docs/machine.Signal: Improve style/grammar and add usage example.
This commit is contained in:
parent
37379a2974
commit
d5336ba136
@ -4,17 +4,44 @@
|
||||
class Signal -- control and sense external I/O devices
|
||||
======================================================
|
||||
|
||||
The Signal class is a simple extension of Pin class. Unlike Pin, which
|
||||
The Signal class is a simple extension of the `Pin` class. Unlike Pin, which
|
||||
can be only in "absolute" 0 and 1 states, a Signal can be in "asserted"
|
||||
(on) or "deasserted" (off) states, while being inverted (active-low) or
|
||||
not. Summing up, it adds logical inversion support to Pin functionality.
|
||||
not. In other words, it adds logical inversion support to Pin functionality.
|
||||
While this may seem a simple addition, it is exactly what is needed to
|
||||
support wide array of simple digital devices in a way portable across
|
||||
different boards, which is one of the major MicroPython goals. Regardless
|
||||
whether different users have an active-high or active-low LED, a normally
|
||||
open or normally closed relay - you can develop single, nicely looking
|
||||
of whether different users have an active-high or active-low LED, a normally
|
||||
open or normally closed relay - you can develop a single, nicely looking
|
||||
application which works with each of them, and capture hardware
|
||||
configuration differences in few lines on the config file of your app.
|
||||
configuration differences in few lines in the config file of your app.
|
||||
|
||||
Example::
|
||||
|
||||
from machine import Pin, Signal
|
||||
|
||||
# Suppose you have an active-high LED on pin 0
|
||||
led1_pin = Pin(0, Pin.OUT)
|
||||
# ... and active-low LED on pin 1
|
||||
led2_pin = Pin(1, Pin.OUT)
|
||||
|
||||
# Now to light up both of them using Pin class, you'll need to set
|
||||
# them to different values
|
||||
led1_pin.value(1)
|
||||
led2_pin.value(0)
|
||||
|
||||
# Signal class allows to abstract away active-high/active-low
|
||||
# difference
|
||||
led1 = Signal(led1_pin, invert=False)
|
||||
led2 = Signal(led2_pin, invert=True)
|
||||
|
||||
# Now lighting up them looks the same
|
||||
led1.value(1)
|
||||
led2.value(1)
|
||||
|
||||
# Even better:
|
||||
led1.on()
|
||||
led2.on()
|
||||
|
||||
Following is the guide when Signal vs Pin should be used:
|
||||
|
||||
@ -33,11 +60,11 @@ architecture of MicroPython: Pin offers the lowest overhead, which may
|
||||
be important when bit-banging protocols. But Signal adds additional
|
||||
flexibility on top of Pin, at the cost of minor overhead (much smaller
|
||||
than if you implemented active-high vs active-low device differences in
|
||||
Python manually!). Also, Pin is low-level object which needs to be
|
||||
Python manually!). Also, Pin is a low-level object which needs to be
|
||||
implemented for each support board, while Signal is a high-level object
|
||||
which comes for free once Pin is implemented.
|
||||
|
||||
If in doubt, give the Signal a try! Once again, it is developed to save
|
||||
If in doubt, give the Signal a try! Once again, it is offered to save
|
||||
developers from the need to handle unexciting differences like active-low
|
||||
vs active-high signals, and allow other users to share and enjoy your
|
||||
application, instead of being frustrated by the fact that it doesn't
|
||||
|
Loading…
x
Reference in New Issue
Block a user