_native_code_start = (uint32_t)&_lit4_end;
esp_native_code_end = IRAM1_END;
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = 0;
}
void esp_native_code_gc_collect(void) {
void *src;
if (esp_native_code_location == ESP_NATIVE_CODE_IRAM1) {
src = (void*)esp_native_code_start;
} else {
src = (void*)(FLASH_START + esp_native_code_start);
}
gc_collect_root(src, (esp_native_code_end - esp_native_code_start) / sizeof(uint32_t));
}
void *esp_native_code_commit(void *buf, size_t len) {
//printf("COMMIT(buf=%p, len=%u, start=%08x, cur=%08x, end=%08x, erased=%08x)\n", buf, len, esp_native_code_start, esp_native_code_cur, esp_native_code_end, esp_native_code_erased);
len = (len + 3) & ~3;
if (esp_native_code_cur + len > esp_native_code_end) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
"memory allocation failed, allocating %u bytes for native code", (uint)len));
}
void *dest;
if (esp_native_code_location == ESP_NATIVE_CODE_IRAM1) {
dest = (void*)esp_native_code_cur;
memcpy(dest, buf, len);
} else {
SpiFlashOpResult res;
while (esp_native_code_erased < esp_native_code_cur + len) {
res = spi_flash_erase_sector(esp_native_code_erased / FLASH_SEC_SIZE);
if (res != SPI_FLASH_RESULT_OK) {
break;
}
esp_native_code_erased += FLASH_SEC_SIZE;
}
if (res == SPI_FLASH_RESULT_OK) {
res = spi_flash_write(esp_native_code_cur, buf, len);
}
if (res != SPI_FLASH_RESULT_OK) {
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
dest = (void*)(FLASH_START + esp_native_code_cur);
}
esp_native_code_cur += len;
return dest;
}
STATIC mp_obj_t esp_set_native_code_location(mp_obj_t start_in, mp_obj_t len_in) {
if (start_in == mp_const_none && len_in == mp_const_none) {
// use end of iram1 region
esp_native_code_init();
} else {
// use flash; input params are byte offsets from start of flash
esp_native_code_location = ESP_NATIVE_CODE_FLASH;
esp_native_code_start = mp_obj_get_int(start_in);
esp_native_code_end = esp_native_code_start + mp_obj_get_int(len_in);
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = esp_native_code_start;
// memory-mapped flash is limited in extents to 1MByte
if (esp_native_code_end > FLASH_END - FLASH_START) {
mp_raise_ValueError("flash location must be below 1MByte");
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp_set_native_code_location_obj, esp_set_native_code_location);
#endif
STATIC const mp_map_elem_t esp_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_esp) },
@ -729,6 +852,9 @@ STATIC const mp_map_elem_t esp_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_malloc), (mp_obj_t)&esp_malloc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_free), (mp_obj_t)&esp_free_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_esf_free_bufs), (mp_obj_t)&esp_esf_free_bufs_obj },
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
{ MP_OBJ_NEW_QSTR(MP_QSTR_set_native_code_location), (mp_obj_t)&esp_set_native_code_location_obj },
#endif
#if MODESP_INCLUDE_CONSTANTS
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLEEP_NONE),

View File

@ -147,7 +147,7 @@ STATIC void esp_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_
mp_printf(print, "Timer(%p)", &self->timer);
}
STATIC mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
esp_timer_obj_t *tim = m_new_obj(esp_timer_obj_t);
tim->base.type = &esp_timer_type;
@ -255,7 +255,7 @@ STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&pyb_hspi_type) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hspi_type) },
// wake abilities
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(MACHINE_WAKE_DEEPSLEEP) },

View File

@ -9,9 +9,7 @@ extern const mp_obj_type_t pyb_adc_type;
extern const mp_obj_type_t pyb_rtc_type;
extern const mp_obj_type_t pyb_uart_type;
extern const mp_obj_type_t pyb_i2c_type;
extern const mp_obj_type_t pyb_spi_type;
extern const mp_obj_type_t pyb_hspi_type;
extern const mp_obj_type_t machine_spi_type;
extern const mp_obj_type_t machine_hspi_type;
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj);

View File

@ -3,8 +3,9 @@ import esp
class FlashBdev:
SEC_SIZE = 4096
START_SEC = esp.flash_user_start() // SEC_SIZE
NUM_BLK = 0x6b
RESERVED_SECS = 0
START_SEC = esp.flash_user_start() // SEC_SIZE + RESERVED_SECS
NUM_BLK = 0x6b - RESERVED_SECS
def __init__(self, blocks=NUM_BLK):
self.blocks = blocks
@ -26,40 +27,6 @@ class FlashBdev:
if op == 5: # BP_IOCTL_SEC_SIZE
return self.SEC_SIZE
def set_bl_flash_size(real_size):
if real_size == 256*1024:
code = 1
elif real_size == 512*1024:
code = 0
elif real_size == 1024*1024:
code = 2
elif real_size == 2048*1024:
code = 3
elif real_size == 4096*1024:
code = 4
else:
code = 2
buf = bytearray(4096)
esp.flash_read(0, buf)
buf[3] = (buf[3] & 0xf) | (code << 4)
esp.flash_erase(0)
esp.flash_write(0, buf)
# If bootloader size ID doesn't correspond to real Flash size,
# fix bootloader value and reboot.
size = esp.flash_id() >> 16
# Check that it looks like realistic power of 2 for flash sizes
# commonly used with esp8266
if 22 >= size >= 18:
size = 1 << size
if size != esp.flash_size():
import machine
import time
print("Bootloader Flash size appear to have been set incorrectly, trying to fix")
set_bl_flash_size(size)
machine.reset()
while 1: time.sleep(1)
size = esp.flash_size()
if size < 1024*1024:
bdev = None

View File

@ -10,15 +10,16 @@
#define MICROPY_ALLOC_PARSE_RESULT_INC (8)
#define MICROPY_ALLOC_PARSE_CHUNK_INIT (64)
#define MICROPY_PERSISTENT_CODE_LOAD (1)
#define MICROPY_EMIT_X64 (0)
#define MICROPY_EMIT_THUMB (0)
#define MICROPY_EMIT_INLINE_THUMB (0)
#define MICROPY_EMIT_XTENSA (1)
#define MICROPY_EMIT_INLINE_XTENSA (1)
#define MICROPY_MEM_STATS (0)
#define MICROPY_DEBUG_PRINTERS (1)
#define MICROPY_DEBUG_PRINTER_DEST mp_debug_print
#define MICROPY_READER_FATFS (MICROPY_VFS_FAT)
#define MICROPY_ENABLE_GC (1)
#define MICROPY_STACK_CHECK (1)
#define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1)
#define MICROPY_KBD_EXCEPTION (1)
#define MICROPY_REPL_EVENT_DRIVEN (0)
#define MICROPY_REPL_AUTO_INDENT (1)
#define MICROPY_HELPER_REPL (1)
@ -60,9 +61,11 @@
#define MICROPY_PY_UHASHLIB (1)
#define MICROPY_PY_UHASHLIB_SHA1 (MICROPY_PY_USSL && MICROPY_SSL_AXTLS)
#define MICROPY_PY_UHEAPQ (1)
#define MICROPY_PY_UTIMEQ (1)
#define MICROPY_PY_UJSON (1)
#define MICROPY_PY_URANDOM (1)
#define MICROPY_PY_URE (1)
#define MICROPY_PY_USELECT (1)
#define MICROPY_PY_UTIME_MP_HAL (1)
#define MICROPY_PY_UZLIB (1)
#define MICROPY_PY_LWIP (1)
@ -70,6 +73,7 @@
#define MICROPY_PY_MACHINE_PULSE (1)
#define MICROPY_PY_MACHINE_I2C (1)
#define MICROPY_PY_MACHINE_SPI (1)
#define MICROPY_PY_MACHINE_SPI_MAKE_NEW machine_hspi_make_new
#define MICROPY_PY_WEBSOCKET (1)
#define MICROPY_PY_WEBREPL (1)
#define MICROPY_PY_WEBREPL_DELAY (20)
@ -130,6 +134,8 @@ typedef uint32_t sys_prot_t; // for modlwip
#include <sys/types.h>
#define MP_PLAT_PRINT_STRN(str, len) mp_hal_stdout_tx_strn_cooked(str, len)
void *esp_native_code_commit(void*, size_t);
#define MP_PLAT_COMMIT_EXEC(buf, len) esp_native_code_commit(buf, len)
#define mp_type_fileio fatfs_type_fileio
#define mp_type_textio fatfs_type_textio
@ -174,13 +180,13 @@ extern const struct _mp_obj_module_t time_module;
{ MP_OBJ_NEW_QSTR(MP_QSTR_os), (mp_obj_t)&uos_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_json), (mp_obj_t)&mp_module_ujson }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_errno), (mp_obj_t)&mp_module_uerrno }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_select), (mp_obj_t)&mp_module_uselect }, \
#define MP_STATE_PORT MP_STATE_VM
#define MICROPY_PORT_ROOT_POINTERS \
const char *readline_hist[8]; \
vstr_t *repl_line; \
mp_obj_t mp_kbd_exception; \
mp_obj_t pin_irq_handler[16]; \
// We need to provide a declaration/definition of alloca()

View File

@ -1,5 +1,10 @@
#include <mpconfigport.h>
#undef MICROPY_EMIT_XTENSA
#define MICROPY_EMIT_XTENSA (0)
#undef MICROPY_EMIT_INLINE_XTENSA
#define MICROPY_EMIT_INLINE_XTENSA (0)
#undef MICROPY_FSUSERMOUNT
#define MICROPY_FSUSERMOUNT (0)
#undef MICROPY_VFS_FAT
@ -17,3 +22,6 @@
#define MICROPY_PY_BUILTINS_SLICE_ATTRS (0)
#undef MICROPY_PY_ALL_SPECIAL_METHODS
#define MICROPY_PY_ALL_SPECIAL_METHODS (0)
#undef MICROPY_PY_FRAMEBUF
#define MICROPY_PY_FRAMEBUF (0)

View File

@ -24,11 +24,12 @@ def fs_corrupted():
import time
while 1:
print("""\
FAT filesystem appears to be corrupted. If you had important data there, you
may want to make a flash snapshot to try to recover it. Otherwise, perform
factory reprogramming of MicroPython firmware (completely erase flash, followed
by firmware programming).
""")
The FAT filesystem starting at sector %d with size %d sectors appears to
be corrupted. If you had important data there, you may want to make a flash
snapshot to try to recover it. Otherwise, perform factory reprogramming
of MicroPython firmware (completely erase flash, followed by firmware
programming).
""" % (bdev.START_SEC, bdev.blocks))
time.sleep(3)
def setup():

View File

@ -5,7 +5,7 @@ import pyb
accel = pyb.Accel() # create object of accelerometer
blue = pyb.LED(4) # create object of blue LED
log = open('1:/log.csv', 'w') # open file to write data - 1:/ ist the SD-card, 0:/ the internal memory
log = open('/sd/log.csv', 'w') # open file to write data - /sd/ is the SD-card, /flash/ the internal memory
blue.on() # turn on blue LED
for i in range(100): # do 100 times (if the board is connected via USB, you can't write longer because the PC tries to open the filesystem which messes up your file.)

View File

@ -33,6 +33,7 @@
#define MICROPY_COMP_CONST (0)
#define MICROPY_MEM_STATS (0)
#define MICROPY_DEBUG_PRINTERS (0)
#define MICROPY_READER_POSIX (1)
#define MICROPY_HELPER_REPL (1)
#define MICROPY_HELPER_LEXER_UNIX (1)
#define MICROPY_ENABLE_SOURCE_LINE (0)

View File

@ -0,0 +1,9 @@
import utime
from hwconfig import LED, BUTTON
# Light LED when (and while) a BUTTON is pressed
while 1:
LED.value(BUTTON.value())
# Don't burn CPU
utime.sleep_ms(10)

View File

@ -0,0 +1,19 @@
import utime
import machine
from hwconfig import LED, BUTTON
# machine.time_pulse_us() function demo
print("""\
Let's play an interesting game:
You click button as fast as you can, and I tell you how slow you are.
Ready? Cliiiiick!
""")
while 1:
try:
delay = machine.time_pulse_us(BUTTON, 1, 10*1000*1000)
print("You are as slow as %d microseconds!" % delay)
except OSError:
print("Well, you're *really* slow")
utime.sleep_ms(10)

View File

@ -0,0 +1,13 @@
# This is hwconfig for "emulation" for cases when there's no real hardware.
# It just prints information to console.
class LEDClass:
def __init__(self, id):
self.id = "LED(%d):" % id
def value(self, v):
print(self.id, v)
LED = LEDClass(1)
LED2 = LEDClass(12)

View File

@ -1,12 +1,22 @@
from machine import Pin
# 96Boards/Qualcomm DragonBoard 410c
#
# By default, on-board LEDs are controlled by kernel LED driver.
# To make corresponding pins be available as normal GPIO,
# corresponding driver needs to be unbound first (as root):
# echo -n "soc:leds" >/sys/class/leds/apq8016-sbc:green:user1/device/driver/unbind
# Note that application also either should be run as root, or
# /sys/class/gpio ownership needs to be changed.
# Likewise, onboard buttons are controlled by gpio_keys driver.
# To release corresponding GPIOs:
# echo -n "gpio_keys" >/sys/class/input/input1/device/driver/unbind
# User LED 1 on gpio21
LED = Pin(21, Pin.OUT)
# User LED 2 on gpio120
LED2 = Pin(120, Pin.OUT)
# Button S3 on gpio107
BUTTON = Pin(107, Pin.IN)

View File

@ -0,0 +1,31 @@
# Like soft_pwm_uasyncio.py, but fading 2 LEDs with different phase.
# Also see original soft_pwm.py.
import uasyncio
from hwconfig import LED, LED2
async def pwm_cycle(led, duty, cycles):
duty_off = 20 - duty
for i in range(cycles):
if duty:
led.value(1)
await uasyncio.sleep_ms(duty)
if duty_off:
led.value(0)
await uasyncio.sleep_ms(duty_off)
async def fade_in_out(LED):
while True:
# Fade in
for i in range(1, 21):
await pwm_cycle(LED, i, 2)
# Fade out
for i in range(20, 0, -1):
await pwm_cycle(LED, i, 2)
loop = uasyncio.get_event_loop()
loop.create_task(fade_in_out(LED))
loop.call_later_ms_(800, fade_in_out(LED2))
loop.run_forever()

View File

@ -0,0 +1,28 @@
# See original soft_pwm.py for detailed comments.
import uasyncio
from hwconfig import LED
async def pwm_cycle(led, duty, cycles):
duty_off = 20 - duty
for i in range(cycles):
if duty:
led.value(1)
await uasyncio.sleep_ms(duty)
if duty_off:
led.value(0)
await uasyncio.sleep_ms(duty_off)
async def fade_in_out(LED):
while True:
# Fade in
for i in range(1, 21):
await pwm_cycle(LED, i, 2)
# Fade out
for i in range(20, 0, -1):
await pwm_cycle(LED, i, 2)
loop = uasyncio.get_event_loop()
loop.run_until_complete(fade_in_out(LED))

View File

@ -19,7 +19,7 @@ def main(use_stream=False):
# directly, but the line below is needed for CPython.
s = s.makefile("rwb", 0)
s.write(b"GET / HTTP/1.0\r\n\r\n")
print(s.readall())
print(s.read())
else:
s.send(b"GET / HTTP/1.0\r\n\r\n")
print(s.recv(4096))

View File

@ -28,21 +28,14 @@
#include <stdint.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "extmod/machine_i2c.h"
#if MICROPY_PY_MACHINE_I2C
// Clock stretching limit, so that we don't get stuck.
#define I2C_STRETCH_LIMIT 255
typedef struct _machine_i2c_obj_t {
mp_obj_base_t base;
uint32_t us_delay;
mp_hal_pin_obj_t scl;
mp_hal_pin_obj_t sda;
} machine_i2c_obj_t;
typedef mp_machine_soft_i2c_obj_t machine_i2c_obj_t;
STATIC void mp_hal_i2c_delay(machine_i2c_obj_t *self) {
// We need to use an accurate delay to get acceptable I2C
@ -54,13 +47,19 @@ STATIC void mp_hal_i2c_scl_low(machine_i2c_obj_t *self) {
mp_hal_pin_od_low(self->scl);
}
STATIC void mp_hal_i2c_scl_release(machine_i2c_obj_t *self) {
STATIC int mp_hal_i2c_scl_release(machine_i2c_obj_t *self) {
uint32_t count = self->us_timeout;
mp_hal_pin_od_high(self->scl);
mp_hal_i2c_delay(self);
// For clock stretching, wait for the SCL pin to be released, with timeout.
for (int count = I2C_STRETCH_LIMIT; mp_hal_pin_read(self->scl) == 0 && count; --count) {
for (; mp_hal_pin_read(self->scl) == 0 && count; --count) {
mp_hal_delay_us_fast(1);
}
if (count == 0) {
return -MP_ETIMEDOUT;
}
return 0; // success
}
STATIC void mp_hal_i2c_sda_low(machine_i2c_obj_t *self) {
@ -75,21 +74,26 @@ STATIC int mp_hal_i2c_sda_read(machine_i2c_obj_t *self) {
return mp_hal_pin_read(self->sda);
}
STATIC void mp_hal_i2c_start(machine_i2c_obj_t *self) {
STATIC int mp_hal_i2c_start(machine_i2c_obj_t *self) {
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
mp_hal_i2c_sda_low(self);
mp_hal_i2c_delay(self);
return 0; // success
}
STATIC void mp_hal_i2c_stop(machine_i2c_obj_t *self) {
STATIC int mp_hal_i2c_stop(machine_i2c_obj_t *self) {
mp_hal_i2c_delay(self);
mp_hal_i2c_sda_low(self);
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
return ret;
}
STATIC void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) {
@ -99,9 +103,13 @@ STATIC void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) {
}
mp_hal_pin_open_drain(self->scl);
mp_hal_pin_open_drain(self->sda);
mp_hal_i2c_stop(self);
mp_hal_i2c_stop(self); // ignore error
}
// return value:
// 0 - byte written and ack received
// 1 - byte written and nack received
// <0 - error, with errno being the negative of the return value
STATIC int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) {
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
@ -113,21 +121,31 @@ STATIC int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) {
mp_hal_i2c_sda_low(self);
}
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
mp_hal_i2c_sda_release(self);
return ret;
}
mp_hal_i2c_scl_low(self);
}
mp_hal_i2c_sda_release(self);
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
int ret = mp_hal_i2c_sda_read(self);
int ack = mp_hal_i2c_sda_read(self);
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
return !ret;
return ack;
}
// return value:
// 0 - success
// <0 - error, with errno being the negative of the return value
STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack) {
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_low(self);
@ -135,7 +153,10 @@ STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack)
uint8_t data = 0;
for (int i = 7; i >= 0; i--) {
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
return ret;
}
data = (data << 1) | mp_hal_i2c_sda_read(self);
mp_hal_i2c_scl_low(self);
mp_hal_i2c_delay(self);
@ -147,111 +168,140 @@ STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack)
mp_hal_i2c_sda_low(self);
}
mp_hal_i2c_delay(self);
mp_hal_i2c_scl_release(self);
int ret = mp_hal_i2c_scl_release(self);
if (ret != 0) {
mp_hal_i2c_sda_release(self);
return ret;
}
mp_hal_i2c_scl_low(self);
mp_hal_i2c_sda_release(self);
return 1; // success
return 0; // success
}
// addr is the device address, memaddr is a memory address sent big-endian
STATIC int mp_hal_i2c_write_addresses(machine_i2c_obj_t *self, uint8_t addr,
uint32_t memaddr, uint8_t addrsize) {
if (!mp_hal_i2c_write_byte(self, addr << 1)) {
return 0; // error
}
for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
if (!mp_hal_i2c_write_byte(self, memaddr >> i)) {
return 0; // error
}
}
return 1; // success
}
// return value:
// >=0 - number of acks received
// <0 - error, with errno being the negative of the return value
int mp_machine_soft_i2c_writeto(mp_obj_base_t *self_in, uint16_t addr, const uint8_t *src, size_t len, bool stop) {
machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
STATIC void mp_hal_i2c_write_mem(machine_i2c_obj_t *self, uint8_t addr,
uint32_t memaddr, uint8_t addrsize, const uint8_t *src, size_t len) {
// start the I2C transaction
mp_hal_i2c_start(self);
int ret = mp_hal_i2c_start(self);
if (ret != 0) {
return ret;
}
// write the slave address and the memory address within the slave
if (!mp_hal_i2c_write_addresses(self, addr, memaddr, addrsize)) {
goto er;
// write the slave address
ret = mp_hal_i2c_write_byte(self, addr << 1);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, release the bus cleanly
mp_hal_i2c_stop(self);
return -MP_ENODEV;
}
// write the buffer to the I2C memory
int num_acks = 0;
while (len--) {
if (!mp_hal_i2c_write_byte(self, *src++)) {
goto er;
ret = mp_hal_i2c_write_byte(self, *src++);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, stop sending
break;
}
++num_acks;
}
// finish the I2C transaction
if (stop) {
ret = mp_hal_i2c_stop(self);
if (ret != 0) {
return ret;
}
}
return num_acks;
}
// return value:
// 0 - success
// <0 - error, with errno being the negative of the return value
int mp_machine_soft_i2c_readfrom(mp_obj_base_t *self_in, uint16_t addr, uint8_t *dest, size_t len, bool stop) {
machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
// start the I2C transaction
int ret = mp_hal_i2c_start(self);
if (ret != 0) {
return ret;
}
// write the slave address
ret = mp_hal_i2c_write_byte(self, (addr << 1) | 1);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, release the bus cleanly
mp_hal_i2c_stop(self);
return -MP_ENODEV;
}
// read the bytes from the slave
while (len--) {
ret = mp_hal_i2c_read_byte(self, dest++, len == 0);
if (ret != 0) {
return ret;
}
}
// finish the I2C transaction
mp_hal_i2c_stop(self);
return;
er:
mp_hal_i2c_stop(self);
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
STATIC void mp_hal_i2c_read_mem(machine_i2c_obj_t *self, uint8_t addr,
uint32_t memaddr, uint8_t addrsize, uint8_t *dest, size_t len) {
// start the I2C transaction
mp_hal_i2c_start(self);
if (addrsize) {
// write the slave address and the memory address within the slave
if (!mp_hal_i2c_write_addresses(self, addr, memaddr, addrsize)) {
goto er;
}
// i2c_read will do a repeated start, and then read the I2C memory
mp_hal_i2c_start(self);
}
if (!mp_hal_i2c_write_byte(self, (addr << 1) | 1)) {
goto er;
}
while (len--) {
if (!mp_hal_i2c_read_byte(self, dest++, len == 0)) {
goto er;
if (stop) {
ret = mp_hal_i2c_stop(self);
if (ret != 0) {
return ret;
}
}
mp_hal_i2c_stop(self);
return;
er:
mp_hal_i2c_stop(self);
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
STATIC void mp_hal_i2c_write(machine_i2c_obj_t *self, uint8_t addr, const uint8_t *src, size_t len) {
mp_hal_i2c_write_mem(self, addr, 0, 0, src, len);
}
STATIC void mp_hal_i2c_read(machine_i2c_obj_t *self, uint8_t addr, uint8_t *dest, size_t len) {
mp_hal_i2c_read_mem(self, addr, 0, 0, dest, len);
return 0; // success
}
/******************************************************************************/
// MicroPython bindings for I2C
STATIC void machine_i2c_obj_init_helper(machine_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_scl, ARG_sda, ARG_freq };
enum { ARG_scl, ARG_sda, ARG_freq, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 255} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj);
self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj);
self->us_timeout = args[ARG_timeout].u_int;
mp_hal_i2c_init(self, args[ARG_freq].u_int);
}
STATIC mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true);
// check the id argument, if given
if (n_args > 0) {
if (args[0] != MP_OBJ_NEW_SMALL_INT(-1)) {
#if defined(MICROPY_PY_MACHINE_I2C_MAKE_NEW)
// dispatch to port-specific constructor
extern mp_obj_t MICROPY_PY_MACHINE_I2C_MAKE_NEW(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args);
return MICROPY_PY_MACHINE_I2C_MAKE_NEW(type, n_args, n_kw, args);
#else
mp_raise_ValueError("invalid I2C peripheral");
#endif
}
--n_args;
++args;
}
// create new soft I2C object
machine_i2c_obj_t *self = m_new_obj(machine_i2c_obj_t);
self->base.type = &machine_i2c_type;
mp_map_t kw_args;
@ -267,99 +317,188 @@ STATIC mp_obj_t machine_i2c_obj_init(size_t n_args, const mp_obj_t *args, mp_map
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_obj_init);
STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_base_t *self = MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
mp_obj_t list = mp_obj_new_list(0, NULL);
// 7-bit addresses 0b0000xxx and 0b1111xxx are reserved
for (int addr = 0x08; addr < 0x78; ++addr) {
mp_hal_i2c_start(self);
int ack = mp_hal_i2c_write_byte(self, (addr << 1));
if (ack) {
int ret = i2c_p->writeto(self, addr, NULL, 0, true);
if (ret == 0) {
mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
}
mp_hal_i2c_stop(self);
}
return list;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan);
STATIC mp_obj_t machine_i2c_start(mp_obj_t self_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_hal_i2c_start(self);
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
if (i2c_p->start == NULL) {
mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
}
int ret = i2c_p->start(self);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_start_obj, machine_i2c_start);
STATIC mp_obj_t machine_i2c_stop(mp_obj_t self_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_hal_i2c_stop(self);
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
if (i2c_p->stop == NULL) {
mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
}
int ret = i2c_p->stop(self);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_stop_obj, machine_i2c_stop);
STATIC mp_obj_t machine_i2c_readinto(mp_obj_t self_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_obj_t machine_i2c_readinto(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
if (i2c_p->read == NULL) {
mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
}
// get the buffer to read into
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE);
// work out if we want to send a nack at the end
bool nack = (n_args == 2) ? true : mp_obj_is_true(args[2]);
// do the read
uint8_t *dest = bufinfo.buf;
while (bufinfo.len--) {
if (!mp_hal_i2c_read_byte(self, dest++, bufinfo.len == 0)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
int ret = i2c_p->read(self, bufinfo.buf, bufinfo.len, nack);
if (ret != 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_readinto_obj, machine_i2c_readinto);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readinto_obj, 2, 3, machine_i2c_readinto);
STATIC mp_obj_t machine_i2c_write(mp_obj_t self_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
if (i2c_p->write == NULL) {
mp_raise_msg(&mp_type_OSError, "I2C operation not supported");
}
// get the buffer to write from
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
// do the write
uint8_t *src = bufinfo.buf;
while (bufinfo.len--) {
if (!mp_hal_i2c_write_byte(self, *src++)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "I2C bus error"));
}
int ret = i2c_p->write(self, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
// return number of acks received
return MP_OBJ_NEW_SMALL_INT(ret);
}
MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_write_obj, machine_i2c_write);
STATIC mp_obj_t machine_i2c_readfrom(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t nbytes_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_obj_t machine_i2c_readfrom(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
mp_int_t addr = mp_obj_get_int(args[1]);
vstr_t vstr;
vstr_init_len(&vstr, mp_obj_get_int(nbytes_in));
mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)vstr.buf, vstr.len);
vstr_init_len(&vstr, mp_obj_get_int(args[2]));
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = i2c_p->readfrom(self, addr, (uint8_t*)vstr.buf, vstr.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_obj, machine_i2c_readfrom);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_obj, 3, 4, machine_i2c_readfrom);
STATIC mp_obj_t machine_i2c_readfrom_into(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_obj_t machine_i2c_readfrom_into(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
mp_int_t addr = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
mp_hal_i2c_read(self, mp_obj_get_int(addr_in), (uint8_t*)bufinfo.buf, bufinfo.len);
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = i2c_p->readfrom(self, addr, bufinfo.buf, bufinfo.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_readfrom_into_obj, machine_i2c_readfrom_into);
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_into_obj, 3, 4, machine_i2c_readfrom_into);
STATIC mp_obj_t machine_i2c_writeto(mp_obj_t self_in, mp_obj_t addr_in, mp_obj_t buf_in) {
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_obj_t machine_i2c_writeto(size_t n_args, const mp_obj_t *args) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
mp_int_t addr = mp_obj_get_int(args[1]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
mp_hal_i2c_write(self, mp_obj_get_int(addr_in), bufinfo.buf, bufinfo.len);
return mp_const_none;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]);
int ret = i2c_p->writeto(self, addr, bufinfo.buf, bufinfo.len, stop);
if (ret < 0) {
mp_raise_OSError(-ret);
}
// return number of acks received
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writeto_obj, 3, 4, machine_i2c_writeto);
STATIC int read_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, uint8_t *buf, size_t len) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
uint8_t memaddr_buf[4];
size_t memaddr_len = 0;
for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
memaddr_buf[memaddr_len++] = memaddr >> i;
}
int ret = i2c_p->writeto(self, addr, memaddr_buf, memaddr_len, false);
if (ret != memaddr_len) {
// must generate STOP
i2c_p->writeto(self, addr, NULL, 0, true);
return ret;
}
return i2c_p->readfrom(self, addr, buf, len, true);
}
#define MAX_MEMADDR_SIZE (4)
#define BUF_STACK_SIZE (12)
STATIC int write_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, const uint8_t *buf, size_t len) {
mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in);
mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol;
// need some memory to create the buffer to send; try to use stack if possible
uint8_t buf2_stack[MAX_MEMADDR_SIZE + BUF_STACK_SIZE];
uint8_t *buf2;
size_t buf2_alloc = 0;
if (len <= BUF_STACK_SIZE) {
buf2 = buf2_stack;
} else {
buf2_alloc = MAX_MEMADDR_SIZE + len;
buf2 = m_new(uint8_t, buf2_alloc);
}
// create the buffer to send
size_t memaddr_len = 0;
for (int16_t i = addrsize - 8; i >= 0; i -= 8) {
buf2[memaddr_len++] = memaddr >> i;
}
memcpy(buf2 + memaddr_len, buf, len);
int ret = i2c_p->writeto(self, addr, buf2, memaddr_len + len, true);
if (buf2_alloc != 0) {
m_del(uint8_t, buf2, buf2_alloc);
}
return ret;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(machine_i2c_writeto_obj, machine_i2c_writeto);
STATIC const mp_arg_t machine_i2c_mem_allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
@ -370,7 +509,6 @@ STATIC const mp_arg_t machine_i2c_mem_allowed_args[] = {
STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize };
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
@ -380,8 +518,12 @@ STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args
vstr_init_len(&vstr, mp_obj_get_int(args[ARG_n].u_obj));
// do the transfer
mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int,
int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, (uint8_t*)vstr.buf, vstr.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem);
@ -389,7 +531,6 @@ MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom
STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
@ -399,15 +540,17 @@ STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE);
// do the transfer
mp_hal_i2c_read_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int,
int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into);
STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize };
machine_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args,
MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args);
@ -417,8 +560,12 @@ STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args,
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ);
// do the transfer
mp_hal_i2c_write_mem(self, args[ARG_addr].u_int, args[ARG_memaddr].u_int,
int ret = write_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int,
args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len);
if (ret < 0) {
mp_raise_OSError(-ret);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem);
@ -444,13 +591,50 @@ STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) },
};
STATIC MP_DEFINE_CONST_DICT(machine_i2c_locals_dict, machine_i2c_locals_dict_table);
MP_DEFINE_CONST_DICT(mp_machine_soft_i2c_locals_dict, machine_i2c_locals_dict_table);
int mp_machine_soft_i2c_read(mp_obj_base_t *self_in, uint8_t *dest, size_t len, bool nack) {
machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
while (len--) {
int ret = mp_hal_i2c_read_byte(self, dest++, nack && (len == 0));
if (ret != 0) {
return ret;
}
}
return 0; // success
}
int mp_machine_soft_i2c_write(mp_obj_base_t *self_in, const uint8_t *src, size_t len) {
machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in;
int num_acks = 0;
while (len--) {
int ret = mp_hal_i2c_write_byte(self, *src++);
if (ret < 0) {
return ret;
} else if (ret != 0) {
// nack received, stop sending
break;
}
++num_acks;
}
return num_acks;
}
STATIC const mp_machine_i2c_p_t mp_machine_soft_i2c_p = {
.start = (int(*)(mp_obj_base_t*))mp_hal_i2c_start,
.stop = (int(*)(mp_obj_base_t*))mp_hal_i2c_stop,
.read = mp_machine_soft_i2c_read,
.write = mp_machine_soft_i2c_write,
.readfrom = mp_machine_soft_i2c_readfrom,
.writeto = mp_machine_soft_i2c_writeto,
};
const mp_obj_type_t machine_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.make_new = machine_i2c_make_new,
.locals_dict = (mp_obj_dict_t*)&machine_i2c_locals_dict,
.protocol = &mp_machine_soft_i2c_p,
.locals_dict = (mp_obj_dict_t*)&mp_machine_soft_i2c_locals_dict,
};
#endif // MICROPY_PY_MACHINE_I2C

View File

@ -29,6 +29,29 @@
#include "py/obj.h"
// I2C protocol
// the first 4 methods can be NULL, meaning operation is not supported
typedef struct _mp_machine_i2c_p_t {
int (*start)(mp_obj_base_t *obj);
int (*stop)(mp_obj_base_t *obj);
int (*read)(mp_obj_base_t *obj, uint8_t *dest, size_t len, bool nack);
int (*write)(mp_obj_base_t *obj, const uint8_t *src, size_t len);
int (*readfrom)(mp_obj_base_t *obj, uint16_t addr, uint8_t *dest, size_t len, bool stop);
int (*writeto)(mp_obj_base_t *obj, uint16_t addr, const uint8_t *src, size_t len, bool stop);
} mp_machine_i2c_p_t;
typedef struct _mp_machine_soft_i2c_obj_t {
mp_obj_base_t base;
uint32_t us_delay;
uint32_t us_timeout;
mp_hal_pin_obj_t scl;
mp_hal_pin_obj_t sda;
} mp_machine_soft_i2c_obj_t;
extern const mp_obj_type_t machine_i2c_type;
extern const mp_obj_dict_t mp_machine_soft_i2c_locals_dict;
int mp_machine_soft_i2c_readfrom(mp_obj_base_t *self_in, uint16_t addr, uint8_t *dest, size_t len, bool stop);
int mp_machine_soft_i2c_writeto(mp_obj_base_t *self_in, uint16_t addr, const uint8_t *src, size_t len, bool stop);
#endif // __MICROPY_INCLUDED_EXTMOD_MACHINE_I2C_H__

View File

@ -32,6 +32,12 @@
#if MICROPY_PY_MACHINE_SPI
// if a port didn't define MSB/LSB constants then provide them
#ifndef MICROPY_PY_MACHINE_SPI_MSB
#define MICROPY_PY_MACHINE_SPI_MSB (0)
#define MICROPY_PY_MACHINE_SPI_LSB (1)
#endif
void mp_machine_soft_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
mp_machine_soft_spi_obj_t *self = (mp_machine_soft_spi_obj_t*)self_in;
uint32_t delay_half = self->delay_half;
@ -93,6 +99,49 @@ void mp_machine_soft_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint
}
}
/******************************************************************************/
// MicroPython bindings for generic machine.SPI
STATIC mp_obj_t mp_machine_soft_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args);
mp_obj_t mp_machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check the id argument, if given
if (n_args > 0) {
if (args[0] != MP_OBJ_NEW_SMALL_INT(-1)) {
#if defined(MICROPY_PY_MACHINE_SPI_MAKE_NEW)
// dispatch to port-specific constructor
extern mp_obj_t MICROPY_PY_MACHINE_SPI_MAKE_NEW(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args);
return MICROPY_PY_MACHINE_SPI_MAKE_NEW(type, n_args, n_kw, args);
#else
mp_raise_ValueError("invalid SPI peripheral");
#endif
}
--n_args;
++args;
}
// software SPI
return mp_machine_soft_spi_make_new(type, n_args, n_kw, args);
}
STATIC mp_obj_t machine_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
mp_obj_base_t *s = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]);
mp_machine_spi_p_t *spi_p = (mp_machine_spi_p_t*)s->type->protocol;
spi_p->init(s, n_args - 1, args + 1, kw_args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_spi_init_obj, 1, machine_spi_init);
STATIC mp_obj_t machine_spi_deinit(mp_obj_t self) {
mp_obj_base_t *s = (mp_obj_base_t*)MP_OBJ_TO_PTR(self);
mp_machine_spi_p_t *spi_p = (mp_machine_spi_p_t*)s->type->protocol;
if (spi_p->deinit != NULL) {
spi_p->deinit(s);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_spi_deinit_obj, machine_spi_deinit);
STATIC void mp_machine_spi_transfer(mp_obj_t self, size_t len, const void *src, void *dest) {
mp_obj_base_t *s = (mp_obj_base_t*)MP_OBJ_TO_PTR(self);
mp_machine_spi_p_t *spi_p = (mp_machine_spi_p_t*)s->type->protocol;
@ -138,4 +187,159 @@ STATIC mp_obj_t mp_machine_spi_write_readinto(mp_obj_t self, mp_obj_t wr_buf, mp
}
MP_DEFINE_CONST_FUN_OBJ_3(mp_machine_spi_write_readinto_obj, mp_machine_spi_write_readinto);
STATIC const mp_rom_map_elem_t machine_spi_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_spi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_spi_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(MICROPY_PY_MACHINE_SPI_MSB) },
{ MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(MICROPY_PY_MACHINE_SPI_LSB) },
};
MP_DEFINE_CONST_DICT(mp_machine_spi_locals_dict, machine_spi_locals_dict_table);
/******************************************************************************/
// Implementation of soft SPI
STATIC uint32_t baudrate_from_delay_half(uint32_t delay_half) {
#ifdef MICROPY_PY_MACHINE_SPI_MIN_DELAY
if (delay_half == MICROPY_PY_MACHINE_SPI_MIN_DELAY) {
return MICROPY_PY_MACHINE_SPI_MAX_BAUDRATE;
} else
#endif
{
return 500000 / delay_half;
}
}
STATIC uint32_t baudrate_to_delay_half(uint32_t baudrate) {
#ifdef MICROPY_PY_MACHINE_SPI_MIN_DELAY
if (baudrate >= MICROPY_PY_MACHINE_SPI_MAX_BAUDRATE) {
return MICROPY_PY_MACHINE_SPI_MIN_DELAY;
} else
#endif
{
uint32_t delay_half = 500000 / baudrate;
// round delay_half up so that: actual_baudrate <= requested_baudrate
if (500000 % baudrate != 0) {
delay_half += 1;
}
return delay_half;
}
}
STATIC void mp_machine_soft_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_machine_soft_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SoftSPI(baudrate=%u, polarity=%u, phase=%u,"
" sck=" MP_HAL_PIN_FMT ", mosi=" MP_HAL_PIN_FMT ", miso=" MP_HAL_PIN_FMT ")",
baudrate_from_delay_half(self->delay_half), self->polarity, self->phase,
mp_hal_pin_name(self->sck), mp_hal_pin_name(self->mosi), mp_hal_pin_name(self->miso));
}
STATIC mp_obj_t mp_machine_soft_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_PY_MACHINE_SPI_MSB} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// create new object
mp_machine_soft_spi_obj_t *self = m_new_obj(mp_machine_soft_spi_obj_t);
self->base.type = &mp_machine_soft_spi_type;
// set parameters
self->delay_half = baudrate_to_delay_half(args[ARG_baudrate].u_int);
self->polarity = args[ARG_polarity].u_int;
self->phase = args[ARG_phase].u_int;
if (args[ARG_bits].u_int != 8) {
mp_raise_ValueError("bits must be 8");
}
if (args[ARG_firstbit].u_int != MICROPY_PY_MACHINE_SPI_MSB) {
mp_raise_ValueError("firstbit must be MSB");
}
if (args[ARG_sck].u_obj == MP_OBJ_NULL
|| args[ARG_mosi].u_obj == MP_OBJ_NULL
|| args[ARG_miso].u_obj == MP_OBJ_NULL) {
mp_raise_ValueError("must specify all of sck/mosi/miso");
}
self->sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
self->mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
self->miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
// configure pins
mp_hal_pin_write(self->sck, self->polarity);
mp_hal_pin_output(self->sck);
mp_hal_pin_output(self->mosi);
mp_hal_pin_input(self->miso);
return MP_OBJ_FROM_PTR(self);
}
STATIC void mp_machine_soft_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_machine_soft_spi_obj_t *self = (mp_machine_soft_spi_obj_t*)self_in;
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[ARG_baudrate].u_int != -1) {
self->delay_half = baudrate_to_delay_half(args[ARG_baudrate].u_int);
}
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
}
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
}
if (args[ARG_sck].u_obj != MP_OBJ_NULL) {
self->sck = mp_hal_get_pin_obj(args[ARG_sck].u_obj);
}
if (args[ARG_mosi].u_obj != MP_OBJ_NULL) {
self->mosi = mp_hal_get_pin_obj(args[ARG_mosi].u_obj);
}
if (args[ARG_miso].u_obj != MP_OBJ_NULL) {
self->miso = mp_hal_get_pin_obj(args[ARG_miso].u_obj);
}
// configure pins
mp_hal_pin_write(self->sck, self->polarity);
mp_hal_pin_output(self->sck);
mp_hal_pin_output(self->mosi);
mp_hal_pin_input(self->miso);
}
STATIC const mp_machine_spi_p_t mp_machine_soft_spi_p = {
.init = mp_machine_soft_spi_init,
.deinit = NULL,
.transfer = mp_machine_soft_spi_transfer,
};
const mp_obj_type_t mp_machine_soft_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SoftSPI,
.print = mp_machine_soft_spi_print,
.make_new = mp_machine_spi_make_new, // delegate to master constructor
.protocol = &mp_machine_soft_spi_p,
.locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict,
};
#endif // MICROPY_PY_MACHINE_SPI

View File

@ -32,6 +32,8 @@
// SPI protocol
typedef struct _mp_machine_spi_p_t {
void (*init)(mp_obj_base_t *obj, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
void (*deinit)(mp_obj_base_t *obj); // can be NULL
void (*transfer)(mp_obj_base_t *obj, size_t len, const uint8_t *src, uint8_t *dest);
} mp_machine_spi_p_t;
@ -45,8 +47,13 @@ typedef struct _mp_machine_soft_spi_obj_t {
mp_hal_pin_obj_t miso;
} mp_machine_soft_spi_obj_t;
extern const mp_obj_type_t mp_machine_soft_spi_type;
extern const mp_obj_dict_t mp_machine_spi_locals_dict;
void mp_machine_soft_spi_transfer(mp_obj_base_t *self, size_t len, const uint8_t *src, uint8_t *dest);
mp_obj_t mp_machine_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_read_obj);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(mp_machine_spi_readinto_obj);
MP_DECLARE_CONST_FUN_OBJ_2(mp_machine_spi_write_obj);

View File

@ -81,6 +81,12 @@ STATIC void btree_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind
mp_printf(print, "<btree %p>", self->db);
}
STATIC mp_obj_t btree_flush(mp_obj_t self_in) {
mp_obj_btree_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(__bt_sync(self->db, 0));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(btree_flush_obj, btree_flush);
STATIC mp_obj_t btree_close(mp_obj_t self_in) {
mp_obj_btree_t *self = MP_OBJ_TO_PTR(self_in);
return MP_OBJ_NEW_SMALL_INT(__bt_close(self->db));
@ -314,6 +320,7 @@ STATIC mp_obj_t btree_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in)
STATIC const mp_rom_map_elem_t btree_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&btree_close_obj) },
{ MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&btree_flush_obj) },
{ MP_ROM_QSTR(MP_QSTR_get), MP_ROM_PTR(&btree_get_obj) },
{ MP_ROM_QSTR(MP_QSTR_put), MP_ROM_PTR(&btree_put_obj) },
{ MP_ROM_QSTR(MP_QSTR_seq), MP_ROM_PTR(&btree_seq_obj) },

View File

@ -35,18 +35,106 @@
#include "stmhal/font_petme128_8x8.h"
// 1-bit frame buffer, each byte is a column of 8 pixels
typedef struct _mp_obj_framebuf1_t {
typedef struct _mp_obj_framebuf_t {
mp_obj_base_t base;
uint8_t *buf;
mp_obj_t buf_obj; // need to store this to prevent GC from reclaiming buf
void *buf;
uint16_t width, height, stride;
} mp_obj_framebuf1_t;
uint8_t format;
} mp_obj_framebuf_t;
STATIC mp_obj_t framebuf1_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 3, 4, false);
typedef void (*setpixel_t)(const mp_obj_framebuf_t*, int, int, uint32_t);
typedef uint32_t (*getpixel_t)(const mp_obj_framebuf_t*, int, int);
typedef void (*fill_rect_t)(const mp_obj_framebuf_t *, int, int, int, int, uint32_t);
mp_obj_framebuf1_t *o = m_new_obj(mp_obj_framebuf1_t);
typedef struct _mp_framebuf_p_t {
setpixel_t setpixel;
getpixel_t getpixel;
fill_rect_t fill_rect;
} mp_framebuf_p_t;
// Functions for MVLSB format
STATIC void mvlsb_setpixel(const mp_obj_framebuf_t *fb, int x, int y, uint32_t color) {
size_t index = (y >> 3) * fb->stride + x;
uint8_t offset = y & 0x07;
((uint8_t*)fb->buf)[index] = (((uint8_t*)fb->buf)[index] & ~(0x01 << offset)) | ((color != 0) << offset);
}
STATIC uint32_t mvlsb_getpixel(const mp_obj_framebuf_t *fb, int x, int y) {
return (((uint8_t*)fb->buf)[(y >> 3) * fb->stride + x] >> (y & 0x07)) & 0x01;
}
STATIC void mvlsb_fill_rect(const mp_obj_framebuf_t *fb, int x, int y, int w, int h, uint32_t col) {
while (h--) {
uint8_t *b = &((uint8_t*)fb->buf)[(y >> 3) * fb->stride + x];
uint8_t offset = y & 0x07;
for (int ww = w; ww; --ww) {
*b = (*b & ~(0x01 << offset)) | ((col != 0) << offset);
++b;
}
++y;
}
}
// Functions for RGB565 format
STATIC void rgb565_setpixel(const mp_obj_framebuf_t *fb, int x, int y, uint32_t color) {
((uint16_t*)fb->buf)[x + y * fb->stride] = color;
}
STATIC uint32_t rgb565_getpixel(const mp_obj_framebuf_t *fb, int x, int y) {
return ((uint16_t*)fb->buf)[x + y * fb->stride];
}
STATIC void rgb565_fill_rect(const mp_obj_framebuf_t *fb, int x, int y, int w, int h, uint32_t colour) {
uint16_t *b = &((uint16_t*)fb->buf)[x + y * fb->stride];
while (h--) {
for (int ww = w; ww; --ww) {
*b++ = colour;
}
b += fb->stride - w;
}
}
// constants for formats
#define FRAMEBUF_MVLSB (0)
#define FRAMEBUF_RGB565 (1)
STATIC mp_framebuf_p_t formats[] = {
[FRAMEBUF_MVLSB] = {mvlsb_setpixel, mvlsb_getpixel, mvlsb_fill_rect},
[FRAMEBUF_RGB565] = {rgb565_setpixel, rgb565_getpixel, rgb565_fill_rect},
};
static inline void setpixel(const mp_obj_framebuf_t *fb, int x, int y, uint32_t color) {
formats[fb->format].setpixel(fb, x, y, color);
}
static inline uint32_t getpixel(const mp_obj_framebuf_t *fb, int x, int y) {
return formats[fb->format].getpixel(fb, x, y);
}
STATIC void fill_rect(const mp_obj_framebuf_t *fb, int x, int y, int w, int h, uint32_t col) {
if (x + w <= 0 || y + h <= 0 || y >= fb->height || x >= fb->width) {
// No operation needed.
return;
}
// clip to the framebuffer
int xend = MIN(fb->width, x + w);
int yend = MIN(fb->height, y + h);
x = MAX(x, 0);
y = MAX(y, 0);
formats[fb->format].fill_rect(fb, x, y, xend - x, yend - y, col);
}
STATIC mp_obj_t framebuf_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 4, 5, false);
mp_obj_framebuf_t *o = m_new_obj(mp_obj_framebuf_t);
o->base.type = type;
o->buf_obj = args[0];
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_WRITE);
@ -54,98 +142,263 @@ STATIC mp_obj_t framebuf1_make_new(const mp_obj_type_t *type, size_t n_args, siz
o->width = mp_obj_get_int(args[1]);
o->height = mp_obj_get_int(args[2]);
o->format = mp_obj_get_int(args[3]);
if (n_args >= 5) {
o->stride = mp_obj_get_int(args[4]);
} else {
o->stride = o->width;
if (n_args >= 4) {
o->stride = mp_obj_get_int(args[3]);
}
switch (o->format) {
case FRAMEBUF_MVLSB:
case FRAMEBUF_RGB565:
break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"invalid format"));
}
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t framebuf1_fill(mp_obj_t self_in, mp_obj_t col_in) {
mp_obj_framebuf1_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_int_t framebuf_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
(void)flags;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(self_in);
bufinfo->buf = self->buf;
bufinfo->len = self->stride * self->height * (self->format == FRAMEBUF_RGB565 ? 2 : 1);
bufinfo->typecode = 'B'; // view framebuf as bytes
return 0;
}
STATIC mp_obj_t framebuf_fill(mp_obj_t self_in, mp_obj_t col_in) {
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t col = mp_obj_get_int(col_in);
if (col) {
col = 0xff;
}
int end = (self->height + 7) >> 3;
for (int y = 0; y < end; ++y) {
memset(self->buf + y * self->stride, col, self->width);
}
formats[self->format].fill_rect(self, 0, 0, self->width, self->height, col);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(framebuf1_fill_obj, framebuf1_fill);
STATIC MP_DEFINE_CONST_FUN_OBJ_2(framebuf_fill_obj, framebuf_fill);
STATIC mp_obj_t framebuf1_pixel(size_t n_args, const mp_obj_t *args) {
mp_obj_framebuf1_t *self = MP_OBJ_TO_PTR(args[0]);
STATIC mp_obj_t framebuf_fill_rect(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x = mp_obj_get_int(args[1]);
mp_int_t y = mp_obj_get_int(args[2]);
mp_int_t width = mp_obj_get_int(args[3]);
mp_int_t height = mp_obj_get_int(args[4]);
mp_int_t color = mp_obj_get_int(args[5]);
fill_rect(self, x, y, width, height, color);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_fill_rect_obj, 6, 6, framebuf_fill_rect);
STATIC mp_obj_t framebuf_pixel(size_t n_args, const mp_obj_t *args) {
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x = mp_obj_get_int(args[1]);
mp_int_t y = mp_obj_get_int(args[2]);
if (0 <= x && x < self->width && 0 <= y && y < self->height) {
int index = (y / 8) * self->stride + x;
if (n_args == 3) {
// get
return MP_OBJ_NEW_SMALL_INT((self->buf[index] >> (y & 7)) & 1);
return MP_OBJ_NEW_SMALL_INT(getpixel(self, x, y));
} else {
// set
if (mp_obj_get_int(args[3])) {
self->buf[index] |= (1 << (y & 7));
} else {
self->buf[index] &= ~(1 << (y & 7));
}
setpixel(self, x, y, mp_obj_get_int(args[3]));
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf1_pixel_obj, 3, 4, framebuf1_pixel);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_pixel_obj, 3, 4, framebuf_pixel);
STATIC mp_obj_t framebuf1_scroll(mp_obj_t self_in, mp_obj_t xstep_in, mp_obj_t ystep_in) {
mp_obj_framebuf1_t *self = MP_OBJ_TO_PTR(self_in);
STATIC mp_obj_t framebuf_hline(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x = mp_obj_get_int(args[1]);
mp_int_t y = mp_obj_get_int(args[2]);
mp_int_t w = mp_obj_get_int(args[3]);
mp_int_t col = mp_obj_get_int(args[4]);
fill_rect(self, x, y, w, 1, col);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_hline_obj, 5, 5, framebuf_hline);
STATIC mp_obj_t framebuf_vline(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x = mp_obj_get_int(args[1]);
mp_int_t y = mp_obj_get_int(args[2]);
mp_int_t h = mp_obj_get_int(args[3]);
mp_int_t col = mp_obj_get_int(args[4]);
fill_rect(self, x, y, 1, h, col);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_vline_obj, 5, 5, framebuf_vline);
STATIC mp_obj_t framebuf_rect(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x = mp_obj_get_int(args[1]);
mp_int_t y = mp_obj_get_int(args[2]);
mp_int_t w = mp_obj_get_int(args[3]);
mp_int_t h = mp_obj_get_int(args[4]);
mp_int_t col = mp_obj_get_int(args[5]);
fill_rect(self, x, y, w, 1, col);
fill_rect(self, x, y + h- 1, w, 1, col);
fill_rect(self, x, y, 1, h, col);
fill_rect(self, x + w- 1, y, 1, h, col);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_rect_obj, 6, 6, framebuf_rect);
STATIC mp_obj_t framebuf_line(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_int_t x1 = mp_obj_get_int(args[1]);
mp_int_t y1 = mp_obj_get_int(args[2]);
mp_int_t x2 = mp_obj_get_int(args[3]);
mp_int_t y2 = mp_obj_get_int(args[4]);
mp_int_t col = mp_obj_get_int(args[5]);
mp_int_t dx = x2 - x1;
mp_int_t sx;
if (dx > 0) {
sx = 1;
} else {
dx = -dx;
sx = -1;
}
mp_int_t dy = y2 - y1;
mp_int_t sy;
if (dy > 0) {
sy = 1;
} else {
dy = -dy;
sy = -1;
}
bool steep;
if (dy > dx) {
mp_int_t temp;
temp = x1; x1 = y1; y1 = temp;
temp = dx; dx = dy; dy = temp;
temp = sx; sx = sy; sy = temp;
steep = true;
} else {
steep = false;
}
mp_int_t e = 2 * dy - dx;
for (mp_int_t i = 0; i < dx; ++i) {
if (steep) {
setpixel(self, y1, x1, col);
} else {
setpixel(self, x1, y1, col);
}
while (e >= 0) {
y1 += sy;
e -= 2 * dx;
}
x1 += sx;
e += 2 * dy;
}
setpixel(self, x2, y2, col);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_line_obj, 6, 6, framebuf_line);
STATIC mp_obj_t framebuf_blit(size_t n_args, const mp_obj_t *args) {
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_framebuf_t *source = MP_OBJ_TO_PTR(args[1]);
mp_int_t x = mp_obj_get_int(args[2]);
mp_int_t y = mp_obj_get_int(args[3]);
mp_int_t key = -1;
if (n_args > 4) {
key = mp_obj_get_int(args[4]);
}
if (
(x >= self->width) ||
(y >= self->height) ||
(-x >= source->width) ||
(-y >= source->height)
) {
// Out of bounds, no-op.
return mp_const_none;
}
// Clip.
int x0 = MAX(0, x);
int y0 = MAX(0, y);
int x1 = MAX(0, -x);
int y1 = MAX(0, -y);
int x0end = MIN(self->width, x + source->width);
int y0end = MIN(self->height, y + source->height);
uint32_t color;
for (; y0 < y0end; ++y0) {
int cx1 = x1;
for (int cx0 = x0; cx0 < x0end; ++cx0) {
color = getpixel(source, cx1, y1);
if (color != key) {
setpixel(self, cx0, y0, color);
}
++cx1;
}
++y1;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_blit_obj, 4, 5, framebuf_blit);
STATIC mp_obj_t framebuf_scroll(mp_obj_t self_in, mp_obj_t xstep_in, mp_obj_t ystep_in) {
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t xstep = mp_obj_get_int(xstep_in);
mp_int_t ystep = mp_obj_get_int(ystep_in);
int end = (self->height + 7) >> 3;
if (ystep > 0) {
for (int y = end; y > 0;) {
--y;
for (int x = 0; x < self->width; ++x) {
int prev = 0;
if (y > 0) {
prev = (self->buf[(y - 1) * self->stride + x] >> (8 - ystep)) & ((1 << ystep) - 1);
}
self->buf[y * self->stride + x] = (self->buf[y * self->stride + x] << ystep) | prev;
}
}
} else if (ystep < 0) {
for (int y = 0; y < end; ++y) {
for (int x = 0; x < self->width; ++x) {
int prev = 0;
if (y + 1 < end) {
prev = self->buf[(y + 1) * self->stride + x] << (8 + ystep);
}
self->buf[y * self->stride + x] = (self->buf[y * self->stride + x] >> -ystep) | prev;
}
}
}
int sx, y, xend, yend, dx, dy;
if (xstep < 0) {
for (int y = 0; y < end; ++y) {
for (int x = 0; x < self->width + xstep; ++x) {
self->buf[y * self->stride + x] = self->buf[y * self->stride + x - xstep];
sx = 0;
xend = self->width + xstep;
dx = 1;
} else {
sx = self->width - 1;
xend = xstep - 1;
dx = -1;
}
if (ystep < 0) {
y = 0;
yend = self->height + ystep;
dy = 1;
} else {
y = self->height - 1;
yend = ystep - 1;
dy = -1;
}
for (; y != yend; y += dy) {
for (int x = sx; x != xend; x += dx) {
setpixel(self, x, y, getpixel(self, x - xstep, y - ystep));
}
}
} else if (xstep > 0) {
for (int y = 0; y < end; ++y) {
for (int x = self->width - 1; x >= xstep; --x) {
self->buf[y * self->stride + x] = self->buf[y * self->stride + x - xstep];
}
}
}
// TODO: Should we clear the margin created by scrolling?
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(framebuf1_scroll_obj, framebuf1_scroll);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(framebuf_scroll_obj, framebuf_scroll);
STATIC mp_obj_t framebuf1_text(size_t n_args, const mp_obj_t *args) {
STATIC mp_obj_t framebuf_text(size_t n_args, const mp_obj_t *args) {
// extract arguments
mp_obj_framebuf1_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_framebuf_t *self = MP_OBJ_TO_PTR(args[0]);
const char *str = mp_obj_str_get_str(args[1]);
mp_int_t x0 = mp_obj_get_int(args[2]);
mp_int_t y0 = mp_obj_get_int(args[3]);
@ -170,43 +423,67 @@ STATIC mp_obj_t framebuf1_text(size_t n_args, const mp_obj_t *args) {
for (int y = y0; vline_data; vline_data >>= 1, y++) { // scan over vertical column
if (vline_data & 1) { // only draw if pixel set
if (0 <= y && y < self->height) { // clip y
uint byte_pos = x0 + self->stride * ((uint)y >> 3);
if (col == 0) {
// clear pixel
self->buf[byte_pos] &= ~(1 << (y & 7));
} else {
// set pixel
self->buf[byte_pos] |= 1 << (y & 7);
setpixel(self, x0, y, col);
}
}
}
}
}
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf1_text_obj, 4, 5, framebuf1_text);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(framebuf_text_obj, 4, 5, framebuf_text);
STATIC const mp_rom_map_elem_t framebuf1_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_fill), MP_ROM_PTR(&framebuf1_fill_obj) },
{ MP_ROM_QSTR(MP_QSTR_pixel), MP_ROM_PTR(&framebuf1_pixel_obj) },
{ MP_ROM_QSTR(MP_QSTR_scroll), MP_ROM_PTR(&framebuf1_scroll_obj) },
{ MP_ROM_QSTR(MP_QSTR_text), MP_ROM_PTR(&framebuf1_text_obj) },
STATIC const mp_rom_map_elem_t framebuf_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_fill), MP_ROM_PTR(&framebuf_fill_obj) },
{ MP_ROM_QSTR(MP_QSTR_fill_rect), MP_ROM_PTR(&framebuf_fill_rect_obj) },
{ MP_ROM_QSTR(MP_QSTR_pixel), MP_ROM_PTR(&framebuf_pixel_obj) },
{ MP_ROM_QSTR(MP_QSTR_hline), MP_ROM_PTR(&framebuf_hline_obj) },
{ MP_ROM_QSTR(MP_QSTR_vline), MP_ROM_PTR(&framebuf_vline_obj) },
{ MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&framebuf_rect_obj) },
{ MP_ROM_QSTR(MP_QSTR_line), MP_ROM_PTR(&framebuf_line_obj) },
{ MP_ROM_QSTR(MP_QSTR_blit), MP_ROM_PTR(&framebuf_blit_obj) },
{ MP_ROM_QSTR(MP_QSTR_scroll), MP_ROM_PTR(&framebuf_scroll_obj) },
{ MP_ROM_QSTR(MP_QSTR_text), MP_ROM_PTR(&framebuf_text_obj) },
};
STATIC MP_DEFINE_CONST_DICT(framebuf1_locals_dict, framebuf1_locals_dict_table);
STATIC MP_DEFINE_CONST_DICT(framebuf_locals_dict, framebuf_locals_dict_table);
STATIC const mp_obj_type_t mp_type_framebuf1 = {
STATIC const mp_obj_type_t mp_type_framebuf = {
{ &mp_type_type },
.name = MP_QSTR_FrameBuffer1,
.make_new = framebuf1_make_new,
.locals_dict = (mp_obj_t)&framebuf1_locals_dict,
.name = MP_QSTR_FrameBuffer,
.make_new = framebuf_make_new,
.buffer_p = { .get_buffer = framebuf_get_buffer },
.locals_dict = (mp_obj_t)&framebuf_locals_dict,
};
// this factory function is provided for backwards compatibility with old FrameBuffer1 class
STATIC mp_obj_t legacy_framebuffer1(size_t n_args, const mp_obj_t *args) {
mp_obj_framebuf_t *o = m_new_obj(mp_obj_framebuf_t);
o->base.type = &mp_type_framebuf;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_WRITE);
o->buf = bufinfo.buf;
o->width = mp_obj_get_int(args[1]);
o->height = mp_obj_get_int(args[2]);
o->format = FRAMEBUF_MVLSB;
if (n_args >= 4) {
o->stride = mp_obj_get_int(args[3]);
} else {
o->stride = o->width;
}
return MP_OBJ_FROM_PTR(o);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(legacy_framebuffer1_obj, 3, 4, legacy_framebuffer1);
STATIC const mp_rom_map_elem_t framebuf_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_framebuf) },
{ MP_ROM_QSTR(MP_QSTR_FrameBuffer1), MP_ROM_PTR(&mp_type_framebuf1) },
{ MP_ROM_QSTR(MP_QSTR_FrameBuffer), MP_ROM_PTR(&mp_type_framebuf) },
{ MP_ROM_QSTR(MP_QSTR_FrameBuffer1), MP_ROM_PTR(&legacy_framebuffer1_obj) },
{ MP_ROM_QSTR(MP_QSTR_MVLSB), MP_OBJ_NEW_SMALL_INT(FRAMEBUF_MVLSB) },
{ MP_ROM_QSTR(MP_QSTR_RGB565), MP_OBJ_NEW_SMALL_INT(FRAMEBUF_RGB565) },
};
STATIC MP_DEFINE_CONST_DICT(framebuf_module_globals, framebuf_module_globals_table);

View File

@ -114,7 +114,7 @@ u32_t sio_tryread(sio_fd_t fd, u8_t *data, u32_t len) {
}
// constructor lwip.slip(device=integer, iplocal=string, ipremote=string)
STATIC mp_obj_t lwip_slip_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t lwip_slip_make_new(mp_obj_t type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 3, 3, false);
lwip_slip_obj.base.type = &lwip_slip_type;
@ -578,8 +578,7 @@ STATIC void lwip_socket_print(const mp_print_t *print, mp_obj_t self_in, mp_prin
}
// FIXME: Only supports two arguments at present
STATIC mp_obj_t lwip_socket_make_new(const mp_obj_type_t *type, mp_uint_t n_args,
mp_uint_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t lwip_socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 4, false);
lwip_socket_obj_t *socket = m_new_obj_with_finaliser(lwip_socket_obj_t);
@ -1127,6 +1126,34 @@ STATIC mp_uint_t lwip_socket_write(mp_obj_t self_in, const void *buf, mp_uint_t
return MP_STREAM_ERROR;
}
STATIC mp_uint_t lwip_socket_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
lwip_socket_obj_t *socket = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD && socket->incoming.pbuf != NULL) {
ret |= MP_STREAM_POLL_RD;
}
if (flags & MP_STREAM_POLL_WR && tcp_sndbuf(socket->pcb.tcp) > 0) {
ret |= MP_STREAM_POLL_WR;
}
if (flags & MP_STREAM_POLL_HUP && socket->state == STATE_PEER_CLOSED) {
ret |= MP_STREAM_POLL_HUP;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_map_elem_t lwip_socket_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___del__), (mp_obj_t)&lwip_socket_close_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&lwip_socket_close_obj },
@ -1153,6 +1180,7 @@ STATIC MP_DEFINE_CONST_DICT(lwip_socket_locals_dict, lwip_socket_locals_dict_tab
STATIC const mp_stream_p_t lwip_socket_stream_p = {
.read = lwip_socket_read,
.write = lwip_socket_write,
.ioctl = lwip_socket_ioctl,
};
STATIC const mp_obj_type_t lwip_socket_type = {

View File

@ -206,9 +206,11 @@ STATIC const mp_rom_map_elem_t mp_module_urandom_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_randrange), MP_ROM_PTR(&mod_urandom_randrange_obj) },
{ MP_ROM_QSTR(MP_QSTR_randint), MP_ROM_PTR(&mod_urandom_randint_obj) },
{ MP_ROM_QSTR(MP_QSTR_choice), MP_ROM_PTR(&mod_urandom_choice_obj) },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_ROM_QSTR(MP_QSTR_random), MP_ROM_PTR(&mod_urandom_random_obj) },
{ MP_ROM_QSTR(MP_QSTR_uniform), MP_ROM_PTR(&mod_urandom_uniform_obj) },
#endif
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_urandom_globals, mp_module_urandom_globals_table);

View File

@ -24,12 +24,16 @@
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#if MICROPY_PY_USELECT
#include <stdio.h>
#include "py/ioctl.h"
#include "py/runtime.h"
#include "py/obj.h"
#include "py/objlist.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
@ -52,11 +56,7 @@ STATIC void poll_map_add(mp_map_t *poll_map, const mp_obj_t *obj, mp_uint_t obj_
mp_map_elem_t *elem = mp_map_lookup(poll_map, mp_obj_id(obj[i]), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
if (elem->value == NULL) {
// object not found; get its ioctl and add it to the poll list
mp_obj_type_t *type = mp_obj_get_type(obj[i]);
const mp_stream_p_t *stream_p = type->protocol;
if (stream_p == NULL || stream_p->ioctl == NULL) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "object with stream.ioctl required"));
}
const mp_stream_p_t *stream_p = mp_get_stream_raise(obj[i], MP_STREAM_OP_IOCTL);
poll_obj_t *poll_obj = m_new_obj(poll_obj_t);
poll_obj->obj = obj[i];
poll_obj->ioctl = stream_p->ioctl;
@ -84,7 +84,7 @@ STATIC mp_uint_t poll_map_poll(mp_map_t *poll_map, mp_uint_t *rwx_num) {
poll_obj_t *poll_obj = (poll_obj_t*)poll_map->table[i].value;
int errcode;
mp_int_t ret = poll_obj->ioctl(poll_obj->obj, MP_IOCTL_POLL, poll_obj->flags, &errcode);
mp_int_t ret = poll_obj->ioctl(poll_obj->obj, MP_STREAM_POLL, poll_obj->flags, &errcode);
poll_obj->flags_ret = ret;
if (ret == -1) {
@ -96,13 +96,13 @@ STATIC mp_uint_t poll_map_poll(mp_map_t *poll_map, mp_uint_t *rwx_num) {
// object is ready
n_ready += 1;
if (rwx_num != NULL) {
if (ret & MP_IOCTL_POLL_RD) {
if (ret & MP_STREAM_POLL_RD) {
rwx_num[0] += 1;
}
if (ret & MP_IOCTL_POLL_WR) {
if (ret & MP_STREAM_POLL_WR) {
rwx_num[1] += 1;
}
if ((ret & ~(MP_IOCTL_POLL_RD | MP_IOCTL_POLL_WR)) != 0) {
if ((ret & ~(MP_STREAM_POLL_RD | MP_STREAM_POLL_WR)) != 0) {
rwx_num[2] += 1;
}
}
@ -138,9 +138,9 @@ STATIC mp_obj_t select_select(uint n_args, const mp_obj_t *args) {
// merge separate lists and get the ioctl function for each object
mp_map_t poll_map;
mp_map_init(&poll_map, rwx_len[0] + rwx_len[1] + rwx_len[2]);
poll_map_add(&poll_map, r_array, rwx_len[0], MP_IOCTL_POLL_RD, true);
poll_map_add(&poll_map, w_array, rwx_len[1], MP_IOCTL_POLL_WR, true);
poll_map_add(&poll_map, x_array, rwx_len[2], MP_IOCTL_POLL_ERR | MP_IOCTL_POLL_HUP, true);
poll_map_add(&poll_map, r_array, rwx_len[0], MP_STREAM_POLL_RD, true);
poll_map_add(&poll_map, w_array, rwx_len[1], MP_STREAM_POLL_WR, true);
poll_map_add(&poll_map, x_array, rwx_len[2], MP_STREAM_POLL_ERR | MP_STREAM_POLL_HUP, true);
mp_uint_t start_tick = mp_hal_ticks_ms();
rwx_len[0] = rwx_len[1] = rwx_len[2] = 0;
@ -160,20 +160,20 @@ STATIC mp_obj_t select_select(uint n_args, const mp_obj_t *args) {
continue;
}
poll_obj_t *poll_obj = (poll_obj_t*)poll_map.table[i].value;
if (poll_obj->flags_ret & MP_IOCTL_POLL_RD) {
if (poll_obj->flags_ret & MP_STREAM_POLL_RD) {
((mp_obj_list_t*)list_array[0])->items[rwx_len[0]++] = poll_obj->obj;
}
if (poll_obj->flags_ret & MP_IOCTL_POLL_WR) {
if (poll_obj->flags_ret & MP_STREAM_POLL_WR) {
((mp_obj_list_t*)list_array[1])->items[rwx_len[1]++] = poll_obj->obj;
}
if ((poll_obj->flags_ret & ~(MP_IOCTL_POLL_RD | MP_IOCTL_POLL_WR)) != 0) {
if ((poll_obj->flags_ret & ~(MP_STREAM_POLL_RD | MP_STREAM_POLL_WR)) != 0) {
((mp_obj_list_t*)list_array[2])->items[rwx_len[2]++] = poll_obj->obj;
}
}
mp_map_deinit(&poll_map);
return mp_obj_new_tuple(3, list_array);
}
__WFI();
MICROPY_EVENT_POLL_HOOK
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_select_select_obj, 3, 4, select_select);
@ -192,7 +192,7 @@ STATIC mp_obj_t poll_register(uint n_args, const mp_obj_t *args) {
if (n_args == 3) {
flags = mp_obj_get_int(args[2]);
} else {
flags = MP_IOCTL_POLL_RD | MP_IOCTL_POLL_WR;
flags = MP_STREAM_POLL_RD | MP_STREAM_POLL_WR;
}
poll_map_add(&self->poll_map, &args[1], 1, flags, false);
return mp_const_none;
@ -265,7 +265,7 @@ STATIC mp_obj_t poll_poll(uint n_args, const mp_obj_t *args) {
}
return ret_list;
}
__WFI();
MICROPY_EVENT_POLL_HOOK
}
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poll_poll_obj, 1, 3, poll_poll);
@ -297,10 +297,10 @@ STATIC const mp_map_elem_t mp_module_select_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_uselect) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_select), (mp_obj_t)&mp_select_select_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_poll), (mp_obj_t)&mp_select_poll_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLIN), MP_OBJ_NEW_SMALL_INT(MP_IOCTL_POLL_RD) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLOUT), MP_OBJ_NEW_SMALL_INT(MP_IOCTL_POLL_WR) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLERR), MP_OBJ_NEW_SMALL_INT(MP_IOCTL_POLL_ERR) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLHUP), MP_OBJ_NEW_SMALL_INT(MP_IOCTL_POLL_HUP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLIN), MP_OBJ_NEW_SMALL_INT(MP_STREAM_POLL_RD) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLOUT), MP_OBJ_NEW_SMALL_INT(MP_STREAM_POLL_WR) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLERR), MP_OBJ_NEW_SMALL_INT(MP_STREAM_POLL_ERR) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_POLLHUP), MP_OBJ_NEW_SMALL_INT(MP_STREAM_POLL_HUP) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_select_globals, mp_module_select_globals_table);
@ -309,3 +309,5 @@ const mp_obj_module_t mp_module_uselect = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_select_globals,
};
#endif // MICROPY_PY_USELECT

View File

@ -142,7 +142,6 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_close_obj, socket_close);
STATIC const mp_rom_map_elem_t ussl_socket_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readall), MP_ROM_PTR(&mp_stream_readall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },

View File

@ -242,7 +242,6 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(socket_close_obj, socket_close);
STATIC const mp_rom_map_elem_t ussl_socket_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readall), MP_ROM_PTR(&mp_stream_readall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },

212
extmod/modutimeq.c Normal file
View File

@ -0,0 +1,212 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
* Copyright (c) 2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/nlr.h"
#include "py/objlist.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/smallint.h"
#if MICROPY_PY_UTIMEQ
#define MODULO MICROPY_PY_UTIME_TICKS_PERIOD
#define DEBUG 0
// the algorithm here is modelled on CPython's heapq.py
struct qentry {
mp_uint_t time;
mp_obj_t callback;
mp_obj_t args;
};
typedef struct _mp_obj_utimeq_t {
mp_obj_base_t base;
mp_uint_t alloc;
mp_uint_t len;
struct qentry items[];
} mp_obj_utimeq_t;
STATIC mp_obj_utimeq_t *get_heap(mp_obj_t heap_in) {
return MP_OBJ_TO_PTR(heap_in);
}
STATIC bool time_less_than(struct qentry *item, struct qentry *parent) {
mp_uint_t item_tm = item->time;
mp_uint_t parent_tm = parent->time;
mp_uint_t res = parent_tm - item_tm;
if ((mp_int_t)res < 0) {
res += MODULO;
}
return res && res < (MODULO / 2);
}
STATIC mp_obj_t utimeq_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
mp_uint_t alloc = mp_obj_get_int(args[0]);
mp_obj_utimeq_t *o = m_new_obj_var(mp_obj_utimeq_t, struct qentry, alloc);
o->base.type = type;
memset(o->items, 0, sizeof(*o->items) * alloc);
o->alloc = alloc;
o->len = 0;
return MP_OBJ_FROM_PTR(o);
}
STATIC void heap_siftdown(mp_obj_utimeq_t *heap, mp_uint_t start_pos, mp_uint_t pos) {
struct qentry item = heap->items[pos];
while (pos > start_pos) {
mp_uint_t parent_pos = (pos - 1) >> 1;
struct qentry *parent = &heap->items[parent_pos];
bool lessthan = time_less_than(&item, parent);
if (lessthan) {
heap->items[pos] = *parent;
pos = parent_pos;
} else {
break;
}
}
heap->items[pos] = item;
}
STATIC void heap_siftup(mp_obj_utimeq_t *heap, mp_uint_t pos) {
mp_uint_t start_pos = pos;
mp_uint_t end_pos = heap->len;
struct qentry item = heap->items[pos];
for (mp_uint_t child_pos = 2 * pos + 1; child_pos < end_pos; child_pos = 2 * pos + 1) {
// choose right child if it's <= left child
if (child_pos + 1 < end_pos) {
bool lessthan = time_less_than(&heap->items[child_pos], &heap->items[child_pos + 1]);
if (!lessthan) {
child_pos += 1;
}
}
// bubble up the smaller child
heap->items[pos] = heap->items[child_pos];
pos = child_pos;
}
heap->items[pos] = item;
heap_siftdown(heap, start_pos, pos);
}
STATIC mp_obj_t mod_utimeq_heappush(size_t n_args, const mp_obj_t *args) {
(void)n_args;
mp_obj_t heap_in = args[0];
mp_obj_utimeq_t *heap = get_heap(heap_in);
if (heap->len == heap->alloc) {
mp_raise_msg(&mp_type_IndexError, "queue overflow");
}
mp_uint_t l = heap->len;
heap->items[l].time = MP_OBJ_SMALL_INT_VALUE(args[1]);
heap->items[l].callback = args[2];
heap->items[l].args = args[3];
heap_siftdown(heap, 0, heap->len);
heap->len++;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_utimeq_heappush_obj, 4, 4, mod_utimeq_heappush);
STATIC mp_obj_t mod_utimeq_heappop(mp_obj_t heap_in, mp_obj_t list_ref) {
mp_obj_utimeq_t *heap = get_heap(heap_in);
if (heap->len == 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "empty heap"));
}
mp_obj_list_t *ret = MP_OBJ_TO_PTR(list_ref);
if (!MP_OBJ_IS_TYPE(list_ref, &mp_type_list) || ret->len < 3) {
mp_raise_TypeError("");
}
struct qentry *item = &heap->items[0];
ret->items[0] = MP_OBJ_NEW_SMALL_INT(item->time);
ret->items[1] = item->callback;
ret->items[2] = item->args;
heap->len -= 1;
heap->items[0] = heap->items[heap->len];
heap->items[heap->len].callback = MP_OBJ_NULL; // so we don't retain a pointer
heap->items[heap->len].args = MP_OBJ_NULL;
if (heap->len) {
heap_siftup(heap, 0);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_utimeq_heappop_obj, mod_utimeq_heappop);
#if DEBUG
STATIC mp_obj_t mod_utimeq_dump(mp_obj_t heap_in) {
mp_obj_utimeq_t *heap = get_heap(heap_in);
for (int i = 0; i < heap->len; i++) {
printf(UINT_FMT "\t%p\t%p\n", heap->items[i].time,
MP_OBJ_TO_PTR(heap->items[i].callback), MP_OBJ_TO_PTR(heap->items[i].args));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_dump_obj, mod_utimeq_dump);
#endif
STATIC mp_obj_t utimeq_unary_op(mp_uint_t op, mp_obj_t self_in) {
mp_obj_utimeq_t *self = MP_OBJ_TO_PTR(self_in);
switch (op) {
case MP_UNARY_OP_BOOL: return mp_obj_new_bool(self->len != 0);
case MP_UNARY_OP_LEN: return MP_OBJ_NEW_SMALL_INT(self->len);
default: return MP_OBJ_NULL; // op not supported
}
}
STATIC const mp_rom_map_elem_t utimeq_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_push), MP_ROM_PTR(&mod_utimeq_heappush_obj) },
{ MP_ROM_QSTR(MP_QSTR_pop), MP_ROM_PTR(&mod_utimeq_heappop_obj) },
#if DEBUG
{ MP_ROM_QSTR(MP_QSTR_dump), MP_ROM_PTR(&mod_utimeq_dump_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(utimeq_locals_dict, utimeq_locals_dict_table);
STATIC const mp_obj_type_t utimeq_type = {
{ &mp_type_type },
.name = MP_QSTR_utimeq,
.make_new = utimeq_make_new,
.unary_op = utimeq_unary_op,
.locals_dict = (void*)&utimeq_locals_dict,
};
STATIC const mp_rom_map_elem_t mp_module_utimeq_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utimeq) },
{ MP_ROM_QSTR(MP_QSTR_utimeq), MP_ROM_PTR(&utimeq_type) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_utimeq_globals, mp_module_utimeq_globals_table);
const mp_obj_module_t mp_module_utimeq = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_utimeq_globals,
};
#endif //MICROPY_PY_UTIMEQ

View File

@ -124,7 +124,6 @@ STATIC mp_uint_t decompio_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *er
STATIC const mp_rom_map_elem_t decompio_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readall), MP_ROM_PTR(&mp_stream_readall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
};

View File

@ -121,6 +121,12 @@ STATIC mp_obj_t fat_vfs_rename(mp_obj_t vfs_in, mp_obj_t path_in, mp_obj_t path_
const char *old_path = mp_obj_str_get_str(path_in);
const char *new_path = mp_obj_str_get_str(path_out);
FRESULT res = f_rename(old_path, new_path);
if (res == FR_EXIST) {
// if new_path exists then try removing it (but only if it's a file)
fat_vfs_remove_internal(path_out, 0); // 0 == file attribute
// try to rename again
res = f_rename(old_path, new_path);
}
if (res == FR_OK) {
return mp_const_none;
} else {

View File

@ -108,15 +108,6 @@ STATIC mp_uint_t file_obj_write(mp_obj_t self_in, const void *buf, mp_uint_t siz
return sz_out;
}
STATIC mp_obj_t file_obj_flush(mp_obj_t self_in) {
pyb_file_obj_t *self = MP_OBJ_TO_PTR(self_in);
FRESULT res = f_sync(&self->fp);
if (res != FR_OK) {
mp_raise_OSError(fresult_to_errno_table[res]);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(file_obj_flush_obj, file_obj_flush);
STATIC mp_obj_t file_obj_close(mp_obj_t self_in) {
pyb_file_obj_t *self = MP_OBJ_TO_PTR(self_in);
@ -164,6 +155,14 @@ STATIC mp_uint_t file_obj_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg,
s->offset = f_tell(&self->fp);
return 0;
} else if (request == MP_STREAM_FLUSH) {
FRESULT res = f_sync(&self->fp);
if (res != FR_OK) {
*errcode = fresult_to_errno_table[res];
return MP_STREAM_ERROR;
}
return 0;
} else {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
@ -239,12 +238,11 @@ STATIC mp_obj_t file_obj_make_new(const mp_obj_type_t *type, size_t n_args, size
STATIC const mp_rom_map_elem_t rawfile_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readall), MP_ROM_PTR(&mp_stream_readall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_readlines), MP_ROM_PTR(&mp_stream_unbuffered_readlines_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&file_obj_flush_obj) },
{ MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&mp_stream_flush_obj) },
{ MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&file_obj_close_obj) },
{ MP_ROM_QSTR(MP_QSTR_seek), MP_ROM_PTR(&mp_stream_seek_obj) },
{ MP_ROM_QSTR(MP_QSTR_tell), MP_ROM_PTR(&mp_stream_tell_obj) },

View File

@ -1,83 +0,0 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
// *_ADHOC part is for cc3200 port which doesn't use general uPy
// infrastructure and instead duplicates code. TODO: Resolve.
#if MICROPY_VFS_FAT || MICROPY_FSUSERMOUNT || MICROPY_FSUSERMOUNT_ADHOC
#include "py/lexer.h"
#include "lib/fatfs/ff.h"
typedef struct _mp_lexer_file_buf_t {
FIL fp;
byte buf[20];
uint16_t len;
uint16_t pos;
} mp_lexer_file_buf_t;
STATIC mp_uint_t file_buf_next_byte(mp_lexer_file_buf_t *fb) {
if (fb->pos >= fb->len) {
if (fb->len < sizeof(fb->buf)) {
return MP_LEXER_EOF;
} else {
UINT n;
f_read(&fb->fp, fb->buf, sizeof(fb->buf), &n);
if (n == 0) {
return MP_LEXER_EOF;
}
fb->len = n;
fb->pos = 0;
}
}
return fb->buf[fb->pos++];
}
STATIC void file_buf_close(mp_lexer_file_buf_t *fb) {
f_close(&fb->fp);
m_del_obj(mp_lexer_file_buf_t, fb);
}
mp_lexer_t *fat_vfs_lexer_new_from_file(const char *filename);
mp_lexer_t *fat_vfs_lexer_new_from_file(const char *filename) {
mp_lexer_file_buf_t *fb = m_new_obj_maybe(mp_lexer_file_buf_t);
if (fb == NULL) {
return NULL;
}
FRESULT res = f_open(&fb->fp, filename, FA_READ);
if (res != FR_OK) {
m_del_obj(mp_lexer_file_buf_t, fb);
return NULL;
}
UINT n;
f_read(&fb->fp, fb->buf, sizeof(fb->buf), &n);
fb->len = n;
fb->pos = 0;
return mp_lexer_new(qstr_from_str(filename), fb, (mp_lexer_stream_next_byte_t)file_buf_next_byte, (mp_lexer_stream_close_t)file_buf_close);
}
#endif // MICROPY_VFS_FAT

88
extmod/vfs_fat_reader.c Normal file
View File

@ -0,0 +1,88 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <assert.h>
#include "py/mperrno.h"
#include "py/reader.h"
#if MICROPY_READER_FATFS
#include "lib/fatfs/ff.h"
#include "extmod/vfs_fat_file.h"
typedef struct _mp_reader_fatfs_t {
FIL fp;
uint16_t len;
uint16_t pos;
byte buf[20];
} mp_reader_fatfs_t;
STATIC mp_uint_t mp_reader_fatfs_readbyte(void *data) {
mp_reader_fatfs_t *reader = (mp_reader_fatfs_t*)data;
if (reader->pos >= reader->len) {
if (reader->len < sizeof(reader->buf)) {
return MP_READER_EOF;
} else {
UINT n;
f_read(&reader->fp, reader->buf, sizeof(reader->buf), &n);
if (n == 0) {
return MP_READER_EOF;
}
reader->len = n;
reader->pos = 0;
}
}
return reader->buf[reader->pos++];
}
STATIC void mp_reader_fatfs_close(void *data) {
mp_reader_fatfs_t *reader = (mp_reader_fatfs_t*)data;
f_close(&reader->fp);
m_del_obj(mp_reader_fatfs_t, reader);
}
int mp_reader_new_file(mp_reader_t *reader, const char *filename) {
mp_reader_fatfs_t *rf = m_new_obj_maybe(mp_reader_fatfs_t);
if (rf == NULL) {
return MP_ENOMEM;
}
FRESULT res = f_open(&rf->fp, filename, FA_READ);
if (res != FR_OK) {
return fresult_to_errno_table[res];
}
UINT n;
f_read(&rf->fp, rf->buf, sizeof(rf->buf), &n);
rf->len = n;
rf->pos = 0;
reader->data = rf;
reader->readbyte = mp_reader_fatfs_readbyte;
reader->close = mp_reader_fatfs_close;
return 0; // success
}
#endif

View File

@ -31,11 +31,19 @@ int mp_interrupt_char;
void mp_hal_set_interrupt_char(int c) {
if (c != -1) {
#if MICROPY_KBD_EXCEPTION
mp_obj_exception_clear_traceback(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception)));
#else
mp_obj_exception_clear_traceback(MP_STATE_PORT(mp_kbd_exception));
#endif
}
mp_interrupt_char = c;
}
void mp_keyboard_interrupt(void) {
#if MICROPY_KBD_EXCEPTION
MP_STATE_VM(mp_pending_exception) = MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_kbd_exception));
#else
MP_STATE_VM(mp_pending_exception) = MP_STATE_PORT(mp_kbd_exception);
#endif
}

View File

@ -32,6 +32,7 @@
#include "py/mpstate.h"
#include "py/compile.h"
#include "py/persistentcode.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/stackctrl.h"

View File

@ -47,6 +47,7 @@
#define MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE (0)
#define MICROPY_READER_POSIX (1)
#define MICROPY_ENABLE_RUNTIME (0)
#define MICROPY_ENABLE_GC (1)
#define MICROPY_STACK_CHECK (1)

View File

@ -38,52 +38,8 @@
#define SIGNED_FIT24(x) (((x) & 0xff800000) == 0) || (((x) & 0xff000000) == 0xff000000)
struct _asm_arm_t {
uint pass;
mp_uint_t code_offset;
mp_uint_t code_size;
byte *code_base;
byte dummy_data[4];
mp_uint_t max_num_labels;
mp_uint_t *label_offsets;
uint push_reglist;
uint stack_adjust;
};
asm_arm_t *asm_arm_new(uint max_num_labels) {
asm_arm_t *as;
as = m_new0(asm_arm_t, 1);
as->max_num_labels = max_num_labels;
as->label_offsets = m_new(mp_uint_t, max_num_labels);
return as;
}
void asm_arm_free(asm_arm_t *as, bool free_code) {
if (free_code) {
MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
}
m_del(mp_uint_t, as->label_offsets, as->max_num_labels);
m_del_obj(asm_arm_t, as);
}
void asm_arm_start_pass(asm_arm_t *as, uint pass) {
if (pass == ASM_ARM_PASS_COMPUTE) {
memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t));
} else if (pass == ASM_ARM_PASS_EMIT) {
MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
if (as->code_base == NULL) {
assert(0);
}
}
as->pass = pass;
as->code_offset = 0;
}
void asm_arm_end_pass(asm_arm_t *as) {
if (as->pass == ASM_ARM_PASS_EMIT) {
if (as->base.pass == MP_ASM_PASS_EMIT) {
#ifdef __arm__
// flush I- and D-cache
asm volatile(
@ -97,35 +53,12 @@ void asm_arm_end_pass(asm_arm_t *as) {
}
}
// all functions must go through this one to emit bytes
// if as->pass < ASM_ARM_PASS_EMIT, then this function only returns a buffer of 4 bytes length
STATIC byte *asm_arm_get_cur_to_write_bytes(asm_arm_t *as, int num_bytes_to_write) {
if (as->pass < ASM_ARM_PASS_EMIT) {
as->code_offset += num_bytes_to_write;
return as->dummy_data;
} else {
assert(as->code_offset + num_bytes_to_write <= as->code_size);
byte *c = as->code_base + as->code_offset;
as->code_offset += num_bytes_to_write;
return c;
}
}
uint asm_arm_get_code_pos(asm_arm_t *as) {
return as->code_offset;
}
uint asm_arm_get_code_size(asm_arm_t *as) {
return as->code_size;
}
void *asm_arm_get_code(asm_arm_t *as) {
return as->code_base;
}
// Insert word into instruction flow
STATIC void emit(asm_arm_t *as, uint op) {
*(uint*)asm_arm_get_cur_to_write_bytes(as, 4) = op;
uint8_t *c = mp_asm_base_get_cur_to_write_bytes(&as->base, 4);
if (c != NULL) {
*(uint32_t*)c = op;
}
}
// Insert word into instruction flow, add "ALWAYS" condition code
@ -263,35 +196,6 @@ void asm_arm_pop(asm_arm_t *as, uint reglist) {
emit_al(as, asm_arm_op_pop(reglist));
}
void asm_arm_label_assign(asm_arm_t *as, uint label) {
assert(label < as->max_num_labels);
if (as->pass < ASM_ARM_PASS_EMIT) {
// assign label offset
assert(as->label_offsets[label] == -1);
as->label_offsets[label] = as->code_offset;
} else {
// ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
assert(as->label_offsets[label] == as->code_offset);
}
}
void asm_arm_align(asm_arm_t* as, uint align) {
// TODO fill unused data with NOPs?
as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
}
void asm_arm_data(asm_arm_t* as, uint bytesize, uint val) {
byte *c = asm_arm_get_cur_to_write_bytes(as, bytesize);
// only write to the buffer in the emit pass (otherwise we overflow dummy_data)
if (as->pass == ASM_ARM_PASS_EMIT) {
// little endian
for (uint i = 0; i < bytesize; i++) {
*c++ = val;
val >>= 8;
}
}
}
void asm_arm_mov_reg_reg(asm_arm_t *as, uint reg_dest, uint reg_src) {
emit_al(as, asm_arm_op_mov_reg(reg_dest, reg_src));
}
@ -429,9 +333,9 @@ void asm_arm_strb_reg_reg_reg(asm_arm_t *as, uint rd, uint rm, uint rn) {
}
void asm_arm_bcc_label(asm_arm_t *as, int cond, uint label) {
assert(label < as->max_num_labels);
mp_uint_t dest = as->label_offsets[label];
mp_int_t rel = dest - as->code_offset;
assert(label < as->base.max_num_labels);
mp_uint_t dest = as->base.label_offsets[label];
mp_int_t rel = dest - as->base.code_offset;
rel -= 8; // account for instruction prefetch, PC is 8 bytes ahead of this instruction
rel >>= 2; // in ARM mode the branch target is 32-bit aligned, so the 2 LSB are omitted

View File

@ -28,9 +28,7 @@
#define __MICROPY_INCLUDED_PY_ASMARM_H__
#include "py/misc.h"
#define ASM_ARM_PASS_COMPUTE (1)
#define ASM_ARM_PASS_EMIT (2)
#include "py/asmbase.h"
#define ASM_ARM_REG_R0 (0)
#define ASM_ARM_REG_R1 (1)
@ -68,22 +66,16 @@
#define ASM_ARM_CC_LE (0xd << 28)
#define ASM_ARM_CC_AL (0xe << 28)
typedef struct _asm_arm_t asm_arm_t;
typedef struct _asm_arm_t {
mp_asm_base_t base;
uint push_reglist;
uint stack_adjust;
} asm_arm_t;
asm_arm_t *asm_arm_new(uint max_num_labels);
void asm_arm_free(asm_arm_t *as, bool free_code);
void asm_arm_start_pass(asm_arm_t *as, uint pass);
void asm_arm_end_pass(asm_arm_t *as);
uint asm_arm_get_code_pos(asm_arm_t *as);
uint asm_arm_get_code_size(asm_arm_t *as);
void *asm_arm_get_code(asm_arm_t *as);
void asm_arm_entry(asm_arm_t *as, int num_locals);
void asm_arm_exit(asm_arm_t *as);
void asm_arm_label_assign(asm_arm_t *as, uint label);
void asm_arm_align(asm_arm_t* as, uint align);
void asm_arm_data(asm_arm_t* as, uint bytesize, uint val);
void asm_arm_bkpt(asm_arm_t *as);
@ -130,4 +122,84 @@ void asm_arm_bcc_label(asm_arm_t *as, int cond, uint label);
void asm_arm_b_label(asm_arm_t *as, uint label);
void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp);
#if GENERIC_ASM_API
// The following macros provide a (mostly) arch-independent API to
// generate native code, and are used by the native emitter.
#define ASM_WORD_SIZE (4)
#define REG_RET ASM_ARM_REG_R0
#define REG_ARG_1 ASM_ARM_REG_R0
#define REG_ARG_2 ASM_ARM_REG_R1
#define REG_ARG_3 ASM_ARM_REG_R2
#define REG_ARG_4 ASM_ARM_REG_R3
#define REG_TEMP0 ASM_ARM_REG_R0
#define REG_TEMP1 ASM_ARM_REG_R1
#define REG_TEMP2 ASM_ARM_REG_R2
#define REG_LOCAL_1 ASM_ARM_REG_R4
#define REG_LOCAL_2 ASM_ARM_REG_R5
#define REG_LOCAL_3 ASM_ARM_REG_R6
#define REG_LOCAL_NUM (3)
#define ASM_T asm_arm_t
#define ASM_END_PASS asm_arm_end_pass
#define ASM_ENTRY asm_arm_entry
#define ASM_EXIT asm_arm_exit
#define ASM_JUMP asm_arm_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_NE, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_arm_cmp_reg_reg(as, reg1, reg2); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_arm_bl_ind(as, ptr, idx, ASM_ARM_REG_R3)
#define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_arm_mov_local_reg(as, (local_num), (reg))
#define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm))
#define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm))
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_arm_mov_reg_i32(as, (reg_temp), (imm)); \
asm_arm_mov_local_reg(as, (local_num), (reg_temp)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_arm_mov_reg_local(as, (reg), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_arm_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_arm_mov_reg_local_addr(as, (reg), (local_num))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_arm_lsl_reg_reg((as), (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_arm_asr_reg_reg((as), (reg_dest), (reg_shift))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_arm_orr_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_arm_eor_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_arm_and_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_arm_add_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_arm_sub_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_arm_mul_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_arm_ldr_reg_reg((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_arm_ldr_reg_reg((as), (reg_dest), (reg_base), 4 * (word_offset))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_arm_ldrb_reg_reg((as), (reg_dest), (reg_base))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_arm_ldrh_reg_reg((as), (reg_dest), (reg_base))
#define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_arm_ldr_reg_reg((as), (reg_dest), (reg_base), 0)
#define ASM_STORE_REG_REG(as, reg_value, reg_base) asm_arm_str_reg_reg((as), (reg_value), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_arm_str_reg_reg((as), (reg_dest), (reg_base), 4 * (word_offset))
#define ASM_STORE8_REG_REG(as, reg_value, reg_base) asm_arm_strb_reg_reg((as), (reg_value), (reg_base))
#define ASM_STORE16_REG_REG(as, reg_value, reg_base) asm_arm_strh_reg_reg((as), (reg_value), (reg_base))
#define ASM_STORE32_REG_REG(as, reg_value, reg_base) asm_arm_str_reg_reg((as), (reg_value), (reg_base), 0)
#endif // GENERIC_ASM_API
#endif // __MICROPY_INCLUDED_PY_ASMARM_H__

102
py/asmbase.c Normal file
View File

@ -0,0 +1,102 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <assert.h>
#include <string.h>
#include "py/obj.h"
#include "py/misc.h"
#include "py/asmbase.h"
#if MICROPY_EMIT_NATIVE || MICROPY_EMIT_INLINE_ASM
void mp_asm_base_init(mp_asm_base_t *as, size_t max_num_labels) {
as->max_num_labels = max_num_labels;
as->label_offsets = m_new(size_t, max_num_labels);
}
void mp_asm_base_deinit(mp_asm_base_t *as, bool free_code) {
if (free_code) {
MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
}
m_del(size_t, as->label_offsets, as->max_num_labels);
}
void mp_asm_base_start_pass(mp_asm_base_t *as, int pass) {
if (pass == MP_ASM_PASS_COMPUTE) {
// reset all labels
memset(as->label_offsets, -1, as->max_num_labels * sizeof(size_t));
} else if (pass == MP_ASM_PASS_EMIT) {
// allocating executable RAM is platform specific
MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
assert(as->code_base != NULL);
}
as->pass = pass;
as->code_offset = 0;
}
// all functions must go through this one to emit bytes
// if as->pass < MP_ASM_PASS_EMIT, then this function just counts the number
// of bytes needed and returns NULL, and callers should not store any data
uint8_t *mp_asm_base_get_cur_to_write_bytes(mp_asm_base_t *as, size_t num_bytes_to_write) {
uint8_t *c = NULL;
if (as->pass == MP_ASM_PASS_EMIT) {
assert(as->code_offset + num_bytes_to_write <= as->code_size);
c = as->code_base + as->code_offset;
}
as->code_offset += num_bytes_to_write;
return c;
}
void mp_asm_base_label_assign(mp_asm_base_t *as, size_t label) {
assert(label < as->max_num_labels);
if (as->pass < MP_ASM_PASS_EMIT) {
// assign label offset
assert(as->label_offsets[label] == (size_t)-1);
as->label_offsets[label] = as->code_offset;
} else {
// ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
assert(as->label_offsets[label] == as->code_offset);
}
}
// align must be a multiple of 2
void mp_asm_base_align(mp_asm_base_t* as, unsigned int align) {
as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
}
// this function assumes a little endian machine
void mp_asm_base_data(mp_asm_base_t* as, unsigned int bytesize, uintptr_t val) {
uint8_t *c = mp_asm_base_get_cur_to_write_bytes(as, bytesize);
if (c != NULL) {
for (unsigned int i = 0; i < bytesize; i++) {
*c++ = val;
val >>= 8;
}
}
}
#endif // MICROPY_EMIT_NATIVE || MICROPY_EMIT_INLINE_ASM

69
py/asmbase.h Normal file
View File

@ -0,0 +1,69 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_PY_ASMBASE_H
#define MICROPY_INCLUDED_PY_ASMBASE_H
#include <stdint.h>
#include <stdbool.h>
#define MP_ASM_PASS_COMPUTE (1)
#define MP_ASM_PASS_EMIT (2)
typedef struct _mp_asm_base_t {
int pass;
size_t code_offset;
size_t code_size;
uint8_t *code_base;
size_t max_num_labels;
size_t *label_offsets;
} mp_asm_base_t;
void mp_asm_base_init(mp_asm_base_t *as, size_t max_num_labels);
void mp_asm_base_deinit(mp_asm_base_t *as, bool free_code);
void mp_asm_base_start_pass(mp_asm_base_t *as, int pass);
uint8_t *mp_asm_base_get_cur_to_write_bytes(mp_asm_base_t *as, size_t num_bytes_to_write);
void mp_asm_base_label_assign(mp_asm_base_t *as, size_t label);
void mp_asm_base_align(mp_asm_base_t* as, unsigned int align);
void mp_asm_base_data(mp_asm_base_t* as, unsigned int bytesize, uintptr_t val);
static inline size_t mp_asm_base_get_code_pos(mp_asm_base_t *as) {
return as->code_offset;
}
static inline size_t mp_asm_base_get_code_size(mp_asm_base_t *as) {
return as->code_size;
}
static inline void *mp_asm_base_get_code(mp_asm_base_t *as) {
#if defined(MP_PLAT_COMMIT_EXEC)
return MP_PLAT_COMMIT_EXEC(as->code_base, as->code_size);
#else
return as->code_base;
#endif
}
#endif // MICROPY_INCLUDED_PY_ASMBASE_H

View File

@ -42,49 +42,8 @@
#define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800)
#define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000)
struct _asm_thumb_t {
mp_uint_t pass;
mp_uint_t code_offset;
mp_uint_t code_size;
byte *code_base;
byte dummy_data[4];
mp_uint_t max_num_labels;
mp_uint_t *label_offsets;
mp_uint_t push_reglist;
mp_uint_t stack_adjust;
};
asm_thumb_t *asm_thumb_new(uint max_num_labels) {
asm_thumb_t *as;
as = m_new0(asm_thumb_t, 1);
as->max_num_labels = max_num_labels;
as->label_offsets = m_new(mp_uint_t, max_num_labels);
return as;
}
void asm_thumb_free(asm_thumb_t *as, bool free_code) {
if (free_code) {
MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
}
m_del(mp_uint_t, as->label_offsets, as->max_num_labels);
m_del_obj(asm_thumb_t, as);
}
void asm_thumb_start_pass(asm_thumb_t *as, uint pass) {
if (pass == ASM_THUMB_PASS_COMPUTE) {
memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t));
} else if (pass == ASM_THUMB_PASS_EMIT) {
MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
if (as->code_base == NULL) {
assert(0);
}
//printf("code_size: %u\n", as->code_size);
}
as->pass = pass;
as->code_offset = 0;
static inline byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int n) {
return mp_asm_base_get_cur_to_write_bytes(&as->base, n);
}
void asm_thumb_end_pass(asm_thumb_t *as) {
@ -92,42 +51,15 @@ void asm_thumb_end_pass(asm_thumb_t *as) {
// could check labels are resolved...
#if defined(MCU_SERIES_F7)
if (as->pass == ASM_THUMB_PASS_EMIT) {
if (as->base.pass == MP_ASM_PASS_EMIT) {
// flush D-cache, so the code emited is stored in memory
SCB_CleanDCache_by_Addr((uint32_t*)as->code_base, as->code_size);
SCB_CleanDCache_by_Addr((uint32_t*)as->base.code_base, as->base.code_size);
// invalidate I-cache
SCB_InvalidateICache();
}
#endif
}
// all functions must go through this one to emit bytes
// if as->pass < ASM_THUMB_PASS_EMIT, then this function only returns a buffer of 4 bytes length
STATIC byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write);
if (as->pass < ASM_THUMB_PASS_EMIT) {
as->code_offset += num_bytes_to_write;
return as->dummy_data;
} else {
assert(as->code_offset + num_bytes_to_write <= as->code_size);
byte *c = as->code_base + as->code_offset;
as->code_offset += num_bytes_to_write;
return c;
}
}
uint asm_thumb_get_code_pos(asm_thumb_t *as) {
return as->code_offset;
}
uint asm_thumb_get_code_size(asm_thumb_t *as) {
return as->code_size;
}
void *asm_thumb_get_code(asm_thumb_t *as) {
return as->code_base;
}
/*
STATIC void asm_thumb_write_byte_1(asm_thumb_t *as, byte b1) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 1);
@ -223,55 +155,29 @@ void asm_thumb_exit(asm_thumb_t *as) {
asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist));
}
void asm_thumb_label_assign(asm_thumb_t *as, uint label) {
assert(label < as->max_num_labels);
if (as->pass < ASM_THUMB_PASS_EMIT) {
// assign label offset
assert(as->label_offsets[label] == -1);
as->label_offsets[label] = as->code_offset;
} else {
// ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
//printf("l%d: (at %d=%ld)\n", label, as->label_offsets[label], as->code_offset);
assert(as->label_offsets[label] == as->code_offset);
}
}
void asm_thumb_align(asm_thumb_t* as, uint align) {
// TODO fill unused data with NOPs?
as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
}
void asm_thumb_data(asm_thumb_t* as, uint bytesize, uint val) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, bytesize);
// only write to the buffer in the emit pass (otherwise we overflow dummy_data)
if (as->pass == ASM_THUMB_PASS_EMIT) {
// little endian
for (uint i = 0; i < bytesize; i++) {
*c++ = val;
val >>= 8;
}
}
}
STATIC mp_uint_t get_label_dest(asm_thumb_t *as, uint label) {
assert(label < as->max_num_labels);
return as->label_offsets[label];
assert(label < as->base.max_num_labels);
return as->base.label_offsets[label];
}
void asm_thumb_op16(asm_thumb_t *as, uint op) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 2);
if (c != NULL) {
// little endian
c[0] = op;
c[1] = op >> 8;
}
}
void asm_thumb_op32(asm_thumb_t *as, uint op1, uint op2) {
byte *c = asm_thumb_get_cur_to_write_bytes(as, 4);
if (c != NULL) {
// little endian, op1 then op2
c[0] = op1;
c[1] = op1 >> 8;
c[2] = op2;
c[3] = op2 >> 8;
}
}
#define OP_FORMAT_4(op, rlo_dest, rlo_src) ((op) | ((rlo_src) << 3) | (rlo_dest))
@ -309,10 +215,10 @@ void asm_thumb_mov_reg_i16(asm_thumb_t *as, uint mov_op, uint reg_dest, int i16_
bool asm_thumb_b_n_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
asm_thumb_op16(as, OP_B_N(rel));
return as->pass != ASM_THUMB_PASS_EMIT || SIGNED_FIT12(rel);
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT12(rel);
}
#define OP_BCC_N(cond, byte_offset) (0xd000 | ((cond) << 8) | (((byte_offset) >> 1) & 0x00ff))
@ -323,11 +229,11 @@ bool asm_thumb_b_n_label(asm_thumb_t *as, uint label) {
bool asm_thumb_bcc_nw_label(asm_thumb_t *as, int cond, uint label, bool wide) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (!wide) {
asm_thumb_op16(as, OP_BCC_N(cond, rel));
return as->pass != ASM_THUMB_PASS_EMIT || SIGNED_FIT9(rel);
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT9(rel);
} else {
asm_thumb_op32(as, OP_BCC_W_HI(cond, rel), OP_BCC_W_LO(rel));
return true;
@ -339,10 +245,10 @@ bool asm_thumb_bcc_nw_label(asm_thumb_t *as, int cond, uint label, bool wide) {
bool asm_thumb_bl_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
asm_thumb_op32(as, OP_BL_HI(rel), OP_BL_LO(rel));
return as->pass != ASM_THUMB_PASS_EMIT || SIGNED_FIT23(rel);
return as->base.pass != MP_ASM_PASS_EMIT || SIGNED_FIT23(rel);
}
void asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32) {
@ -367,13 +273,13 @@ void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32) {
// TODO this is very inefficient, improve it!
void asm_thumb_mov_reg_i32_aligned(asm_thumb_t *as, uint reg_dest, int i32) {
// align on machine-word + 2
if ((as->code_offset & 3) == 0) {
if ((as->base.code_offset & 3) == 0) {
asm_thumb_op16(as, ASM_THUMB_OP_NOP);
}
// jump over the i32 value (instruction prefetch adds 2 to PC)
asm_thumb_op16(as, OP_B_N(2));
// store i32 on machine-word aligned boundary
asm_thumb_data(as, 4, i32);
mp_asm_base_data(&as->base, 4, i32);
// do the actual load of the i32 value
asm_thumb_mov_reg_i32_optimised(as, reg_dest, i32);
}
@ -384,14 +290,14 @@ void asm_thumb_mov_reg_i32_aligned(asm_thumb_t *as, uint reg_dest, int i32) {
void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num, uint rlo_src) {
assert(rlo_src < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0);
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_STR_TO_SP_OFFSET(rlo_src, word_offset));
}
void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num) {
assert(rlo_dest < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0);
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset));
}
@ -400,7 +306,7 @@ void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num) {
void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num) {
assert(rlo_dest < ASM_THUMB_REG_R8);
int word_offset = local_num;
assert(as->pass < ASM_THUMB_PASS_EMIT || word_offset >= 0);
assert(as->base.pass < MP_ASM_PASS_EMIT || word_offset >= 0);
asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset));
}
@ -410,7 +316,7 @@ void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num)
void asm_thumb_b_label(asm_thumb_t *as, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (dest != (mp_uint_t)-1 && rel <= -4) {
// is a backwards jump, so we know the size of the jump on the first pass
@ -429,7 +335,7 @@ void asm_thumb_b_label(asm_thumb_t *as, uint label) {
void asm_thumb_bcc_label(asm_thumb_t *as, int cond, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
rel -= 4; // account for instruction prefetch, PC is 4 bytes ahead of this instruction
if (dest != (mp_uint_t)-1 && rel <= -4) {
// is a backwards jump, so we know the size of the jump on the first pass

View File

@ -27,9 +27,7 @@
#define __MICROPY_INCLUDED_PY_ASMTHUMB_H__
#include "py/misc.h"
#define ASM_THUMB_PASS_COMPUTE (1)
#define ASM_THUMB_PASS_EMIT (2)
#include "py/asmbase.h"
#define ASM_THUMB_REG_R0 (0)
#define ASM_THUMB_REG_R1 (1)
@ -64,24 +62,17 @@
#define ASM_THUMB_CC_GT (0xc)
#define ASM_THUMB_CC_LE (0xd)
typedef struct _asm_thumb_t asm_thumb_t;
typedef struct _asm_thumb_t {
mp_asm_base_t base;
uint32_t push_reglist;
uint32_t stack_adjust;
} asm_thumb_t;
asm_thumb_t *asm_thumb_new(uint max_num_labels);
void asm_thumb_free(asm_thumb_t *as, bool free_code);
void asm_thumb_start_pass(asm_thumb_t *as, uint pass);
void asm_thumb_end_pass(asm_thumb_t *as);
uint asm_thumb_get_code_pos(asm_thumb_t *as);
uint asm_thumb_get_code_size(asm_thumb_t *as);
void *asm_thumb_get_code(asm_thumb_t *as);
void asm_thumb_entry(asm_thumb_t *as, int num_locals);
void asm_thumb_exit(asm_thumb_t *as);
void asm_thumb_label_assign(asm_thumb_t *as, uint label);
void asm_thumb_align(asm_thumb_t* as, uint align);
void asm_thumb_data(asm_thumb_t* as, uint bytesize, uint val);
// argument order follows ARM, in general dest is first
// note there is a difference between movw and mov.w, and many others!
@ -246,4 +237,85 @@ void asm_thumb_b_label(asm_thumb_t *as, uint label); // convenience: picks narro
void asm_thumb_bcc_label(asm_thumb_t *as, int cc, uint label); // convenience: picks narrow or wide branch
void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp); // convenience
#if GENERIC_ASM_API
// The following macros provide a (mostly) arch-independent API to
// generate native code, and are used by the native emitter.
#define ASM_WORD_SIZE (4)
#define REG_RET ASM_THUMB_REG_R0
#define REG_ARG_1 ASM_THUMB_REG_R0
#define REG_ARG_2 ASM_THUMB_REG_R1
#define REG_ARG_3 ASM_THUMB_REG_R2
#define REG_ARG_4 ASM_THUMB_REG_R3
// rest of args go on stack
#define REG_TEMP0 ASM_THUMB_REG_R0
#define REG_TEMP1 ASM_THUMB_REG_R1
#define REG_TEMP2 ASM_THUMB_REG_R2
#define REG_LOCAL_1 ASM_THUMB_REG_R4
#define REG_LOCAL_2 ASM_THUMB_REG_R5
#define REG_LOCAL_3 ASM_THUMB_REG_R6
#define REG_LOCAL_NUM (3)
#define ASM_T asm_thumb_t
#define ASM_END_PASS asm_thumb_end_pass
#define ASM_ENTRY asm_thumb_entry
#define ASM_EXIT asm_thumb_exit
#define ASM_JUMP asm_thumb_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_NE, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_thumb_cmp_rlo_rlo(as, reg1, reg2); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_thumb_bl_ind(as, ptr, idx, ASM_THUMB_REG_R3)
#define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_thumb_mov_local_reg(as, (local_num), (reg))
#define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_optimised(as, (reg), (imm))
#define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_aligned(as, (reg), (imm))
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_thumb_mov_reg_i32_optimised(as, (reg_temp), (imm)); \
asm_thumb_mov_local_reg(as, (local_num), (reg_temp)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local(as, (reg), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_thumb_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local_addr(as, (reg), (local_num))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_LSL, (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ASR, (reg_dest), (reg_shift))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ORR, (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_EOR, (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_AND, (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_thumb_add_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_thumb_sub_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_MUL, (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), (word_offset))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrb_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrh_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_thumb_strb_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_thumb_strh_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#define ASM_STORE32_REG_REG(as, reg_src, reg_base) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#endif // GENERIC_ASM_API
#endif // __MICROPY_INCLUDED_PY_ASMTHUMB_H__

View File

@ -116,110 +116,47 @@
#define UNSIGNED_FIT32(x) (((x) & 0xffffffff00000000) == 0)
#define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)
struct _asm_x64_t {
uint pass;
mp_uint_t code_offset;
mp_uint_t code_size;
byte *code_base;
byte dummy_data[8];
mp_uint_t max_num_labels;
mp_uint_t *label_offsets;
int num_locals;
};
asm_x64_t *asm_x64_new(mp_uint_t max_num_labels) {
asm_x64_t *as;
as = m_new0(asm_x64_t, 1);
as->max_num_labels = max_num_labels;
as->label_offsets = m_new(mp_uint_t, max_num_labels);
return as;
}
void asm_x64_free(asm_x64_t *as, bool free_code) {
if (free_code) {
MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
}
m_del(mp_uint_t, as->label_offsets, as->max_num_labels);
m_del_obj(asm_x64_t, as);
}
void asm_x64_start_pass(asm_x64_t *as, uint pass) {
if (pass == ASM_X64_PASS_COMPUTE) {
// reset all labels
memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t));
} if (pass == ASM_X64_PASS_EMIT) {
MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
if (as->code_base == NULL) {
assert(0);
}
//printf("code_size: %u\n", as->code_size);
}
as->pass = pass;
as->code_offset = 0;
}
void asm_x64_end_pass(asm_x64_t *as) {
// could check labels are resolved...
(void)as;
}
// all functions must go through this one to emit bytes
STATIC byte *asm_x64_get_cur_to_write_bytes(asm_x64_t *as, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write);
if (as->pass < ASM_X64_PASS_EMIT) {
as->code_offset += num_bytes_to_write;
return as->dummy_data;
} else {
assert(as->code_offset + num_bytes_to_write <= as->code_size);
byte *c = as->code_base + as->code_offset;
as->code_offset += num_bytes_to_write;
return c;
}
}
mp_uint_t asm_x64_get_code_pos(asm_x64_t *as) {
return as->code_offset;
}
mp_uint_t asm_x64_get_code_size(asm_x64_t *as) {
return as->code_size;
}
void *asm_x64_get_code(asm_x64_t *as) {
return as->code_base;
static inline byte *asm_x64_get_cur_to_write_bytes(asm_x64_t *as, int n) {
return mp_asm_base_get_cur_to_write_bytes(&as->base, n);
}
STATIC void asm_x64_write_byte_1(asm_x64_t *as, byte b1) {
byte* c = asm_x64_get_cur_to_write_bytes(as, 1);
if (c != NULL) {
c[0] = b1;
}
}
STATIC void asm_x64_write_byte_2(asm_x64_t *as, byte b1, byte b2) {
byte* c = asm_x64_get_cur_to_write_bytes(as, 2);
if (c != NULL) {
c[0] = b1;
c[1] = b2;
}
}
STATIC void asm_x64_write_byte_3(asm_x64_t *as, byte b1, byte b2, byte b3) {
byte* c = asm_x64_get_cur_to_write_bytes(as, 3);
if (c != NULL) {
c[0] = b1;
c[1] = b2;
c[2] = b3;
}
}
STATIC void asm_x64_write_word32(asm_x64_t *as, int w32) {
byte* c = asm_x64_get_cur_to_write_bytes(as, 4);
if (c != NULL) {
c[0] = IMM32_L0(w32);
c[1] = IMM32_L1(w32);
c[2] = IMM32_L2(w32);
c[3] = IMM32_L3(w32);
}
}
STATIC void asm_x64_write_word64(asm_x64_t *as, int64_t w64) {
byte* c = asm_x64_get_cur_to_write_bytes(as, 8);
if (c != NULL) {
c[0] = IMM32_L0(w64);
c[1] = IMM32_L1(w64);
c[2] = IMM32_L2(w64);
@ -228,20 +165,6 @@ STATIC void asm_x64_write_word64(asm_x64_t *as, int64_t w64) {
c[5] = IMM64_L5(w64);
c[6] = IMM64_L6(w64);
c[7] = IMM64_L7(w64);
}
// align must be a multiple of 2
void asm_x64_align(asm_x64_t* as, mp_uint_t align) {
// TODO fill unused data with NOPs?
as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
}
void asm_x64_data(asm_x64_t* as, mp_uint_t bytesize, mp_uint_t val) {
byte *c = asm_x64_get_cur_to_write_bytes(as, bytesize);
// machine is little endian
for (uint i = 0; i < bytesize; i++) {
*c++ = val;
val >>= 8;
}
}
@ -440,7 +363,7 @@ void asm_x64_mov_i64_to_r64_optimised(asm_x64_t *as, int64_t src_i64, int dest_r
// src_i64 is stored as a full word in the code, and aligned to machine-word boundary
void asm_x64_mov_i64_to_r64_aligned(asm_x64_t *as, int64_t src_i64, int dest_r64) {
// mov instruction uses 2 bytes for the instruction, before the i64
while (((as->code_offset + 2) & (WORD_SIZE - 1)) != 0) {
while (((as->base.code_offset + 2) & (WORD_SIZE - 1)) != 0) {
asm_x64_nop(as);
}
asm_x64_mov_i64_to_r64(as, src_i64, dest_r64);
@ -552,27 +475,14 @@ void asm_x64_setcc_r8(asm_x64_t *as, int jcc_type, int dest_r8) {
asm_x64_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R64(0) | MODRM_RM_REG | MODRM_RM_R64(dest_r8));
}
void asm_x64_label_assign(asm_x64_t *as, mp_uint_t label) {
assert(label < as->max_num_labels);
if (as->pass < ASM_X64_PASS_EMIT) {
// assign label offset
assert(as->label_offsets[label] == (mp_uint_t)-1);
as->label_offsets[label] = as->code_offset;
} else {
// ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
//printf("l%d: (at %ld=%ld)\n", label, as->label_offsets[label], as->code_offset);
assert(as->label_offsets[label] == as->code_offset);
}
}
STATIC mp_uint_t get_label_dest(asm_x64_t *as, mp_uint_t label) {
assert(label < as->max_num_labels);
return as->label_offsets[label];
assert(label < as->base.max_num_labels);
return as->base.label_offsets[label];
}
void asm_x64_jmp_label(asm_x64_t *as, mp_uint_t label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
if (dest != (mp_uint_t)-1 && rel < 0) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 8 bit relative jump
@ -594,7 +504,7 @@ void asm_x64_jmp_label(asm_x64_t *as, mp_uint_t label) {
void asm_x64_jcc_label(asm_x64_t *as, int jcc_type, mp_uint_t label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
if (dest != (mp_uint_t)-1 && rel < 0) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 8 bit relative jump

View File

@ -28,6 +28,7 @@
#include "py/mpconfig.h"
#include "py/misc.h"
#include "py/asmbase.h"
// AMD64 calling convention is:
// - args pass in: RDI, RSI, RDX, RCX, R08, R09
@ -41,9 +42,6 @@
// NOTE: this is a change from the old convention used in this file and
// some functions still use the old (reverse) convention.
#define ASM_X64_PASS_COMPUTE (1)
#define ASM_X64_PASS_EMIT (2)
#define ASM_X64_REG_RAX (0)
#define ASM_X64_REG_RCX (1)
#define ASM_X64_REG_RDX (2)
@ -72,18 +70,14 @@
#define ASM_X64_CC_JLE (0xe) // less or equal, signed
#define ASM_X64_CC_JG (0xf) // greater, signed
typedef struct _asm_x64_t asm_x64_t;
typedef struct _asm_x64_t {
mp_asm_base_t base;
int num_locals;
} asm_x64_t;
asm_x64_t* asm_x64_new(mp_uint_t max_num_labels);
void asm_x64_free(asm_x64_t* as, bool free_code);
void asm_x64_start_pass(asm_x64_t *as, uint pass);
void asm_x64_end_pass(asm_x64_t *as);
mp_uint_t asm_x64_get_code_pos(asm_x64_t *as);
mp_uint_t asm_x64_get_code_size(asm_x64_t* as);
void* asm_x64_get_code(asm_x64_t* as);
void asm_x64_align(asm_x64_t *as, mp_uint_t align);
void asm_x64_data(asm_x64_t *as, mp_uint_t bytesize, mp_uint_t val);
static inline void asm_x64_end_pass(asm_x64_t *as) {
(void)as;
}
void asm_x64_nop(asm_x64_t* as);
void asm_x64_push_r64(asm_x64_t* as, int src_r64);
@ -111,7 +105,6 @@ void asm_x64_mul_r64_r64(asm_x64_t* as, int dest_r64, int src_r64);
void asm_x64_cmp_r64_with_r64(asm_x64_t* as, int src_r64_a, int src_r64_b);
void asm_x64_test_r8_with_r8(asm_x64_t* as, int src_r64_a, int src_r64_b);
void asm_x64_setcc_r8(asm_x64_t* as, int jcc_type, int dest_r8);
void asm_x64_label_assign(asm_x64_t* as, mp_uint_t label);
void asm_x64_jmp_label(asm_x64_t* as, mp_uint_t label);
void asm_x64_jcc_label(asm_x64_t* as, int jcc_type, mp_uint_t label);
void asm_x64_entry(asm_x64_t* as, int num_locals);
@ -121,4 +114,87 @@ void asm_x64_mov_r64_to_local(asm_x64_t* as, int src_r64, int dest_local_num);
void asm_x64_mov_local_addr_to_r64(asm_x64_t* as, int local_num, int dest_r64);
void asm_x64_call_ind(asm_x64_t* as, void* ptr, int temp_r32);
#if GENERIC_ASM_API
// The following macros provide a (mostly) arch-independent API to
// generate native code, and are used by the native emitter.
#define ASM_WORD_SIZE (8)
#define REG_RET ASM_X64_REG_RAX
#define REG_ARG_1 ASM_X64_REG_RDI
#define REG_ARG_2 ASM_X64_REG_RSI
#define REG_ARG_3 ASM_X64_REG_RDX
#define REG_ARG_4 ASM_X64_REG_RCX
#define REG_ARG_5 ASM_X64_REG_R08
// caller-save
#define REG_TEMP0 ASM_X64_REG_RAX
#define REG_TEMP1 ASM_X64_REG_RDI
#define REG_TEMP2 ASM_X64_REG_RSI
// callee-save
#define REG_LOCAL_1 ASM_X64_REG_RBX
#define REG_LOCAL_2 ASM_X64_REG_R12
#define REG_LOCAL_3 ASM_X64_REG_R13
#define REG_LOCAL_NUM (3)
#define ASM_T asm_x64_t
#define ASM_END_PASS asm_x64_end_pass
#define ASM_ENTRY asm_x64_entry
#define ASM_EXIT asm_x64_exit
#define ASM_JUMP asm_x64_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_x64_test_r8_with_r8(as, reg, reg); \
asm_x64_jcc_label(as, ASM_X64_CC_JZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_x64_test_r8_with_r8(as, reg, reg); \
asm_x64_jcc_label(as, ASM_X64_CC_JNZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_x64_cmp_r64_with_r64(as, reg1, reg2); \
asm_x64_jcc_label(as, ASM_X64_CC_JE, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x64_call_ind(as, ptr, ASM_X64_REG_RAX)
#define ASM_MOV_REG_TO_LOCAL asm_x64_mov_r64_to_local
#define ASM_MOV_IMM_TO_REG asm_x64_mov_i64_to_r64_optimised
#define ASM_MOV_ALIGNED_IMM_TO_REG asm_x64_mov_i64_to_r64_aligned
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_x64_mov_i64_to_r64_optimised(as, (imm), (reg_temp)); \
asm_x64_mov_r64_to_local(as, (reg_temp), (local_num)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG asm_x64_mov_local_to_r64
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x64_mov_r64_r64((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG asm_x64_mov_local_addr_to_r64
#define ASM_LSL_REG(as, reg) asm_x64_shl_r64_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x64_sar_r64_cl((as), (reg))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x64_or_r64_r64((as), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x64_xor_r64_r64((as), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x64_and_r64_r64((as), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x64_add_r64_r64((as), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x64_sub_r64_r64((as), (reg_dest), (reg_src))
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_x64_mul_r64_r64((as), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem64_to_r64((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_x64_mov_mem64_to_r64((as), (reg_base), 8 * (word_offset), (reg_dest))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem8_to_r64zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem16_to_r64zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem32_to_r64zx((as), (reg_base), 0, (reg_dest))
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x64_mov_r64_to_mem64((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_x64_mov_r64_to_mem64((as), (reg_src), (reg_base), 8 * (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x64_mov_r8_to_mem8((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x64_mov_r16_to_mem16((as), (reg_src), (reg_base), 0)
#define ASM_STORE32_REG_REG(as, reg_src, reg_base) asm_x64_mov_r32_to_mem32((as), (reg_src), (reg_base), 0)
#endif // GENERIC_ASM_API
#endif // __MICROPY_INCLUDED_PY_ASMX64_H__

View File

@ -100,118 +100,37 @@
#define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)
struct _asm_x86_t {
uint pass;
mp_uint_t code_offset;
mp_uint_t code_size;
byte *code_base;
byte dummy_data[8];
mp_uint_t max_num_labels;
mp_uint_t *label_offsets;
int num_locals;
};
asm_x86_t *asm_x86_new(mp_uint_t max_num_labels) {
asm_x86_t *as;
as = m_new0(asm_x86_t, 1);
as->max_num_labels = max_num_labels;
as->label_offsets = m_new(mp_uint_t, max_num_labels);
return as;
}
void asm_x86_free(asm_x86_t *as, bool free_code) {
if (free_code) {
MP_PLAT_FREE_EXEC(as->code_base, as->code_size);
}
m_del(mp_uint_t, as->label_offsets, as->max_num_labels);
m_del_obj(asm_x86_t, as);
}
void asm_x86_start_pass(asm_x86_t *as, mp_uint_t pass) {
if (pass == ASM_X86_PASS_COMPUTE) {
// reset all labels
memset(as->label_offsets, -1, as->max_num_labels * sizeof(mp_uint_t));
} else if (pass == ASM_X86_PASS_EMIT) {
MP_PLAT_ALLOC_EXEC(as->code_offset, (void**)&as->code_base, &as->code_size);
if (as->code_base == NULL) {
assert(0);
}
}
as->pass = pass;
as->code_offset = 0;
}
void asm_x86_end_pass(asm_x86_t *as) {
(void)as;
}
// all functions must go through this one to emit bytes
STATIC byte *asm_x86_get_cur_to_write_bytes(asm_x86_t *as, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write);
if (as->pass < ASM_X86_PASS_EMIT) {
as->code_offset += num_bytes_to_write;
return as->dummy_data;
} else {
assert(as->code_offset + num_bytes_to_write <= as->code_size);
byte *c = as->code_base + as->code_offset;
as->code_offset += num_bytes_to_write;
return c;
}
}
mp_uint_t asm_x86_get_code_pos(asm_x86_t *as) {
return as->code_offset;
}
mp_uint_t asm_x86_get_code_size(asm_x86_t *as) {
return as->code_size;
}
void *asm_x86_get_code(asm_x86_t *as) {
return as->code_base;
}
STATIC void asm_x86_write_byte_1(asm_x86_t *as, byte b1) {
byte* c = asm_x86_get_cur_to_write_bytes(as, 1);
byte* c = mp_asm_base_get_cur_to_write_bytes(&as->base, 1);
if (c != NULL) {
c[0] = b1;
}
}
STATIC void asm_x86_write_byte_2(asm_x86_t *as, byte b1, byte b2) {
byte* c = asm_x86_get_cur_to_write_bytes(as, 2);
byte* c = mp_asm_base_get_cur_to_write_bytes(&as->base, 2);
if (c != NULL) {
c[0] = b1;
c[1] = b2;
}
}
STATIC void asm_x86_write_byte_3(asm_x86_t *as, byte b1, byte b2, byte b3) {
byte* c = asm_x86_get_cur_to_write_bytes(as, 3);
byte* c = mp_asm_base_get_cur_to_write_bytes(&as->base, 3);
if (c != NULL) {
c[0] = b1;
c[1] = b2;
c[2] = b3;
}
}
STATIC void asm_x86_write_word32(asm_x86_t *as, int w32) {
byte* c = asm_x86_get_cur_to_write_bytes(as, 4);
byte* c = mp_asm_base_get_cur_to_write_bytes(&as->base, 4);
if (c != NULL) {
c[0] = IMM32_L0(w32);
c[1] = IMM32_L1(w32);
c[2] = IMM32_L2(w32);
c[3] = IMM32_L3(w32);
}
// align must be a multiple of 2
void asm_x86_align(asm_x86_t* as, mp_uint_t align) {
// TODO fill unused data with NOPs?
as->code_offset = (as->code_offset + align - 1) & (~(align - 1));
}
void asm_x86_data(asm_x86_t* as, mp_uint_t bytesize, mp_uint_t val) {
byte *c = asm_x86_get_cur_to_write_bytes(as, bytesize);
// machine is little endian
for (uint i = 0; i < bytesize; i++) {
*c++ = val;
val >>= 8;
}
}
@ -313,7 +232,7 @@ void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32) {
// src_i32 is stored as a full word in the code, and aligned to machine-word boundary
void asm_x86_mov_i32_to_r32_aligned(asm_x86_t *as, int32_t src_i32, int dest_r32) {
// mov instruction uses 1 byte for the instruction, before the i32
while (((as->code_offset + 1) & (WORD_SIZE - 1)) != 0) {
while (((as->base.code_offset + 1) & (WORD_SIZE - 1)) != 0) {
asm_x86_nop(as);
}
asm_x86_mov_i32_to_r32(as, src_i32, dest_r32);
@ -419,27 +338,14 @@ void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8) {
asm_x86_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r8));
}
void asm_x86_label_assign(asm_x86_t *as, mp_uint_t label) {
assert(label < as->max_num_labels);
if (as->pass < ASM_X86_PASS_EMIT) {
// assign label offset
assert(as->label_offsets[label] == (mp_uint_t)-1);
as->label_offsets[label] = as->code_offset;
} else {
// ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT
//printf("l%d: (at %d=%ld)\n", label, as->label_offsets[label], as->code_offset);
assert(as->label_offsets[label] == as->code_offset);
}
}
STATIC mp_uint_t get_label_dest(asm_x86_t *as, mp_uint_t label) {
assert(label < as->max_num_labels);
return as->label_offsets[label];
assert(label < as->base.max_num_labels);
return as->base.label_offsets[label];
}
void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
if (dest != (mp_uint_t)-1 && rel < 0) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 8 bit relative jump
@ -461,7 +367,7 @@ void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label) {
void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->code_offset;
mp_int_t rel = dest - as->base.code_offset;
if (dest != (mp_uint_t)-1 && rel < 0) {
// is a backwards jump, so we know the size of the jump on the first pass
// calculate rel assuming 8 bit relative jump
@ -593,7 +499,7 @@ void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32)
// this reduces code size by 2 bytes per call, but doesn't seem to speed it up at all
/*
asm_x86_write_byte_1(as, OPCODE_CALL_REL32);
asm_x86_write_word32(as, ptr - (void*)(as->code_base + as->code_offset + 4));
asm_x86_write_word32(as, ptr - (void*)(as->code_base + as->base.code_offset + 4));
*/
// the caller must clean up the stack

View File

@ -28,6 +28,7 @@
#include "py/mpconfig.h"
#include "py/misc.h"
#include "py/asmbase.h"
// x86 cdecl calling convention is:
// - args passed on the stack in reverse order
@ -42,9 +43,6 @@
// NOTE: this is a change from the old convention used in this file and
// some functions still use the old (reverse) convention.
#define ASM_X86_PASS_COMPUTE (1)
#define ASM_X86_PASS_EMIT (2)
#define ASM_X86_REG_EAX (0)
#define ASM_X86_REG_ECX (1)
#define ASM_X86_REG_EDX (2)
@ -75,18 +73,14 @@
#define ASM_X86_CC_JLE (0xe) // less or equal, signed
#define ASM_X86_CC_JG (0xf) // greater, signed
typedef struct _asm_x86_t asm_x86_t;
typedef struct _asm_x86_t {
mp_asm_base_t base;
int num_locals;
} asm_x86_t;
asm_x86_t* asm_x86_new(mp_uint_t max_num_labels);
void asm_x86_free(asm_x86_t* as, bool free_code);
void asm_x86_start_pass(asm_x86_t *as, mp_uint_t pass);
void asm_x86_end_pass(asm_x86_t *as);
mp_uint_t asm_x86_get_code_pos(asm_x86_t *as);
mp_uint_t asm_x86_get_code_size(asm_x86_t* as);
void* asm_x86_get_code(asm_x86_t* as);
void asm_x86_align(asm_x86_t *as, mp_uint_t align);
void asm_x86_data(asm_x86_t *as, mp_uint_t bytesize, mp_uint_t val);
static inline void asm_x86_end_pass(asm_x86_t *as) {
(void)as;
}
void asm_x86_mov_r32_r32(asm_x86_t* as, int dest_r32, int src_r32);
void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32);
@ -108,7 +102,6 @@ void asm_x86_mul_r32_r32(asm_x86_t* as, int dest_r32, int src_r32);
void asm_x86_cmp_r32_with_r32(asm_x86_t* as, int src_r32_a, int src_r32_b);
void asm_x86_test_r8_with_r8(asm_x86_t* as, int src_r32_a, int src_r32_b);
void asm_x86_setcc_r8(asm_x86_t* as, mp_uint_t jcc_type, int dest_r8);
void asm_x86_label_assign(asm_x86_t* as, mp_uint_t label);
void asm_x86_jmp_label(asm_x86_t* as, mp_uint_t label);
void asm_x86_jcc_label(asm_x86_t* as, mp_uint_t jcc_type, mp_uint_t label);
void asm_x86_entry(asm_x86_t* as, mp_uint_t num_locals);
@ -119,4 +112,87 @@ void asm_x86_mov_r32_to_local(asm_x86_t* as, int src_r32, int dest_local_num);
void asm_x86_mov_local_addr_to_r32(asm_x86_t* as, int local_num, int dest_r32);
void asm_x86_call_ind(asm_x86_t* as, void* ptr, mp_uint_t n_args, int temp_r32);
#if GENERIC_ASM_API
// The following macros provide a (mostly) arch-independent API to
// generate native code, and are used by the native emitter.
#define ASM_WORD_SIZE (4)
#define REG_RET ASM_X86_REG_EAX
#define REG_ARG_1 ASM_X86_REG_ARG_1
#define REG_ARG_2 ASM_X86_REG_ARG_2
#define REG_ARG_3 ASM_X86_REG_ARG_3
#define REG_ARG_4 ASM_X86_REG_ARG_4
#define REG_ARG_5 ASM_X86_REG_ARG_5
// caller-save, so can be used as temporaries
#define REG_TEMP0 ASM_X86_REG_EAX
#define REG_TEMP1 ASM_X86_REG_ECX
#define REG_TEMP2 ASM_X86_REG_EDX
// callee-save, so can be used as locals
#define REG_LOCAL_1 ASM_X86_REG_EBX
#define REG_LOCAL_2 ASM_X86_REG_ESI
#define REG_LOCAL_3 ASM_X86_REG_EDI
#define REG_LOCAL_NUM (3)
#define ASM_T asm_x86_t
#define ASM_END_PASS asm_x86_end_pass
#define ASM_ENTRY asm_x86_entry
#define ASM_EXIT asm_x86_exit
#define ASM_JUMP asm_x86_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_x86_test_r8_with_r8(as, reg, reg); \
asm_x86_jcc_label(as, ASM_X86_CC_JZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_x86_test_r8_with_r8(as, reg, reg); \
asm_x86_jcc_label(as, ASM_X86_CC_JNZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_x86_cmp_r32_with_r32(as, reg1, reg2); \
asm_x86_jcc_label(as, ASM_X86_CC_JE, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x86_call_ind(as, ptr, mp_f_n_args[idx], ASM_X86_REG_EAX)
#define ASM_MOV_REG_TO_LOCAL asm_x86_mov_r32_to_local
#define ASM_MOV_IMM_TO_REG asm_x86_mov_i32_to_r32
#define ASM_MOV_ALIGNED_IMM_TO_REG asm_x86_mov_i32_to_r32_aligned
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_x86_mov_i32_to_r32(as, (imm), (reg_temp)); \
asm_x86_mov_r32_to_local(as, (reg_temp), (local_num)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG asm_x86_mov_local_to_r32
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x86_mov_r32_r32((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG asm_x86_mov_local_addr_to_r32
#define ASM_LSL_REG(as, reg) asm_x86_shl_r32_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x86_sar_r32_cl((as), (reg))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x86_or_r32_r32((as), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x86_xor_r32_r32((as), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x86_and_r32_r32((as), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x86_add_r32_r32((as), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x86_sub_r32_r32((as), (reg_dest), (reg_src))
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_x86_mul_r32_r32((as), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem32_to_r32((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_x86_mov_mem32_to_r32((as), (reg_base), 4 * (word_offset), (reg_dest))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem8_to_r32zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem16_to_r32zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem32_to_r32((as), (reg_base), 0, (reg_dest))
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 4 * (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x86_mov_r8_to_mem8((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x86_mov_r16_to_mem16((as), (reg_src), (reg_base), 0)
#define ASM_STORE32_REG_REG(as, reg_src, reg_base) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 0)
#endif // GENERIC_ASM_API
#endif // __MICROPY_INCLUDED_PY_ASMX86_H__

Some files were not shown because too many files have changed in this diff Show More