cc3200: Add SPI module.

Only MASTER mode is supported. Transfer width is configurable to
8, 16 or 32 bits.
This commit is contained in:
danicampora 2015-03-19 15:17:39 +01:00
parent c45e641c1d
commit cd9bc14c8f
8 changed files with 499 additions and 12 deletions

View File

@ -96,6 +96,7 @@ APP_MODS_SRC_C = $(addprefix mods/,\
pybrtc.c \ pybrtc.c \
pybsd.c \ pybsd.c \
pybsleep.c \ pybsleep.c \
pybspi.c \
pybuart.c \ pybuart.c \
pybwdt.c \ pybwdt.c \
) )

View File

@ -718,7 +718,7 @@ SPIReset(unsigned long ulBase)
//! - \b SPI_WL_16 //! - \b SPI_WL_16
//! - \b SPI_WL_32 //! - \b SPI_WL_32
//! //!
//! Active state of Chip[ Selece can be defined by:- //! Active state of Chip Select can be defined by:-
//! - \b SPI_CS_ACTIVELOW //! - \b SPI_CS_ACTIVELOW
//! - \b SPI_CS_ACTIVEHIGH //! - \b SPI_CS_ACTIVEHIGH
//! //!

View File

@ -43,7 +43,7 @@
#include "pybuart.h" #include "pybuart.h"
#include "pybpin.h" #include "pybpin.h"
#include "pybrtc.h" #include "pybrtc.h"
#include "pybsystick.h" #include "mpsystick.h"
#include "simplelink.h" #include "simplelink.h"
#include "modwlan.h" #include "modwlan.h"
#include "moduos.h" #include "moduos.h"
@ -62,6 +62,7 @@
#include "pybsd.h" #include "pybsd.h"
#include "pybwdt.h" #include "pybwdt.h"
#include "pybsleep.h" #include "pybsleep.h"
#include "pybspi.h"
#include "utils.h" #include "utils.h"
#include "gccollect.h" #include "gccollect.h"
#include "mperror.h" #include "mperror.h"
@ -281,6 +282,7 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_WDT), (mp_obj_t)&pyb_wdt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_WDT), (mp_obj_t)&pyb_wdt_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Sleep), (mp_obj_t)&pyb_sleep_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_Sleep), (mp_obj_t)&pyb_sleep_obj },

View File

@ -105,7 +105,7 @@ typedef struct _pyb_i2c_obj_t {
#define PYBI2C_MODE_MASTER (0) #define PYBI2C_MODE_MASTER (0)
#define PYBI2C_MODE_SLAVE (1) #define PYBI2C_MODE_SLAVE (1)
#define PYBI2C_DEF_BAUD_RATE_HZ (100000) #define PYBI2C_MIN_BAUD_RATE_HZ (50000)
#define PYBI2C_DEF_BAUD_RATE_HZ (100000) #define PYBI2C_DEF_BAUD_RATE_HZ (100000)
#define PYBI2C_MAX_BAUD_RATE_HZ (400000) #define PYBI2C_MAX_BAUD_RATE_HZ (400000)
@ -123,7 +123,7 @@ typedef struct _pyb_i2c_obj_t {
/****************************************************************************** /******************************************************************************
DECLARE PRIVATE DATA DECLARE PRIVATE DATA
******************************************************************************/ ******************************************************************************/
STATIC pyb_i2c_obj_t pyb_i2c_obj; STATIC pyb_i2c_obj_t pyb_i2c_obj = {.baudrate = 0};
/****************************************************************************** /******************************************************************************
DEFINE PRIVATE FUNCTIONS DEFINE PRIVATE FUNCTIONS
@ -140,6 +140,8 @@ STATIC void i2c_init (pyb_i2c_obj_t *self) {
STATIC void i2c_deinit(void) { STATIC void i2c_deinit(void) {
MAP_I2CMasterDisable(I2CA0_BASE); MAP_I2CMasterDisable(I2CA0_BASE);
MAP_PRCMPeripheralClkDisable(PRCM_I2CA0, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); MAP_PRCMPeripheralClkDisable(PRCM_I2CA0, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
// invalidate the baudrate
pyb_i2c_obj.baudrate = 0;
} }
STATIC bool pyb_i2c_transaction(uint cmd, int timeout) { STATIC bool pyb_i2c_transaction(uint cmd, int timeout) {
@ -287,11 +289,12 @@ STATIC mp_obj_t pyb_i2c_init_helper(pyb_i2c_obj_t *self_in, mp_uint_t n_args, co
mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals); mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals);
if (vals[0].u_int != PYBI2C_MODE_MASTER) { if (vals[0].u_int != PYBI2C_MODE_MASTER) {
// thrown an exception since only master mode is supported for now // thrown an exception since only master mode is supported
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
} }
self->baudrate = MIN(vals[2].u_int, PYBI2C_MAX_BAUD_RATE_HZ); // make sure the baudrate is between the valid range
self->baudrate = MIN(MAX(vals[2].u_int, PYBI2C_MIN_BAUD_RATE_HZ), PYBI2C_MAX_BAUD_RATE_HZ);
// init the I2C bus // init the I2C bus
i2c_init(self); i2c_init(self);
@ -337,7 +340,12 @@ STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_i2c_obj_t *self = self_in; pyb_i2c_obj_t *self = self_in;
print(env, "<I2C0, I2C.MASTER, baudrate=%u>)", self->baudrate); if (self->baudrate > 0) {
print(env, "<I2C0, I2C.MASTER, baudrate=%u>)", self->baudrate);
}
else {
print(env, "<I2C0>");
}
} }
STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
@ -545,7 +553,7 @@ STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map
// determine width of mem_addr (1 or 2 bytes) // determine width of mem_addr (1 or 2 bytes)
mp_uint_t mem_addr_size = vals[4].u_int >> 3; mp_uint_t mem_addr_size = vals[4].u_int >> 3;
// Write the register address to be write to. // Write the register address to write to.
if (pyb_i2c_write (i2c_addr, (byte *)&mem_addr, mem_addr_size, false, vals[3].u_int)) { if (pyb_i2c_write (i2c_addr, (byte *)&mem_addr, mem_addr_size, false, vals[3].u_int)) {
// Write the specified length of data // Write the specified length of data
if (pyb_i2c_write (i2c_addr, bufinfo.buf, bufinfo.len, true, vals[3].u_int)) { if (pyb_i2c_write (i2c_addr, bufinfo.buf, bufinfo.len, true, vals[3].u_int)) {

424
cc3200/mods/pybspi.c Normal file
View File

@ -0,0 +1,424 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/mpstate.h"
#include MICROPY_HAL_H
#include "py/runtime.h"
#include "bufhelper.h"
#include "inc/hw_types.h"
#include "inc/hw_mcspi.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "rom_map.h"
#include "pin.h"
#include "prcm.h"
#include "spi.h"
#include "pybspi.h"
#include "mpexception.h"
#include "pybsleep.h"
/// \moduleref pyb
/// \class SPI - a master-driven serial protocol
///
/// SPI is a serial protocol that is driven by a master. At the physical level
/// there are 3 lines: SCK, MOSI, MISO.
///
/// See usage model of I2C; SPI is very similar. Main difference is
/// parameters to init the SPI bus:
///
/// from pyb import SPI
/// spi = SPI(0, SPI.MASTER, baudrate=2000000, bits=8, submode=0, cs=SPI.ACTIVE_LOW)
///
/// Only required parameter is mode, which must be SPI.MASTER. Submode may be 0-3.
/// Bit accepts 8, 16, 32. Chip select values are ACTIVE_LOW, ACTIVE_HIGH or NONE
///
/// Additional method for SPI:
///
/// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
/// buf = bytearray(4)
/// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
/// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf
/******************************************************************************
DEFINE TYPES
******************************************************************************/
typedef struct _pyb_spi_obj_t {
mp_obj_base_t base;
uint baudrate;
uint config;
vstr_t tx_vstr;
vstr_t rx_vstr;
uint tx_index;
uint rx_index;
byte submode;
byte wlen;
} pyb_spi_obj_t;
/******************************************************************************
DEFINE CONSTANTS
******************************************************************************/
#define PYBSPI_DEF_BAUDRATE 1000000 // 1MHz
#define PYBSPI_CS_NONE 0xFF // spi cs is controlled by the user
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
STATIC pyb_spi_obj_t pyb_spi_obj = {.baudrate = 0};
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
// only master mode is available for the moment
STATIC void pybspi_init (const pyb_spi_obj_t *self) {
// enable the peripheral clock
MAP_PRCMPeripheralClkEnable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
MAP_PRCMPeripheralReset(PRCM_GSPI);
MAP_SPIReset(GSPI_BASE);
// configure the interface (only master mode supported)
MAP_SPIConfigSetExpClk (GSPI_BASE, MAP_PRCMPeripheralClockGet(PRCM_GSPI),
self->baudrate, SPI_MODE_MASTER, self->submode, self->config);
// enable the interface
MAP_SPIEnable(GSPI_BASE);
}
STATIC void pybspi_deinit(void) {
MAP_SPIDisable(GSPI_BASE);
MAP_PRCMPeripheralClkDisable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
// invalidate the baudrate
pyb_spi_obj.baudrate = 0;
}
STATIC void pybspi_tx (pyb_spi_obj_t *self, const void *data) {
uint32_t txdata = 0xFFFFFFFF;
if (data) {
switch (self->wlen) {
case 1:
txdata = (uint8_t)(*(char *)data);
break;
case 2:
txdata = (uint16_t)(*(uint16_t *)data);
break;
case 4:
txdata = (uint32_t)(*(uint32_t *)data);
break;
default:
return;
}
}
MAP_SPIDataPut (GSPI_BASE, txdata);
}
STATIC void pybspi_rx (pyb_spi_obj_t *self, void *data) {
uint32_t rxdata;
MAP_SPIDataGet (GSPI_BASE, &rxdata);
if (data) {
switch (self->wlen) {
case 1:
*(char *)data = rxdata;
break;
case 2:
*(uint16_t *)data = rxdata;
break;
case 4:
*(uint32_t *)data = rxdata;
break;
default:
return;
}
}
}
STATIC void pybspi_transfer (pyb_spi_obj_t *self, const char *txdata, char *rxdata, uint32_t len) {
// send and receive the data
MAP_SPICSEnable(GSPI_BASE);
for (int i = 0; i < len / self->wlen; i += self->wlen) {
pybspi_tx(self, txdata ? (const void *)&txdata[i] : NULL);
pybspi_rx(self, rxdata ? (void *)&rxdata[i] : NULL);
}
MAP_SPICSDisable(GSPI_BASE);
}
/******************************************************************************/
/* Micro Python bindings */
/******************************************************************************/
STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = self_in;
if (self->baudrate > 0) {
print(env, "<SPI0, SPI.MASTER, baudrate=%u, config=%u, submode=%u, bits=%u",
self->baudrate, self->config, self->submode, (self->wlen * 8));
}
else {
print(env, "<SPI0>");
}
}
/// \method init(mode, baudrate=2000000, *, bits=8, submode=0, cs=SPI.ACTIVELOW)
///
/// Initialise the SPI bus with the given parameters:
///
/// - `mode` must be `SPI.MASTER`.
/// - `baudrate` is the SCK clock rate.
/// - `bits` is the transfer width size (8, 16, 32).
/// - `submode` is the spi mode (0, 1, 2, 3).
/// - `cs` can be ACTIVELOW, ACTIVEHIGH, or NONE
static const mp_arg_t pybspi_init_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = SPI_MODE_MASTER} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = PYBSPI_DEF_BAUDRATE} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_submode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_cs, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_CS_ACTIVELOW} },
};
STATIC mp_obj_t pyb_spi_init_helper(pyb_spi_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(pybspi_init_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pybspi_init_args), pybspi_init_args, args);
uint submode = args[3].u_int;
uint cs = args[4].u_int;
uint bits;
// save the word length for later use
self->wlen = args[2].u_int / 8;
switch (args[2].u_int) {
case 8:
bits = SPI_WL_8;
break;
case 16:
bits = SPI_WL_16;
break;
case 32:
bits = SPI_WL_32;
break;
default:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
break;
}
if (submode < SPI_SUB_MODE_0 || submode > SPI_SUB_MODE_3) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
if (cs != SPI_CS_ACTIVELOW && cs != SPI_CS_ACTIVEHIGH && cs != PYBSPI_CS_NONE) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
// build the configuration
self->baudrate = args[1].u_int;
self->config = bits | cs | SPI_SW_CTRL_CS | SPI_4PIN_MODE | SPI_TURBO_OFF;
self->submode = submode;
// init the bus
pybspi_init((const pyb_spi_obj_t *)self);
// register it with the sleep module
pybsleep_add((const mp_obj_t)self, (WakeUpCB_t)pybspi_init);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct an SPI object on the given bus. `bus` can be only 0.
/// With no additional parameters, the SPI object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
STATIC mp_obj_t pyb_spi_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
mp_int_t spi_id = mp_obj_get_int(args[0]);
// check the spi bus id
if (spi_id != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
pyb_spi_obj_t *self = &pyb_spi_obj;
self->base.type = &pyb_spi_type;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_spi_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return self;
}
STATIC mp_obj_t pyb_spi_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);
/// \method deinit()
/// Turn off the spi bus.
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
pybspi_deinit();
// unregister it with the sleep module
pybsleep_remove((const mp_obj_t)self_in);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);
/// \method send(send)
/// Send data on the bus:
///
/// - `send` is the data to send (a byte to send, or a buffer object).
///
STATIC mp_obj_t pyb_spi_send (mp_obj_t self_in, mp_obj_t send_o) {
pyb_spi_obj_t *self = self_in;
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(send_o, &bufinfo, data);
// just send
pybspi_transfer(self, (const char *)bufinfo.buf, NULL, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_send_obj, pyb_spi_send);
/// \method recv(recv)
///
/// Receive data on the bus:
///
/// - `recv` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
///
/// Return: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_spi_recv(mp_obj_t self_in, mp_obj_t recv_o) {
pyb_spi_obj_t *self = self_in;
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(recv_o, &vstr);
// just receive
pybspi_transfer(self, NULL, vstr.buf, vstr.len);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_recv_obj, pyb_spi_recv);
/// \method send_recv(send, recv)
///
/// Send and receive data on the bus at the same time:
///
/// - `send` is the data to send (an integer to send, or a buffer object).
/// - `recv` is a mutable buffer which will be filled with received bytes.
/// It can be the same as `send`, or omitted. If omitted, a new buffer will
/// be created.
///
/// Return: the buffer with the received bytes.
STATIC mp_obj_t pyb_spi_send_recv (mp_uint_t n_args, const mp_obj_t *args) {
pyb_spi_obj_t *self = args[0];
// get buffers to send from/receive to
mp_buffer_info_t bufinfo_send;
uint8_t data_send[1];
mp_buffer_info_t bufinfo_recv;
vstr_t vstr_recv;
mp_obj_t o_ret;
if (args[1] == args[2]) {
// same object for sending and receiving, it must be a r/w buffer
mp_get_buffer_raise(args[1], &bufinfo_send, MP_BUFFER_RW);
bufinfo_recv = bufinfo_send;
o_ret = args[1];
} else {
// get the buffer to send from
pyb_buf_get_for_send(args[1], &bufinfo_send, data_send);
// get the buffer to receive into
if (n_args == 2) {
// only the send was argument given, so create a fresh buffer of the send length
vstr_init_len(&vstr_recv, bufinfo_send.len);
bufinfo_recv.len = vstr_recv.len;
bufinfo_recv.buf = vstr_recv.buf;
o_ret = MP_OBJ_NULL;
}
else {
// recv argument given
mp_get_buffer_raise(args[2], &bufinfo_recv, MP_BUFFER_WRITE);
if (bufinfo_recv.len != bufinfo_send.len) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments));
}
o_ret = args[2];
}
}
// send and receive
pybspi_transfer(self, (const char *)bufinfo_send.buf, vstr_recv.buf, bufinfo_send.len);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_spi_send_recv_obj, 2, 3, pyb_spi_send_recv);
STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_spi_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_spi_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ACTIVE_LOW), MP_OBJ_NEW_SMALL_INT(SPI_CS_ACTIVELOW) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ACTIVE_HIGH), MP_OBJ_NEW_SMALL_INT(SPI_CS_ACTIVEHIGH) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);
const mp_obj_type_t pyb_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = pyb_spi_print,
.make_new = pyb_spi_make_new,
.locals_dict = (mp_obj_t)&pyb_spi_locals_dict,
};

33
cc3200/mods/pybspi.h Normal file
View File

@ -0,0 +1,33 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef PYBSPI_H_
#define PYBSPI_H_
extern const mp_obj_type_t pyb_spi_type;
#endif // PYBSPI_H_

View File

@ -241,10 +241,7 @@ soft_reset_exit:
pybsd_deinit(); pybsd_deinit();
#endif #endif
printf("PYB: soft reboot\n"); printf("WiPy: soft reset\n");
// wait for all bus transfers to complete
HAL_Delay(50);
// disable wlan // disable wlan
wlan_stop(SL_STOP_TIMEOUT_LONG); wlan_stop(SL_STOP_TIMEOUT_LONG);

View File

@ -149,10 +149,13 @@ Q(read)
// for SD class // for SD class
Q(SD) Q(SD)
Q(enable)
Q(disable)
// for RTC class // for RTC class
Q(RTC) Q(RTC)
Q(datetime) Q(datetime)
Q(callback)
// for time class // for time class
Q(utime) Q(utime)
@ -229,10 +232,13 @@ Q(WPS_PIN)
// for WDT class // for WDT class
Q(WDT) Q(WDT)
Q(enable)
Q(kick) Q(kick)
// for HeartBeat class // for HeartBeat class
Q(HeartBeat) Q(HeartBeat)
Q(enable)
Q(disable)
// for callback class // for callback class
Q(init) Q(init)
@ -264,3 +270,19 @@ Q(WLAN_WAKE)
Q(PIN_WAKE) Q(PIN_WAKE)
Q(RTC_WAKE) Q(RTC_WAKE)
// for SPI class
Q(SPI)
Q(mode)
Q(baudrate)
Q(bits)
Q(submode)
Q(cs)
Q(init)
Q(deinit)
Q(send)
Q(recv)
Q(send_recv)
Q(MASTER)
Q(ACTIVE_LOW)
Q(ACTIVE_HIGH)