Merge pull request #785 from notro/rtc_calibration

atmel-samd/samd21: Rework clock setup + calibration
This commit is contained in:
Scott Shawcroft 2018-05-08 10:55:51 -07:00 committed by GitHub
commit d3a5d40374
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 878 additions and 76 deletions

View File

@ -225,6 +225,7 @@ SRC_C = \
audio_dma.c \
background.c \
clocks.c \
$(CHIP_FAMILY)_clocks.c \
events.c \
fatfs_port.c \
flash_api.c \
@ -238,6 +239,8 @@ SRC_C = \
timers.c \
usb.c \
usb_mass_storage.c \
bindings/samd/__init__.c \
bindings/samd/Clock.c \
boards/$(BOARD)/board.c \
boards/$(BOARD)/pins.c \
lib/oofatfs/ff.c \

View File

@ -231,3 +231,9 @@ Mass storage
All boards will also show up as a mass storage device. Make sure to eject it
before resetting or disconnecting the board.
Port Specific modules
---------------------
.. toctree::
bindings/samd/__init__

View File

@ -109,7 +109,7 @@
// <i> Indicates whether configuration for OSC32K is enabled or not
// <id> enable_osc32k
#ifndef CONF_OSC32K_CONFIG
#define CONF_OSC32K_CONFIG 0
#define CONF_OSC32K_CONFIG 1
#endif
// <h> 32kHz Internal Oscillator (OSC32K) Control
@ -117,7 +117,7 @@
// <i> Indicates whether Internal 32K Oscillator is enabled or not
// <id> osc32k_arch_enable
#ifndef CONF_OSC32K_ENABLE
#define CONF_OSC32K_ENABLE 0
#define CONF_OSC32K_ENABLE 1
#endif
// <q> On Demand Control
@ -142,7 +142,7 @@
// <i> Enable 32 Khz Output
// <id> osc32k_arch_en32k
#ifndef CONF_OSC32K_EN32K
#define CONF_OSC32K_EN32K 0
#define CONF_OSC32K_EN32K 1
#endif
// <q> Enable 1K

View File

@ -0,0 +1,174 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Noralf Trønnes
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "clocks.h"
#include "bindings/samd/Clock.h"
#include "py/obj.h"
#include "py/objproperty.h"
#include "py/runtime.h"
//| .. currentmodule:: samd
//|
//| :class:`Clock` --- Clock reference
//| ------------------------------------------
//|
//| Identifies a clock on the microcontroller.
//|
//| .. class:: Clock
//|
//| Identifies a clock on the microcontroller. They are fixed by the
//| hardware so they cannot be constructed on demand. Instead, use
//| `samd.clock` to reference the desired clock.
//|
STATIC void samd_clock_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "%q.%q.%s(", MP_QSTR_samd, MP_QSTR_clock, self->name);
if (clock_get_enabled(self->type, self->index)) {
mp_printf(print, "frequency=%u", clock_get_frequency(self->type, self->index));
uint32_t calibration = clock_get_calibration(self->type, self->index);
if (calibration) {
mp_printf(print, ", calibration=%u", calibration);
}
}
mp_printf(print, ")");
}
//| .. attribute:: enabled
//|
//| Is the clock enabled? (read-only)
//|
STATIC mp_obj_t samd_clock_get_enabled(mp_obj_t self_in) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(clock_get_enabled(self->type, self->index));
}
MP_DEFINE_CONST_FUN_OBJ_1(samd_clock_get_enabled_obj, samd_clock_get_enabled);
const mp_obj_property_t samd_clock_enabled_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&samd_clock_get_enabled_obj,
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj,
},
};
//| .. attribute:: parent
//|
//| Clock parent. (read-only)
//|
STATIC mp_obj_t samd_clock_get_parent(mp_obj_t self_in) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint8_t p_type, p_index;
if (!clock_get_parent(self->type, self->index, &p_type, &p_index))
return mp_const_none;
const mp_map_t* samd_map = &samd_clock_globals.map;
for (uint8_t i = 0; i < samd_map->alloc; i++) {
samd_clock_obj_t *iter = samd_map->table[i].value;
if (iter->type == p_type && iter->index == p_index)
return iter;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(samd_clock_get_parent_obj, samd_clock_get_parent);
const mp_obj_property_t samd_clock_parent_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&samd_clock_get_parent_obj,
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj,
},
};
//| .. attribute:: frequency
//|
//| Clock frequency. (read-only)
//|
STATIC mp_obj_t samd_clock_get_frequency(mp_obj_t self_in) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int_from_uint(clock_get_frequency(self->type, self->index));
}
MP_DEFINE_CONST_FUN_OBJ_1(samd_clock_get_frequency_obj, samd_clock_get_frequency);
const mp_obj_property_t samd_clock_frequency_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&samd_clock_get_frequency_obj,
(mp_obj_t)&mp_const_none_obj,
(mp_obj_t)&mp_const_none_obj,
},
};
//| .. attribute:: calibration
//|
//| Clock calibration. Not all clocks can be calibrated.
//|
STATIC mp_obj_t samd_clock_get_calibration(mp_obj_t self_in) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int_from_uint(clock_get_calibration(self->type, self->index));
}
MP_DEFINE_CONST_FUN_OBJ_1(samd_clock_get_calibration_obj, samd_clock_get_calibration);
STATIC mp_obj_t samd_clock_set_calibration(mp_obj_t self_in, mp_obj_t calibration) {
samd_clock_obj_t *self = MP_OBJ_TO_PTR(self_in);
int ret = clock_set_calibration(self->type, self->index, mp_obj_get_int(calibration));
if (ret == -2)
mp_raise_AttributeError("calibration is read only");
if (ret == -1)
mp_raise_ValueError("calibration is out of range");
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(samd_clock_set_calibration_obj, samd_clock_set_calibration);
const mp_obj_property_t samd_clock_calibration_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&samd_clock_get_calibration_obj,
(mp_obj_t)&samd_clock_set_calibration_obj,
(mp_obj_t)&mp_const_none_obj,
},
};
STATIC const mp_rom_map_elem_t samd_clock_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_enabled), MP_ROM_PTR(&samd_clock_enabled_obj) },
{ MP_ROM_QSTR(MP_QSTR_parent), MP_ROM_PTR(&samd_clock_parent_obj) },
{ MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&samd_clock_frequency_obj) },
{ MP_ROM_QSTR(MP_QSTR_calibration), MP_ROM_PTR(&samd_clock_calibration_obj) },
};
STATIC MP_DEFINE_CONST_DICT(samd_clock_locals_dict, samd_clock_locals_dict_table);
const mp_obj_type_t samd_clock_type = {
{ &mp_type_type },
.name = MP_QSTR_Clock,
.print = samd_clock_print,
.locals_dict = (mp_obj_t)&samd_clock_locals_dict,
};

View File

@ -0,0 +1,77 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Noralf Trønnes
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_BINDINGS_SAMD_CLOCK_H
#define MICROPY_INCLUDED_ATMEL_SAMD_BINDINGS_SAMD_CLOCK_H
#include "py/obj.h"
typedef struct {
mp_obj_base_t base;
const char *name;
uint8_t type;
uint8_t index;
} samd_clock_obj_t;
#define CLOCK(_name, _type, _index) \
const samd_clock_obj_t clock_ ## _name = { \
{ &samd_clock_type }, \
.name = #_name, \
.type = _type, \
.index = _index, \
}
#define CLOCK_SOURCE(_name) \
const samd_clock_obj_t clock_ ## _name = { \
{ &samd_clock_type }, \
.name = #_name, \
.type = 0, \
.index = GCLK_SOURCE_ ## _name, \
}
#define CLOCK_GCLK(_name) \
const samd_clock_obj_t clock_ ## _name = { \
{ &samd_clock_type }, \
.name = #_name, \
.type = 1, \
.index = _name ## _GCLK_ID, \
}
#define CLOCK_GCLK_(_name, _extra) \
const samd_clock_obj_t clock_ ## _name ## _ ## _extra = { \
{ &samd_clock_type }, \
.name = #_name "_" #_extra, \
.type = 1, \
.index = _name ## _GCLK_ID_ ## _extra, \
}
#define CLOCK_ENTRY(_name) { MP_ROM_QSTR(MP_QSTR_ ## _name), MP_ROM_PTR(&clock_ ## _name) }
#define CLOCK_ENTRY_(_name, _extra) { MP_ROM_QSTR(MP_QSTR_ ## _name ## _ ## _extra), MP_ROM_PTR(&clock_ ## _name ## _ ## _extra) }
extern const mp_obj_type_t samd_clock_type;
extern const mp_obj_dict_t samd_clock_globals;
#endif // MICROPY_INCLUDED_ATMEL_SAMD_BINDINGS_SAMD_CLOCK_H

View File

@ -0,0 +1,72 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Noralf Trønnes
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "bindings/samd/Clock.h"
//| :mod:`samd` --- SAMD implementation settings
//| =================================================
//|
//| .. module:: samd
//| :synopsis: SAMD implementation settings
//| :platform: SAMD21
//|
//| Libraries
//|
//| .. toctree::
//| :maxdepth: 3
//|
//| Clock
//|
//| :mod:`samd.clock` --- samd clock names
//| --------------------------------------------------------
//|
//| .. module:: samd.clock
//| :synopsis: samd clock names
//| :platform: SAMD21
//|
//| References to clocks as named by the microcontroller
//|
const mp_obj_module_t samd_clock_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&samd_clock_globals,
};
STATIC const mp_rom_map_elem_t samd_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_samd) },
{ MP_ROM_QSTR(MP_QSTR_clock), MP_ROM_PTR(&samd_clock_module) },
};
STATIC MP_DEFINE_CONST_DICT(samd_module_globals, samd_module_globals_table);
const mp_obj_module_t samd_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&samd_module_globals,
};

View File

@ -46,3 +46,5 @@
GD25Q16C
#include "external_flash/external_flash.h"
#define BOARD_HAS_CRYSTAL 1

View File

@ -47,3 +47,5 @@
GD25Q16C
#include "external_flash/external_flash.h"
#define BOARD_HAS_CRYSTAL 1

View File

@ -56,77 +56,6 @@ uint8_t find_free_gclk(uint16_t divisor) {
return 0xff;
}
bool gclk_enabled(uint8_t gclk) {
#ifdef SAMD51
return GCLK->GENCTRL[gclk].bit.GENEN;
#endif
#ifdef SAMD21
common_hal_mcu_disable_interrupts();
// Explicitly do a byte write so the peripheral knows we're just wanting to read the channel
// rather than write to it.
*((uint8_t*) &GCLK->GENCTRL.reg) = gclk;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
bool enabled = GCLK->GENCTRL.bit.GENEN;
common_hal_mcu_enable_interrupts();
return enabled;
#endif
}
void disable_gclk(uint8_t gclk) {
#ifdef SAMD51
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
GCLK->GENCTRL[gclk].bit.GENEN = false;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
#endif
#ifdef SAMD21
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk);
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
#endif
}
void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral) {
#ifdef SAMD21
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk) | GCLK_CLKCTRL_CLKEN;
#endif
#ifdef SAMD51
GCLK->PCHCTRL[peripheral].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk);
while(GCLK->SYNCBUSY.reg != 0) {}
#endif
}
void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral) {
#ifdef SAMD21
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk);
#endif
#ifdef SAMD51
GCLK->PCHCTRL[peripheral].reg = 0;
#endif
}
void enable_clock_generator(uint8_t gclk, uint8_t source, uint16_t divisor) {
#ifdef SAMD21
GCLK->GENDIV.reg = GCLK_GENDIV_ID(gclk) | GCLK_GENDIV_DIV(divisor);
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk) | GCLK_GENCTRL_SRC(source) | GCLK_GENCTRL_GENEN;
while (GCLK->STATUS.bit.SYNCBUSY != 0) {}
#endif
#ifdef SAMD51
GCLK->GENCTRL[gclk].reg = GCLK_GENCTRL_SRC(source) | GCLK_GENCTRL_DIV(divisor) | GCLK_GENCTRL_GENEN;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
#endif
}
void disable_clock_generator(uint8_t gclk) {
#ifdef SAMD21
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk);
while (GCLK->STATUS.bit.SYNCBUSY != 0) {}
#endif
#ifdef SAMD51
GCLK->GENCTRL[gclk].reg = 0;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
#endif
}
void reset_gclks(void) {
// Never reset GCLK0 because its used for the core
#if CONF_GCLK_GEN_1_GENEN == 0

View File

@ -31,6 +31,7 @@
#include <stdint.h>
#include "include/sam.h"
#include "mpconfigboard.h" // for BOARD_HAS_CRYSTAL
#ifdef SAMD51
#define CLOCK_48MHZ GCLK_GENCTRL_SRC_DFLL_Val
@ -44,12 +45,29 @@
uint8_t find_free_gclk(uint16_t divisor);
bool gclk_enabled(uint8_t gclk);
void disable_gclk(uint8_t gclk);
void reset_gclks(void);
void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral);
void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral);
void enable_clock_generator(uint8_t gclk, uint8_t source, uint16_t divisor);
void enable_clock_generator(uint8_t gclk, uint32_t source, uint16_t divisor);
void disable_clock_generator(uint8_t gclk);
static inline bool board_has_crystal(void) {
#ifdef BOARD_HAS_CRYSTAL
return BOARD_HAS_CRYSTAL == 1;
#else
return false;
#endif
}
void clock_init(void);
bool clock_get_enabled(uint8_t type, uint8_t index);
bool clock_get_parent(uint8_t type, uint8_t index, uint8_t *p_type, uint8_t *p_index);
uint32_t clock_get_frequency(uint8_t type, uint8_t index);
uint32_t clock_get_calibration(uint8_t type, uint8_t index);
int clock_set_calibration(uint8_t type, uint8_t index, uint32_t val);
#endif // MICROPY_INCLUDED_ATMEL_SAMD_CLOCKS_H

View File

@ -167,6 +167,7 @@ extern const struct _mp_obj_module_t math_module;
extern const struct _mp_obj_module_t os_module;
extern const struct _mp_obj_module_t random_module;
extern const struct _mp_obj_module_t rtc_module;
extern const struct _mp_obj_module_t samd_module;
extern const struct _mp_obj_module_t storage_module;
extern const struct _mp_obj_module_t struct_module;
extern const struct _mp_obj_module_t time_module;
@ -236,6 +237,7 @@ extern const struct _mp_obj_module_t usb_hid_module;
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulseio), (mp_obj_t)&pulseio_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_random), (mp_obj_t)&random_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_rtc), (mp_obj_t)&rtc_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_samd),(mp_obj_t)&samd_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_storage), (mp_obj_t)&storage_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_struct), (mp_obj_t)&struct_module }, \
{ MP_OBJ_NEW_QSTR(MP_QSTR_supervisor), (mp_obj_t)&supervisor_module }, \

View File

@ -0,0 +1,425 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "clocks.h"
#include "hpl_gclk_config.h"
#include "bindings/samd/Clock.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "py/runtime.h"
bool gclk_enabled(uint8_t gclk) {
common_hal_mcu_disable_interrupts();
// Explicitly do a byte write so the peripheral knows we're just wanting to read the channel
// rather than write to it.
*((uint8_t*) &GCLK->GENCTRL.reg) = gclk;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
bool enabled = GCLK->GENCTRL.bit.GENEN;
common_hal_mcu_enable_interrupts();
return enabled;
}
void disable_gclk(uint8_t gclk) {
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk);
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
}
void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk) | GCLK_CLKCTRL_CLKEN;
}
void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(peripheral) | GCLK_CLKCTRL_GEN(gclk);
}
void enable_clock_generator(uint8_t gclk, uint32_t source, uint16_t divisor) {
uint32_t divsel = 0;
if (gclk == 2 && divisor > 31) {
divsel = GCLK_GENCTRL_DIVSEL;
for (int i = 15; i > 4; i++) {
if (divisor & (1 << i)) {
divisor = i - 1;
break;
}
}
}
GCLK->GENDIV.reg = GCLK_GENDIV_ID(gclk) | GCLK_GENDIV_DIV(divisor);
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk) | GCLK_GENCTRL_SRC(source) | divsel | GCLK_GENCTRL_OE | GCLK_GENCTRL_GENEN;
while (GCLK->STATUS.bit.SYNCBUSY != 0) {}
}
void disable_clock_generator(uint8_t gclk) {
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(gclk);
while (GCLK->STATUS.bit.SYNCBUSY != 0) {}
}
static void init_clock_source_osc8m(void) {
// Preserve CALIB and FRANGE
SYSCTRL->OSC8M.bit.ONDEMAND = 0;
SYSCTRL->OSC8M.bit.PRESC = 3;
SYSCTRL->OSC8M.bit.ENABLE = 1;
while (!SYSCTRL->PCLKSR.bit.OSC8MRDY) {}
}
static void init_clock_source_osc32k(void) {
uint32_t calib = (*((uint32_t *)FUSES_OSC32K_CAL_ADDR) & FUSES_OSC32K_CAL_Msk) >> FUSES_OSC32K_CAL_Pos;
SYSCTRL->OSC32K.reg = SYSCTRL_OSC32K_CALIB(calib) |
SYSCTRL_OSC32K_EN32K |
SYSCTRL_OSC32K_ENABLE;
while (!SYSCTRL->PCLKSR.bit.OSC32KRDY) {}
}
static void init_clock_source_xosc32k(void) {
SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_EN32K |
SYSCTRL_XOSC32K_XTALEN |
SYSCTRL_XOSC32K_ENABLE;
while (!SYSCTRL->PCLKSR.bit.XOSC32KRDY) {}
}
static void init_clock_source_dfll48m(void) {
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE;
while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {}
SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP(1) |
SYSCTRL_DFLLMUL_FSTEP(1) |
SYSCTRL_DFLLMUL_MUL(48000);
uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos;
if (coarse == 0x3f)
coarse = 0x1f;
SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) |
SYSCTRL_DFLLVAL_FINE(512);
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS |
SYSCTRL_DFLLCTRL_USBCRM |
SYSCTRL_DFLLCTRL_MODE |
SYSCTRL_DFLLCTRL_ENABLE;
while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {}
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
void clock_init(void)
{
init_clock_source_osc8m();
if (board_has_crystal())
init_clock_source_xosc32k();
else
init_clock_source_osc32k();
enable_clock_generator(0, GCLK_GENCTRL_SRC_DFLL48M_Val, 1);
enable_clock_generator(1, GCLK_GENCTRL_SRC_DFLL48M_Val, 150);
init_clock_source_dfll48m();
if (board_has_crystal())
enable_clock_generator(2, GCLK_GENCTRL_SRC_XOSC32K_Val, 32);
else
enable_clock_generator(2, GCLK_GENCTRL_SRC_OSC32K_Val, 32);
}
static bool clk_enabled(uint8_t clk) {
common_hal_mcu_disable_interrupts();
*((uint8_t*) &GCLK->CLKCTRL.reg) = clk;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
bool enabled = GCLK->CLKCTRL.bit.CLKEN;
common_hal_mcu_enable_interrupts();
return enabled;
}
static uint8_t clk_get_generator(uint8_t clk) {
common_hal_mcu_disable_interrupts();
*((uint8_t*) &GCLK->CLKCTRL.reg) = clk;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
uint8_t gen = GCLK->CLKCTRL.bit.GEN;
common_hal_mcu_enable_interrupts();
return gen;
}
static uint8_t generator_get_source(uint8_t gen) {
common_hal_mcu_disable_interrupts();
*((uint8_t*) &GCLK->GENCTRL.reg) = gen;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
uint8_t src = GCLK->GENCTRL.bit.SRC;
common_hal_mcu_enable_interrupts();
return src;
}
static bool osc_enabled(uint8_t index) {
switch (index) {
case GCLK_SOURCE_XOSC:
return SYSCTRL->XOSC.bit.ENABLE;
// TODO: GCLK_SOURCE_GCLKIN
// TODO: GCLK_SOURCE_GCLKGEN1
case GCLK_SOURCE_OSCULP32K:
return true;
case GCLK_SOURCE_OSC32K:
return SYSCTRL->OSC32K.bit.ENABLE;
case GCLK_SOURCE_XOSC32K:
return SYSCTRL->XOSC32K.bit.ENABLE;
case GCLK_SOURCE_OSC8M:
return SYSCTRL->OSC8M.bit.ENABLE;
case GCLK_SOURCE_DFLL48M:
return SYSCTRL->DFLLCTRL.bit.ENABLE;
case GCLK_SOURCE_DPLL96M:
return SYSCTRL->DPLLCTRLA.bit.ENABLE;
};
return false;
}
static uint32_t osc_get_frequency(uint8_t index) {
switch (index) {
case GCLK_SOURCE_XOSC:
return 0; // unknown 0.4-32MHz
// TODO: GCLK_SOURCE_GCLKIN
// TODO: GCLK_SOURCE_GCLKGEN1
case GCLK_SOURCE_OSCULP32K:
case GCLK_SOURCE_OSC32K:
case GCLK_SOURCE_XOSC32K:
return 32768;
case GCLK_SOURCE_OSC8M:
return 8000000;
case GCLK_SOURCE_DFLL48M:
return 48000000;
case GCLK_SOURCE_DPLL96M:
return 96000000;
}
return 0;
}
bool clock_get_enabled(uint8_t type, uint8_t index) {
if (type == 0)
return osc_enabled(index);
if (type == 1)
return clk_enabled(index);
if (type == 2)
return SysTick->CTRL & SysTick_CTRL_ENABLE_Msk;
return false;
}
bool clock_get_parent(uint8_t type, uint8_t index, uint8_t *p_type, uint8_t *p_index) {
if (type == 1 && index <= 0x24 && clk_enabled(index)) {
*p_type = 0;
*p_index = generator_get_source(clk_get_generator(index));
return true;
}
if (type == 2 && index == 0) {
*p_type = 0;
*p_index = generator_get_source(0);
return true;
}
return false;
}
uint32_t clock_get_frequency(uint8_t type, uint8_t index) {
if (type == 0) {
return osc_get_frequency(index);
}
if (type == 1) {
if (!clk_enabled(index))
return 0;
uint8_t gen = clk_get_generator(index);
common_hal_mcu_disable_interrupts();
*((uint8_t*) &GCLK->GENCTRL.reg) = gen;
*((uint8_t*) &GCLK->GENDIV.reg) = gen;
while (GCLK->STATUS.bit.SYNCBUSY == 1) {}
uint8_t src = GCLK->GENCTRL.bit.SRC;
uint32_t div;
if (GCLK->GENCTRL.bit.DIVSEL) {
div = 1 << (GCLK->GENDIV.bit.DIV + 1);
} else {
div = GCLK->GENDIV.bit.DIV;
if (!div)
div = 1;
}
common_hal_mcu_enable_interrupts();
return osc_get_frequency(src) / div;
}
if (type == 2 && index == 0) {
return clock_get_frequency(0, generator_get_source(0)) / SysTick->LOAD;
}
return 0;
}
uint32_t clock_get_calibration(uint8_t type, uint8_t index) {
if (type == 0) {
switch (index) {
case GCLK_SOURCE_OSCULP32K:
return SYSCTRL->OSCULP32K.bit.CALIB;
case GCLK_SOURCE_OSC32K:
return SYSCTRL->OSC32K.bit.CALIB;
case GCLK_SOURCE_OSC8M:
return SYSCTRL->OSC8M.bit.CALIB;
};
}
if (type == 2 && index == 0) {
return SysTick->LOAD + 1;
}
return 0;
}
int clock_set_calibration(uint8_t type, uint8_t index, uint32_t val) {
if (type == 0) {
switch (index) {
case GCLK_SOURCE_OSCULP32K:
if (val > 0x1f)
return -1;
SYSCTRL->OSCULP32K.bit.CALIB = val;
return 0;
case GCLK_SOURCE_OSC32K:
if (val > 0x7f)
return -1;
SYSCTRL->OSC32K.bit.CALIB = val;
return 0;
case GCLK_SOURCE_OSC8M:
if (val > 0xfff)
return -1;
SYSCTRL->OSC8M.bit.CALIB = val;
return 0;
};
}
if (type == 2 && index == 0) {
if (val < 0x1000 || val > 0x1000000)
return -1;
SysTick->LOAD = val - 1;
return 0;
}
return -2; // calibration is read only
}
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_SOURCE(XOSC);
CLOCK_SOURCE(GCLKIN);
CLOCK_SOURCE(GCLKGEN1);
CLOCK_SOURCE(OSCULP32K);
#endif
CLOCK_SOURCE(OSC32K);
CLOCK_SOURCE(XOSC32K);
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_SOURCE(OSC8M);
CLOCK_SOURCE(DFLL48M);
CLOCK_SOURCE(DPLL96M);
CLOCK_GCLK_(SYSCTRL, DFLL48);
CLOCK_GCLK_(SYSCTRL, FDPLL);
CLOCK_GCLK_(SYSCTRL, FDPLL32K);
CLOCK_GCLK(WDT);
#endif
CLOCK_GCLK(RTC);
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_GCLK(EIC);
CLOCK_GCLK(USB);
CLOCK_GCLK_(EVSYS, 0);
CLOCK_GCLK_(EVSYS, 1);
CLOCK_GCLK_(EVSYS, 2);
CLOCK_GCLK_(EVSYS, 3);
CLOCK_GCLK_(EVSYS, 4);
CLOCK_GCLK_(EVSYS, 5);
CLOCK_GCLK_(EVSYS, 6);
CLOCK_GCLK_(EVSYS, 7);
CLOCK_GCLK_(EVSYS, 8);
CLOCK_GCLK_(EVSYS, 9);
CLOCK_GCLK_(EVSYS, 10);
CLOCK_GCLK_(EVSYS, 11);
CLOCK(SERCOMx_SLOW, 1, 19);
CLOCK_GCLK_(SERCOM0, CORE);
CLOCK_GCLK_(SERCOM1, CORE);
CLOCK_GCLK_(SERCOM2, CORE);
CLOCK_GCLK_(SERCOM3, CORE);
CLOCK_GCLK_(SERCOM4, CORE);
CLOCK_GCLK_(SERCOM5, CORE);
CLOCK(TCC0_TCC1, 1, 26);
CLOCK(TCC2_TCC3, 1, 27);
CLOCK(TC4_TC5, 1, 28);
CLOCK(TC6_TC7, 1, 29);
CLOCK_GCLK(ADC);
CLOCK_GCLK_(AC, DIG);
CLOCK_GCLK_(AC, ANA);
CLOCK_GCLK(DAC);
CLOCK_GCLK(PTC);
CLOCK_GCLK_(I2S, 0);
CLOCK_GCLK_(I2S, 1);
CLOCK(SYSTICK, 2, 0);
#endif
STATIC const mp_rom_map_elem_t samd_clock_global_dict_table[] = {
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_ENTRY(XOSC),
CLOCK_ENTRY(GCLKIN),
CLOCK_ENTRY(GCLKGEN1),
CLOCK_ENTRY(OSCULP32K),
#endif
CLOCK_ENTRY(OSC32K),
CLOCK_ENTRY(XOSC32K),
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_ENTRY(OSC8M),
CLOCK_ENTRY(DFLL48M),
CLOCK_ENTRY(DPLL96M),
CLOCK_ENTRY_(SYSCTRL, DFLL48),
CLOCK_ENTRY_(SYSCTRL, FDPLL),
CLOCK_ENTRY_(SYSCTRL, FDPLL32K),
CLOCK_ENTRY(WDT),
#endif
CLOCK_ENTRY(RTC),
#ifdef SAMD21_EXPOSE_ALL_CLOCKS
CLOCK_ENTRY(EIC),
CLOCK_ENTRY(USB),
CLOCK_ENTRY_(EVSYS, 0),
CLOCK_ENTRY_(EVSYS, 1),
CLOCK_ENTRY_(EVSYS, 2),
CLOCK_ENTRY_(EVSYS, 3),
CLOCK_ENTRY_(EVSYS, 4),
CLOCK_ENTRY_(EVSYS, 5),
CLOCK_ENTRY_(EVSYS, 6),
CLOCK_ENTRY_(EVSYS, 7),
CLOCK_ENTRY_(EVSYS, 8),
CLOCK_ENTRY_(EVSYS, 9),
CLOCK_ENTRY_(EVSYS, 10),
CLOCK_ENTRY_(EVSYS, 11),
CLOCK_ENTRY(SERCOMx_SLOW),
CLOCK_ENTRY_(SERCOM0, CORE),
CLOCK_ENTRY_(SERCOM1, CORE),
CLOCK_ENTRY_(SERCOM2, CORE),
CLOCK_ENTRY_(SERCOM3, CORE),
CLOCK_ENTRY_(SERCOM4, CORE),
CLOCK_ENTRY_(SERCOM5, CORE),
CLOCK_ENTRY(TCC0_TCC1),
CLOCK_ENTRY(TCC2_TCC3),
CLOCK_ENTRY(TC4_TC5),
CLOCK_ENTRY(TC6_TC7),
CLOCK_ENTRY(ADC),
CLOCK_ENTRY_(AC, DIG),
CLOCK_ENTRY_(AC, ANA),
CLOCK_ENTRY(DAC),
CLOCK_ENTRY(PTC),
CLOCK_ENTRY_(I2S, 0),
CLOCK_ENTRY_(I2S, 1),
CLOCK_ENTRY(SYSTICK),
#endif
};
MP_DEFINE_CONST_DICT(samd_clock_globals, samd_clock_global_dict_table);

View File

@ -0,0 +1,86 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "clocks.h"
#include "hpl_gclk_config.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "py/runtime.h"
bool gclk_enabled(uint8_t gclk) {
return GCLK->GENCTRL[gclk].bit.GENEN;
}
void disable_gclk(uint8_t gclk) {
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
GCLK->GENCTRL[gclk].bit.GENEN = false;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
void connect_gclk_to_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->PCHCTRL[peripheral].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk);
while(GCLK->SYNCBUSY.reg != 0) {}
}
void disconnect_gclk_from_peripheral(uint8_t gclk, uint8_t peripheral) {
GCLK->PCHCTRL[peripheral].reg = 0;
}
void enable_clock_generator(uint8_t gclk, uint32_t source, uint16_t divisor) {
GCLK->GENCTRL[gclk].reg = GCLK_GENCTRL_SRC(source) | GCLK_GENCTRL_DIV(divisor) | GCLK_GENCTRL_GENEN;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
void disable_clock_generator(uint8_t gclk) {
GCLK->GENCTRL[gclk].reg = 0;
while ((GCLK->SYNCBUSY.vec.GENCTRL & (1 << gclk)) != 0) {}
}
bool clock_get_enabled(uint8_t type, uint8_t index) {
return false;
}
bool clock_get_parent(uint8_t type, uint8_t index, uint8_t *p_type, uint8_t *p_index) {
return false;
}
uint32_t clock_get_frequency(uint8_t type, uint8_t index) {
return 0;
}
uint32_t clock_get_calibration(uint8_t type, uint8_t index) {
return 0;
}
int clock_set_calibration(uint8_t type, uint8_t index, uint32_t val) {
return -2;
}
STATIC const mp_rom_map_elem_t samd_clock_global_dict_table[] = {
};
MP_DEFINE_CONST_DICT(samd_clock_globals, samd_clock_global_dict_table);

View File

@ -177,8 +177,14 @@ safe_mode_t port_init(void) {
}
#endif
#ifdef SAMD21
hri_nvmctrl_set_CTRLB_RWS_bf(NVMCTRL, 2);
_pm_init();
clock_init();
#endif
#ifdef SAMD51
init_mcu();
#endif
board_init();
// Configure millisecond timer initialization.