Merge pull request #663 from tannewt/dma3

Use DMA for long SPI transactions including those to the SPI Flash.
This commit is contained in:
Dan Halbert 2018-03-09 21:23:10 -05:00 committed by GitHub
commit dde5ade524
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 411 additions and 216 deletions

View File

@ -217,9 +217,6 @@ endif
SRC_ASF := $(addprefix asf4/$(CHIP_FAMILY)/, $(SRC_ASF)) SRC_ASF := $(addprefix asf4/$(CHIP_FAMILY)/, $(SRC_ASF))
# Skip this source for now.
# shared_dma.c \
SRC_C = \ SRC_C = \
background.c \ background.c \
fatfs_port.c \ fatfs_port.c \
@ -229,6 +226,7 @@ SRC_C = \
$(CHIP_FAMILY)_peripherals.c \ $(CHIP_FAMILY)_peripherals.c \
peripherals.c \ peripherals.c \
$(CHIP_FAMILY)_pins.c \ $(CHIP_FAMILY)_pins.c \
shared_dma.c \
tick.c \ tick.c \
timers.c \ timers.c \
usb.c \ usb.c \

View File

@ -5,7 +5,7 @@
#define MICROPY_HW_APA102_MOSI (&pin_PA01) #define MICROPY_HW_APA102_MOSI (&pin_PA01)
#define MICROPY_HW_APA102_SCK (&pin_PA00) #define MICROPY_HW_APA102_SCK (&pin_PA00)
// Salae reads 12mhz which is the limit even though we set it to the safer 8mhz. // Saleae reads 12mhz which is the limit even though we set it to the safer 8mhz.
#define SPI_FLASH_BAUDRATE (8000000) #define SPI_FLASH_BAUDRATE (8000000)
#define SPI_FLASH_MOSI_PIN PIN_PB22 #define SPI_FLASH_MOSI_PIN PIN_PB22

View File

@ -11,7 +11,7 @@
#define MICROPY_HW_NEOPIXEL (&pin_PB17) #define MICROPY_HW_NEOPIXEL (&pin_PB17)
#define SPI_FLASH_BAUDRATE (8000000) #define SPI_FLASH_BAUDRATE (60000000)
// Rev B: single channel SPI // Rev B: single channel SPI
// Rev C will be QSPI // Rev C will be QSPI

View File

@ -38,7 +38,7 @@
#include "peripherals.h" #include "peripherals.h"
#include "pins.h" #include "pins.h"
//#include "shared_dma.h" #include "shared_dma.h"
void common_hal_busio_spi_construct(busio_spi_obj_t *self, void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
@ -235,14 +235,14 @@ bool common_hal_busio_spi_write(busio_spi_obj_t *self,
return true; return true;
} }
int32_t status; int32_t status;
// if (len >= 16) { if (len >= 16) {
// status = shared_dma_write(self->spi_desc.dev.prvt, data, len); status = sercom_dma_write(self->spi_desc.dev.prvt, data, len);
// } else { } else {
struct io_descriptor *spi_io; struct io_descriptor *spi_io;
spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
status = spi_io->write(spi_io, data, len); status = spi_io->write(spi_io, data, len);
// } }
return status >= 0; // Status is number of chars read or an error code < 0. return status >= 0; // Status is number of chars read or an error code < 0.
} }
bool common_hal_busio_spi_read(busio_spi_obj_t *self, bool common_hal_busio_spi_read(busio_spi_obj_t *self,
@ -251,17 +251,17 @@ bool common_hal_busio_spi_read(busio_spi_obj_t *self,
return true; return true;
} }
int32_t status; int32_t status;
// if (len >= 16) { if (len >= 16) {
// status = shared_dma_read(self->spi_desc.dev.prvt, data, len, write_value); status = sercom_dma_read(self->spi_desc.dev.prvt, data, len, write_value);
// } else { } else {
self->spi_desc.dev.dummy_byte = write_value; self->spi_desc.dev.dummy_byte = write_value;
struct io_descriptor *spi_io; struct io_descriptor *spi_io;
spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io); spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
status = spi_io->read(spi_io, data, len); status = spi_io->read(spi_io, data, len);
// } }
return status >= 0; // Status is number of chars read or an error code < 0. return status >= 0; // Status is number of chars read or an error code < 0.
} }
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
@ -269,16 +269,16 @@ bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uin
return true; return true;
} }
int32_t status; int32_t status;
// if (len >= 16) { if (len >= 16) {
// status = shared_dma_transfer(self->spi_master_instance.hw, data_out, data_in, len, 0 /*ignored*/); status = sercom_dma_transfer(self->spi_desc.dev.prvt, data_out, data_in, len);
// } else { } else {
struct spi_xfer xfer; struct spi_xfer xfer;
xfer.txbuf = data_out; xfer.txbuf = data_out;
xfer.rxbuf = data_in; xfer.rxbuf = data_in;
xfer.size = len; xfer.size = len;
status = spi_m_sync_transfer(&self->spi_desc, &xfer); status = spi_m_sync_transfer(&self->spi_desc, &xfer);
// } }
return status >= 0; // Status is number of chars read or an error code < 0. return status >= 0; // Status is number of chars read or an error code < 0.
} }
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {

View File

@ -199,7 +199,6 @@ void external_flash_init(void) {
spi_flash_init(); spi_flash_init();
for (uint8_t i = 0; i < num_possible_devices; i++) { for (uint8_t i = 0; i < num_possible_devices; i++) {
const external_flash_device* possible_device = &possible_devices[i]; const external_flash_device* possible_device = &possible_devices[i];
uint8_t jedec_id_response[3] = {0x00, 0x00, 0x00}; uint8_t jedec_id_response[3] = {0x00, 0x00, 0x00};
@ -213,7 +212,6 @@ void external_flash_init(void) {
} }
if (flash_device == NULL) { if (flash_device == NULL) {
asm("bkpt");
return; return;
} }

View File

@ -30,6 +30,7 @@
#include <string.h> #include <string.h>
#include "external_flash/common_commands.h" #include "external_flash/common_commands.h"
#include "shared_dma.h"
#include "atmel_start_pins.h" #include "atmel_start_pins.h"
#include "hal_gpio.h" #include "hal_gpio.h"
@ -125,6 +126,8 @@ bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t length) {
QSPI_INSTRFRAME_DATAEN; QSPI_INSTRFRAME_DATAEN;
memcpy(((uint8_t *) QSPI_AHB) + address, data, length); memcpy(((uint8_t *) QSPI_AHB) + address, data, length);
// TODO(tannewt): Fix DMA and enable it.
// qspi_dma_write(address, data, length);
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
@ -148,6 +151,8 @@ bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t length) {
QSPI_INSTRFRAME_DUMMYLEN(8); QSPI_INSTRFRAME_DUMMYLEN(8);
memcpy(data, ((uint8_t *) QSPI_AHB) + address, length); memcpy(data, ((uint8_t *) QSPI_AHB) + address, length);
// TODO(tannewt): Fix DMA and enable it.
// qspi_dma_read(address, data, length);
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
@ -167,12 +172,15 @@ void spi_flash_init(void) {
QSPI->CTRLA.reg = QSPI_CTRLA_SWRST; QSPI->CTRLA.reg = QSPI_CTRLA_SWRST;
// We don't need to wait because we're running as fast as the CPU. // We don't need to wait because we're running as fast as the CPU.
QSPI->BAUD.bit.BAUD = 1; // Slow, good for debugging with Saleae
// QSPI->BAUD.bit.BAUD = 32;
// Super fast
QSPI->BAUD.bit.BAUD = 2;
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY | QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY |
QSPI_CTRLB_DATALEN_8BITS | QSPI_CTRLB_DATALEN_8BITS |
QSPI_CTRLB_CSMODE_LASTXFER; QSPI_CTRLB_CSMODE_LASTXFER;
QSPI->CTRLA.bit.ENABLE = 1; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE;
// The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it. // The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it.
uint32_t pins[6] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11}; uint32_t pins[6] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11};

View File

@ -30,6 +30,7 @@
#include "external_flash/common_commands.h" #include "external_flash/common_commands.h"
#include "peripherals.h" #include "peripherals.h"
#include "shared_dma.h"
#include "hal_gpio.h" #include "hal_gpio.h"
#include "hal_spi_m_sync.h" #include "hal_spi_m_sync.h"
@ -91,14 +92,28 @@ bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t data_length)
uint8_t request[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00}; uint8_t request[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
// Write the SPI flash write address into the bytes following the command byte. // Write the SPI flash write address into the bytes following the command byte.
address_to_bytes(address, request + 1); address_to_bytes(address, request + 1);
return transfer(request, 4, data, NULL, data_length); struct spi_xfer xfer = { request, NULL, 4 };
flash_enable();
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &xfer);
if (status >= 0) {
status = sercom_dma_write(spi_flash_desc.dev.prvt, data, data_length);
}
flash_disable();
return status >= 0;
} }
bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t data_length) { bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t data_length) {
uint8_t request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00}; uint8_t request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
// Write the SPI flash write address into the bytes following the command byte. // Write the SPI flash write address into the bytes following the command byte.
address_to_bytes(address, request + 1); address_to_bytes(address, request + 1);
return transfer(request, 4, NULL, data, data_length); struct spi_xfer xfer = { request, NULL, 4 };
flash_enable();
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &xfer);
if (status >= 0) {
status = sercom_dma_read(spi_flash_desc.dev.prvt, data, data_length, 0xff);
}
flash_disable();
return status >= 0;
} }
void spi_flash_init(void) { void spi_flash_init(void) {

View File

@ -23,245 +23,414 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <stdbool.h>
#include "shared_dma.h" #include "shared_dma.h"
#include <string.h>
#include "py/gc.h" #include "py/gc.h"
#include "py/mpstate.h" #include "py/mpstate.h"
#undef ENABLE #include "hal/utils/include/utils.h"
// We allocate two DMA resources for the entire lifecycle of the board (not the #include "shared-bindings/microcontroller/__init__.h"
// We allocate three DMA resources for the entire lifecycle of the board (not the
// vm) because the general_dma resource will be shared between the REPL and SPI // vm) because the general_dma resource will be shared between the REPL and SPI
// flash. Both uses must block each other in order to prevent conflict. // flash. Both uses must block each other in order to prevent conflict.
struct dma_resource audio_dma; COMPILER_ALIGNED(16) static DmacDescriptor dma_descriptors[3];
struct dma_resource general_dma_tx;
struct dma_resource general_dma_rx; // Don't use these directly. They are used by the DMA engine itself.
COMPILER_ALIGNED(16) static DmacDescriptor write_back_descriptors[3];
#define AUDIO_DMA_CHANNEL 0
#define SHARED_TX_CHANNEL 1
#define SHARED_RX_CHANNEL 2
#ifdef SAMD21
#define FIRST_SERCOM_RX_TRIGSRC 0x01
#define FIRST_SERCOM_TX_TRIGSRC 0x02
#endif
#ifdef SAMD51
#define FIRST_SERCOM_RX_TRIGSRC 0x04
#define FIRST_SERCOM_TX_TRIGSRC 0x05
#endif
// static void dma_configure_audio(uint8_t channel) {
// system_interrupt_enter_critical_section();
// /** Select the DMA channel and clear software trigger */
// DMAC->CHID.reg = DMAC_CHID_ID(channel);
// DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
// DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
// DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel));
// uint32_t event_output_enable = 0;
// if (output_event) {
// event_output_enable = DMAC_CHCTRLB_EVOE;
// }
// DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) |
// DMAC_CHCTRLB_TRIGSRC(trigsrc) |
// DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) |
// event_output_enable;
// // config.peripheral_trigger = DAC_DMAC_ID_EMPTY;
// // config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
// // config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
// // config.event_config.event_output_enable = true;
// system_interrupt_leave_critical_section();
// }
void init_shared_dma(void) { void init_shared_dma(void) {
struct dma_resource_config config; // Turn on the clocks
dma_get_config_defaults(&config); #ifdef SAMD51
MCLK->AHBMASK.reg |= MCLK_AHBMASK_DMAC;
#endif
// See asf4_conf/hpl_dmac_config.h for initial settings for DMA channels #ifdef SAMD21
// DMA Channel 0: audio, highest priority, PM->AHBMASK.reg |= PM_AHBMASK_DMAC;
// normal transfer on input, DAC 0 empty is trigger source, trigger on each beat, beat is one byte PM->APBBMASK.reg |= PM_APBBMASK_DMAC;
// output enable true. #endif
// asf3 settings:
//config.peripheral_trigger = DAC_DMAC_ID_EMPTY;
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
//config.event_config.event_output_enable = true;
// Turn on the transfer complete interrupt so that the job_status changes to done. DMAC->CTRL.reg = DMAC_CTRL_SWRST;
g_chan_interrupt_flag[audio_dma.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// Prioritize the RX channel over the TX channel because TX can cause an RX DMAC->BASEADDR.reg = (uint32_t) dma_descriptors;
// overflow. DMAC->WRBADDR.reg = (uint32_t) write_back_descriptors;
// DMA Channel 1: rx channel, DMAC->CTRL.reg = DMAC_CTRL_DMAENABLE | DMAC_CTRL_LVLEN0;
// normal transfer on input, trigger on each beat, beat is one byte
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT;
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
dma_allocate(&general_dma_rx, &config);
g_chan_interrupt_flag[general_dma_rx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// DMA Channel 1: rx channel, // This allocates the lowest channel first so make sure the audio is first
// normal transfer on input, trigger on each beat, beat is one byte // so it gets the highest priority.
//config.trigger_action = DMA_TRIGGER_ACTION_BEAT; // dma_configure_audio(0);
//config.event_config.input_action = DMA_EVENT_INPUT_TRIG;
g_chan_interrupt_flag[general_dma_tx.channel_id] |= (1UL << DMA_CALLBACK_TRANSFER_DONE);
// Be sneaky and reuse the active descriptor memory.
audio_dma.descriptor = &descriptor_section[audio_dma.channel_id];
general_dma_rx.descriptor = &descriptor_section[general_dma_rx.channel_id];
general_dma_tx.descriptor = &descriptor_section[general_dma_tx.channel_id];
} }
static uint8_t sercom_index(Sercom* sercom) { static uint8_t sercom_index(Sercom* sercom) {
#ifdef SAMD21
return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400; return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400;
#else
const Sercom* sercoms[SERCOM_INST_NUM] = SERCOM_INSTS;
for (uint8_t i = 0; i < SERCOM_INST_NUM; i++) {
if (sercoms[i] == sercom) {
return i;
}
}
return 0;
#endif
} }
static void dma_configure(uint8_t channel, uint8_t trigsrc, bool output_event) { static void dma_configure(uint8_t channel_number, uint8_t trigsrc, bool output_event) {
system_interrupt_enter_critical_section(); #ifdef SAMD21
common_hal_mcu_disable_interrupts();
/** Select the DMA channel and clear software trigger */ /** Select the DMA channel and clear software trigger */
DMAC->CHID.reg = DMAC_CHID_ID(channel); DMAC->CHID.reg = DMAC_CHID_ID(channel_number);
DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE; DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST; DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel)); DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel_number));
uint32_t event_output_enable = 0; uint32_t event_output_enable = 0;
if (output_event) { if (output_event) {
event_output_enable = DMAC_CHCTRLB_EVOE; event_output_enable = DMAC_CHCTRLB_EVOE;
} }
DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) | DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL_LVL0 |
DMAC_CHCTRLB_TRIGSRC(trigsrc) | DMAC_CHCTRLB_TRIGSRC(trigsrc) |
DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) | DMAC_CHCTRLB_TRIGACT_BEAT |
event_output_enable; event_output_enable;
system_interrupt_leave_critical_section(); common_hal_mcu_enable_interrupts();
#endif
#ifdef SAMD51
DmacChannel* channel = &DMAC->Channel[channel_number];
channel->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE;
channel->CHCTRLA.reg = DMAC_CHCTRLA_SWRST;
if (output_event) {
channel->CHEVCTRL.reg = DMAC_CHEVCTRL_EVOE;
}
channel->CHCTRLA.reg = DMAC_CHCTRLA_TRIGSRC(trigsrc) |
DMAC_CHCTRLA_TRIGACT_BURST |
DMAC_CHCTRLA_BURSTLEN_SINGLE;
#endif
} }
int32_t shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) { static void enable_channel(uint8_t channel_number) {
if (general_dma_tx.job_status != STATUS_OK) { #ifdef SAMD21
return general_dma_tx.job_status; common_hal_mcu_disable_interrupts();
} /** Select the DMA channel and clear software trigger */
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false); DMAC->CHID.reg = DMAC_CHID_ID(channel_number);
DMAC->CHCTRLA.bit.ENABLE = true;
common_hal_mcu_enable_interrupts();
#endif
// Set up TX. There is no RX job. #ifdef SAMD51
struct dma_descriptor_config descriptor_config; DmacChannel* channel = &DMAC->Channel[channel_number];
dma_descriptor_get_config_defaults(&descriptor_config); channel->CHCTRLA.bit.ENABLE = true;
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; #endif
descriptor_config.dst_increment_enable = false;
descriptor_config.block_transfer_count = length;
descriptor_config.source_address = ((uint32_t)buffer + length);
// DATA register is consistently addressed across all SERCOM modes.
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
enum status_code status = dma_start_transfer_job(&general_dma_tx);
if (status != ERR_NONE) {
return status;
}
// Wait for the dma transfer to finish.
while (general_dma_tx.job_status == STATUS_BUSY) {}
// Wait for the SPI transfer to complete.
while (sercom->SPI.INTFLAG.bit.TXC == 0) {}
// This transmit will cause the RX buffer overflow but we're OK with that.
// So, read the garbage and clear the overflow flag.
while (sercom->SPI.INTFLAG.bit.RXC == 1) {
sercom->SPI.DATA.reg;
}
sercom->SPI.STATUS.bit.BUFOVF = 1;
sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR;
return general_dma_tx.job_status;
} }
int32_t shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) { static uint8_t transfer_status(uint8_t channel_number) {
if (general_dma_tx.job_status != ERR_NONE) { #ifdef SAMD21
common_hal_mcu_disable_interrupts();
/** Select the DMA channel and clear software trigger */
DMAC->CHID.reg = DMAC_CHID_ID(channel_number);
uint8_t status = DMAC->CHINTFLAG.reg;
common_hal_mcu_enable_interrupts();
return status;
#endif
#ifdef SAMD51
DmacChannel* channel = &DMAC->Channel[channel_number];
return channel->CHINTFLAG.reg;
#endif
}
static bool channel_free(uint8_t channel_number) {
#ifdef SAMD21
common_hal_mcu_disable_interrupts();
/** Select the DMA channel and clear software trigger */
DMAC->CHID.reg = DMAC_CHID_ID(channel_number);
bool channel_free = DMAC->CHSTATUS.reg == 0;
common_hal_mcu_enable_interrupts();
return channel_free;
#endif
#ifdef SAMD51
DmacChannel* channel = &DMAC->Channel[channel_number];
return channel->CHSTATUS.reg == 0;
#endif
} }
// Do write and read simultaneously. If buffer_out is NULL, write the tx byte over and over. // Do write and read simultaneously. If buffer_out is NULL, write the tx byte over and over.
// If buffer_out is a real buffer, ignore tx. // If buffer_out is a real buffer, ignore tx.
enum status_code shared_dma_transfer(Sercom* sercom, uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length, uint8_t tx) { // DMAs buffer_out -> dest
return general_dma_tx.job_status; // DMAs src -> buffer_in
static int32_t shared_dma_transfer(void* peripheral,
const uint8_t* buffer_out, volatile uint32_t* dest,
volatile uint32_t* src, uint8_t* buffer_in,
uint32_t length, uint8_t tx) {
if (!channel_free(SHARED_TX_CHANNEL) ||
(buffer_in != NULL && !channel_free(SHARED_RX_CHANNEL))) {
return -1;
} }
dma_configure(general_dma_tx.channel_id, sercom_index(sercom) * 2 + 2, false); uint32_t beat_size = DMAC_BTCTRL_BEATSIZE_BYTE;
dma_configure(general_dma_rx.channel_id, sercom_index(sercom) * 2 + 1, false); bool sercom = true;
bool tx_active = false;
bool rx_active = false;
uint16_t beat_length = length;
#ifdef SAMD51
if (peripheral == QSPI) {
// Check input alignment on word boundaries.
if ((((uint32_t) buffer_in) & 0x3) != 0 ||
(((uint32_t) buffer_out) & 0x3) != 0) {
return -3;
}
beat_size = DMAC_BTCTRL_BEATSIZE_WORD | DMAC_BTCTRL_SRCINC | DMAC_BTCTRL_DSTINC;
beat_length /= 4;
sercom = false;
if (buffer_out != NULL) {
dma_configure(SHARED_TX_CHANNEL, QSPI_DMAC_ID_TX, false);
tx_active = true;
} else {
dma_configure(SHARED_RX_CHANNEL, QSPI_DMAC_ID_RX, false);
rx_active = true;
}
} else {
#endif
// sercom index is incorrect for SAMD51
dma_configure(SHARED_TX_CHANNEL, sercom_index(peripheral) * 2 + FIRST_SERCOM_TX_TRIGSRC, false);
tx_active = true;
if (buffer_in != NULL) {
dma_configure(SHARED_RX_CHANNEL, sercom_index(peripheral) * 2 + FIRST_SERCOM_RX_TRIGSRC, false);
rx_active = true;
}
#ifdef SAMD51
}
#endif
// Set up RX first. // Set up RX first.
struct dma_descriptor_config descriptor_config; if (rx_active) {
dma_descriptor_get_config_defaults(&descriptor_config); DmacDescriptor* rx_descriptor = &dma_descriptors[SHARED_RX_CHANNEL];
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; rx_descriptor->BTCTRL.reg = beat_size | DMAC_BTCTRL_DSTINC;
descriptor_config.src_increment_enable = false; rx_descriptor->BTCNT.reg = beat_length;
descriptor_config.dst_increment_enable = true; rx_descriptor->SRCADDR.reg = ((uint32_t) src);
descriptor_config.block_transfer_count = length; #ifdef SAMD51
// DATA register is consistently addressed across all SERCOM modes. if (peripheral == QSPI) {
descriptor_config.source_address = ((uint32_t)&sercom->SPI.DATA.reg); rx_descriptor->SRCADDR.reg = ((uint32_t) src + length);
descriptor_config.destination_address = ((uint32_t)buffer_in + length); }
#endif
dma_descriptor_create(general_dma_rx.descriptor, &descriptor_config); rx_descriptor->DSTADDR.reg = ((uint32_t)buffer_in + length);
rx_descriptor->BTCTRL.bit.VALID = true;
}
// Set up TX second. // Set up TX second.
dma_descriptor_get_config_defaults(&descriptor_config); if (tx_active) {
descriptor_config.beat_size = DMA_BEAT_SIZE_BYTE; DmacDescriptor* tx_descriptor = &dma_descriptors[SHARED_TX_CHANNEL];
// Increment write address only if we have a real buffer. tx_descriptor->BTCTRL.reg = beat_size;
descriptor_config.src_increment_enable = buffer_out != NULL; tx_descriptor->BTCNT.reg = beat_length;
descriptor_config.dst_increment_enable = false;
descriptor_config.block_transfer_count = length;
//
descriptor_config.source_address = ((uint32_t) (buffer_out != NULL ? buffer_out + length : &tx));
// DATA register is consistently addressed across all SERCOM modes.
descriptor_config.destination_address = ((uint32_t)&sercom->SPI.DATA.reg);
dma_descriptor_create(general_dma_tx.descriptor, &descriptor_config);
if (buffer_out != NULL) {
tx_descriptor->SRCADDR.reg = ((uint32_t)buffer_out + length);
tx_descriptor->BTCTRL.reg |= DMAC_BTCTRL_SRCINC;
} else {
tx_descriptor->SRCADDR.reg = ((uint32_t) &tx);
}
tx_descriptor->DSTADDR.reg = ((uint32_t) dest);
tx_descriptor->BTCTRL.bit.VALID = true;
}
if (sercom) {
SercomSpi *s = &((Sercom*) peripheral)->SPI;
s->INTFLAG.reg = SERCOM_SPI_INTFLAG_RXC | SERCOM_SPI_INTFLAG_DRE;
} else {
//QSPI->INTFLAG.reg = QSPI_INTFLAG_RXC | QSPI_INTFLAG_DRE;
}
// Start the RX job first so we don't miss the first byte. The TX job clocks // Start the RX job first so we don't miss the first byte. The TX job clocks
// the output. // the output.
general_dma_rx.transfered_size = 0; if (rx_active) {
dma_start_transfer_job(&general_dma_rx); enable_channel(SHARED_RX_CHANNEL);
general_dma_tx.transfered_size = 0; }
dma_start_transfer_job(&general_dma_tx); if (tx_active) {
enable_channel(SHARED_TX_CHANNEL);
}
// Wait for the transfer to finish.
while (general_dma_rx.job_status == STATUS_BUSY) {}
while (sercom->SPI.INTFLAG.bit.RXC == 1) {} if (sercom) {
return general_dma_rx.job_status; //DMAC->SWTRIGCTRL.reg |= (1 << SHARED_TX_CHANNEL);
} } else {
// Do a manual copy to trigger then DMA. We do 32-bit accesses to match the DMA.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
if (rx_active) {
//buffer_in[0] = *src;
DMAC->SWTRIGCTRL.reg |= (1 << SHARED_RX_CHANNEL);
} else {
//*(uint32_t*)dest = ((uint32_t*) buffer_out)[0];
}
#pragma GCC diagnostic pop
}
bool allocate_block_counter() { // Channels cycle between Suspend -> Pending -> Busy and back while transfering. So, we check
// Find a timer to count DMA block completions. // the channels transfer status for an error or completion.
Tc *t = NULL; if (rx_active) {
Tc *tcs[TC_INST_NUM] = TC_INSTS; while ((transfer_status(SHARED_RX_CHANNEL) & 0x3) == 0) {}
for (uint8_t i = TC_INST_NUM; i > 0; i--) { }
if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) { if (tx_active) {
t = tcs[i - 1]; while ((transfer_status(SHARED_TX_CHANNEL) & 0x3) == 0) {}
break; }
if (sercom) {
Sercom* s = (Sercom*) peripheral;
// Wait for the SPI transfer to complete.
while (s->SPI.INTFLAG.bit.TXC == 0) {}
// This transmit will cause the RX buffer overflow but we're OK with that.
// So, read the garbage and clear the overflow flag.
if (!rx_active) {
while (s->SPI.INTFLAG.bit.RXC == 1) {
s->SPI.DATA.reg;
}
s->SPI.STATUS.bit.BUFOVF = 1;
s->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR;
} }
} }
if (t == NULL) {
return false; if ((!rx_active || transfer_status(SHARED_RX_CHANNEL) == DMAC_CHINTFLAG_TCMPL) &&
} (!tx_active || transfer_status(SHARED_TX_CHANNEL) == DMAC_CHINTFLAG_TCMPL)) {
MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false); return length;
if (MP_STATE_VM(audiodma_block_counter) == NULL) {
return false;
} }
return -2;
}
// Don't bother setting the period. We set it before you playback anything.
struct tc_config config_tc;
tc_get_config_defaults(&config_tc);
config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) {
return false;
};
struct tc_events events_tc; int32_t sercom_dma_transfer(Sercom* sercom, const uint8_t* buffer_out, uint8_t* buffer_in,
events_tc.generate_event_on_overflow = false; uint32_t length) {
events_tc.on_event_perform_action = true; return shared_dma_transfer(sercom, buffer_out, &sercom->SPI.DATA.reg, &sercom->SPI.DATA.reg, buffer_in, length, 0);
events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER; }
tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc);
// Connect the timer overflow event, which happens at the target frequency, int32_t sercom_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) {
// to the DAC conversion trigger. return shared_dma_transfer(sercom, buffer, &sercom->SPI.DATA.reg, NULL, NULL, length, 0);
MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false); }
if (MP_STATE_VM(audiodma_block_event) == NULL) {
return false;
}
struct events_config config;
events_get_config_defaults(&config);
uint8_t user = EVSYS_ID_USER_TC3_EVU; int32_t sercom_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) {
if (t == TC4) { return shared_dma_transfer(sercom, NULL, &sercom->SPI.DATA.reg, &sercom->SPI.DATA.reg, buffer, length, tx);
user = EVSYS_ID_USER_TC4_EVU; }
} else if (t == TC5) {
user = EVSYS_ID_USER_TC5_EVU; #ifdef SAMD51
#ifdef TC6 int32_t qspi_dma_write(uint32_t address, const uint8_t* buffer, uint32_t length) {
} else if (t == TC6) { return shared_dma_transfer(QSPI, buffer, (uint32_t*) (QSPI_AHB + address), NULL, NULL, length, 0);
user = EVSYS_ID_USER_TC6_EVU; }
int32_t qspi_dma_read(uint32_t address, uint8_t* buffer, uint32_t length) {
return shared_dma_transfer(QSPI, NULL, NULL, (uint32_t*) (QSPI_AHB + address), buffer, length, 0);
}
#endif #endif
#ifdef TC7
} else if (t == TC7) {
user = EVSYS_ID_USER_TC7_EVU;
#endif
}
config.generator = EVSYS_ID_GEN_DMAC_CH_0; bool allocate_block_counter() {
config.path = EVENTS_PATH_ASYNCHRONOUS; // // Find a timer to count DMA block completions.
if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK || // Tc *t = NULL;
events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) { // Tc *tcs[TC_INST_NUM] = TC_INSTS;
return false; // for (uint8_t i = TC_INST_NUM; i > 0; i--) {
} // if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) {
// t = tcs[i - 1];
tc_enable(MP_STATE_VM(audiodma_block_counter)); // break;
tc_stop_counter(MP_STATE_VM(audiodma_block_counter)); // }
// }
// if (t == NULL) {
// return false;
// }
// MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false);
// if (MP_STATE_VM(audiodma_block_counter) == NULL) {
// return false;
// }
//
// // Don't bother setting the period. We set it before you playback anything.
// struct tc_config config_tc;
// tc_get_config_defaults(&config_tc);
// config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
// config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1;
// if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) {
// return false;
// };
//
// struct tc_events events_tc;
// events_tc.generate_event_on_overflow = false;
// events_tc.on_event_perform_action = true;
// events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER;
// tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc);
//
// // Connect the timer overflow event, which happens at the target frequency,
// // to the DAC conversion trigger.
// MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false);
// if (MP_STATE_VM(audiodma_block_event) == NULL) {
// return false;
// }
// struct events_config config;
// events_get_config_defaults(&config);
//
// uint8_t user = EVSYS_ID_USER_TC3_EVU;
// if (t == TC4) {
// user = EVSYS_ID_USER_TC4_EVU;
// } else if (t == TC5) {
// user = EVSYS_ID_USER_TC5_EVU;
// #ifdef TC6
// } else if (t == TC6) {
// user = EVSYS_ID_USER_TC6_EVU;
// #endif
// #ifdef TC7
// } else if (t == TC7) {
// user = EVSYS_ID_USER_TC7_EVU;
// #endif
// }
//
// config.generator = EVSYS_ID_GEN_DMAC_CH_0;
// config.path = EVENTS_PATH_ASYNCHRONOUS;
// if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK ||
// events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) {
// return false;
// }
//
// tc_enable(MP_STATE_VM(audiodma_block_counter));
// tc_stop_counter(MP_STATE_VM(audiodma_block_counter));
return true; return true;
} }
void switch_audiodma_trigger(uint8_t trigger_dmac_id) { void switch_audiodma_trigger(uint8_t trigger_dmac_id) {
dma_configure(audio_dma.channel_id, trigger_dmac_id, true); //dma_configure(audio_dma.channel_id, trigger_dmac_id, true);
} }

View File

@ -27,17 +27,23 @@
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_SHARED_DMA_H #ifndef MICROPY_INCLUDED_ATMEL_SAMD_SHARED_DMA_H
#define MICROPY_INCLUDED_ATMEL_SAMD_SHARED_DMA_H #define MICROPY_INCLUDED_ATMEL_SAMD_SHARED_DMA_H
extern struct dma_resource audio_dma; #include <stdbool.h>
extern struct dma_resource general_dma_tx; #include <stdint.h>
extern struct dma_resource general_dma_rx;
#include "include/sam.h"
volatile bool audio_dma_in_use; volatile bool audio_dma_in_use;
void init_shared_dma(void); void init_shared_dma(void);
enum status_code shared_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length); #ifdef SAMD51
enum status_code shared_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx); int32_t qspi_dma_write(uint32_t address, const uint8_t* buffer, uint32_t length);
enum status_code shared_dma_transfer(Sercom* sercom, uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length, uint8_t tx); int32_t qspi_dma_read(uint32_t address, uint8_t* buffer, uint32_t length);
#endif
int32_t sercom_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length);
int32_t sercom_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx);
int32_t sercom_dma_transfer(Sercom* sercom, const uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length);
// Allocate a counter to track how far along we are in a DMA double buffer. // Allocate a counter to track how far along we are in a DMA double buffer.
bool allocate_block_counter(void); bool allocate_block_counter(void);

View File

@ -49,6 +49,7 @@
#include "common-hal/pulseio/PulseIn.h" #include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pulseio/PulseOut.h" #include "common-hal/pulseio/PulseOut.h"
#include "common-hal/pulseio/PWMOut.h" #include "common-hal/pulseio/PWMOut.h"
#include "shared_dma.h"
#include "tick.h" #include "tick.h"
extern volatile bool mp_msc_enabled; extern volatile bool mp_msc_enabled;
@ -120,7 +121,7 @@ safe_mode_t port_init(void) {
// config_nvm.manual_page_write = false; // config_nvm.manual_page_write = false;
// nvm_set_config(&config_nvm); // nvm_set_config(&config_nvm);
// init_shared_dma(); init_shared_dma();
#ifdef CIRCUITPY_CANARY_WORD #ifdef CIRCUITPY_CANARY_WORD
// Run in safe mode if the canary is corrupt. // Run in safe mode if the canary is corrupt.
if (_ezero != CIRCUITPY_CANARY_WORD) { if (_ezero != CIRCUITPY_CANARY_WORD) {