Merge branch 'dhylands-timer-pwm2'

This commit is contained in:
Damien George 2014-09-21 22:56:07 +01:00
commit c95359ecc6
22 changed files with 2110 additions and 90 deletions

View File

@ -413,7 +413,7 @@ STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *self, mp_uint_t n_args, con
STATIC mp_obj_t pin_obj_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init);
MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init);
/// \method value([value])
/// Get or set the digital logic level of the pin:

View File

@ -82,12 +82,14 @@ extern const mp_obj_type_t pin_cpu_pins_obj_type;
extern const mp_obj_dict_t pin_cpu_pins_locals_dict;
extern const mp_obj_dict_t pin_board_pins_locals_dict;
MP_DECLARE_CONST_FUN_OBJ(pin_init_obj);
void pin_init0(void);
uint32_t pin_get_mode(const pin_obj_t *pin);
uint32_t pin_get_pull(const pin_obj_t *pin);
uint32_t pin_get_af(const pin_obj_t *pin);
const pin_obj_t *pin_find(mp_obj_t user_obj);
const pin_obj_t *pin_find_named_pin(const mp_obj_dict_t *named_pins, mp_obj_t name);
const pin_af_obj_t *pin_find_af(const pin_obj_t *pin, uint8_t fn, uint8_t unit, uint8_t pin_type);
const pin_af_obj_t *pin_find_af(const pin_obj_t *pin, uint8_t fn, uint8_t unit);
const pin_af_obj_t *pin_find_af_by_index(const pin_obj_t *pin, mp_uint_t af_idx);
const pin_af_obj_t *pin_find_af_by_name(const pin_obj_t *pin, const char *name);

View File

@ -64,17 +64,15 @@ const pin_obj_t *pin_find_named_pin(const mp_obj_dict_t *named_pins, mp_obj_t na
return NULL;
}
/* unused
const pin_af_obj_t *pin_find_af(const pin_obj_t *pin, uint8_t fn, uint8_t unit, uint8_t type) {
const pin_af_obj_t *pin_find_af(const pin_obj_t *pin, uint8_t fn, uint8_t unit) {
const pin_af_obj_t *af = pin->af;
for (mp_uint_t i = 0; i < pin->num_af; i++, af++) {
if (af->fn == fn && af->unit == unit && af->type == type) {
if (af->fn == fn && af->unit == unit) {
return af;
}
}
return NULL;
}
*/
const pin_af_obj_t *pin_find_af_by_index(const pin_obj_t *pin, mp_uint_t af_idx) {
const pin_af_obj_t *af = pin->af;

View File

@ -144,6 +144,9 @@ Q(recv)
// for Timer class
Q(Timer)
Q(init)
Q(deinit)
Q(channel)
Q(counter)
Q(prescaler)
Q(period)
@ -151,6 +154,31 @@ Q(callback)
Q(freq)
Q(mode)
Q(div)
Q(UP)
Q(DOWN)
Q(CENTER)
Q(IC)
Q(PWM)
Q(PWM_INVERTED)
Q(OC_TIMING)
Q(OC_ACTIVE)
Q(OC_INACTIVE)
Q(OC_TOGGLE)
Q(OC_FORCED_ACTIVE)
Q(OC_FORCED_INACTIVE)
Q(HIGH)
Q(LOW)
Q(RISING)
Q(FALLING)
Q(BOTH)
// for TimerChannel class
Q(TimerChannel)
Q(pulse_width)
Q(pulse_width_ratio)
Q(compare)
Q(capture)
Q(polarity)
// for ExtInt class
Q(ExtInt)

View File

@ -41,6 +41,7 @@
#include "runtime.h"
#include "timer.h"
#include "servo.h"
#include "pin.h"
/// \moduleref pyb
/// \class Timer - periodically call a function
@ -63,10 +64,10 @@
/// Further examples:
///
/// tim = pyb.Timer(4, freq=100) # freq in Hz
/// tim = pyb.Timer(4, prescaler=1, period=100)
/// tim = pyb.Timer(4, prescaler=0, period=99)
/// tim.counter() # get counter (can also set)
/// tim.prescaler(2) # set prescaler (can also get)
/// tim.period(200) # set period (can also get)
/// tim.period(199) # set period (can also get)
/// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
/// tim.callback(None) # clear callback
///
@ -88,20 +89,65 @@
// TIM6:
// - ADC, DAC for read_timed and write_timed
typedef enum {
CHANNEL_MODE_PWM_NORMAL,
CHANNEL_MODE_PWM_INVERTED,
CHANNEL_MODE_OC_TIMING,
CHANNEL_MODE_OC_ACTIVE,
CHANNEL_MODE_OC_INACTIVE,
CHANNEL_MODE_OC_TOGGLE,
CHANNEL_MODE_OC_FORCED_ACTIVE,
CHANNEL_MODE_OC_FORCED_INACTIVE,
CHANNEL_MODE_IC,
} pyb_channel_mode;
STATIC const struct {
qstr name;
uint32_t oc_mode;
} channel_mode_info[] = {
{ MP_QSTR_PWM, TIM_OCMODE_PWM1 },
{ MP_QSTR_PWM_INVERTED, TIM_OCMODE_PWM2 },
{ MP_QSTR_OC_TIMING, TIM_OCMODE_TIMING },
{ MP_QSTR_OC_ACTIVE, TIM_OCMODE_ACTIVE },
{ MP_QSTR_OC_INACTIVE, TIM_OCMODE_INACTIVE },
{ MP_QSTR_OC_TOGGLE, TIM_OCMODE_TOGGLE },
{ MP_QSTR_OC_FORCED_ACTIVE, TIM_OCMODE_FORCED_ACTIVE },
{ MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
{ MP_QSTR_IC, 0 },
};
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint8_t channel;
uint8_t mode;
mp_obj_t callback;
struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
mp_uint_t tim_id;
uint8_t tim_id;
uint8_t is_32bit;
mp_obj_t callback;
TIM_HandleTypeDef tim;
IRQn_Type irqn;
pyb_timer_channel_obj_t *channel;
} pyb_timer_obj_t;
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
#define TIMER_CNT_MASK(self) ((self)->is_32bit ? 0x3fffffff : 0xffff)
#define TIMER_CHANNEL(self) ((((self)->channel) - 1) << 2)
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
TIM_HandleTypeDef TIM6_Handle;
// Used to divide down TIM3 and periodically call the flash storage IRQ
static uint32_t tim3_counter = 0;
STATIC uint32_t tim3_counter = 0;
// Used to do callbacks to Python code on interrupt
STATIC pyb_timer_obj_t *pyb_timer_obj_all[14];
@ -109,6 +155,7 @@ STATIC pyb_timer_obj_t *pyb_timer_obj_all[14];
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
void timer_init0(void) {
tim3_counter = 0;
@ -135,7 +182,7 @@ void timer_tim3_init(void) {
TIM3_Handle.Instance = TIM3;
TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz
TIM3_Handle.Init.ClockDivision = 0;
TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TIM3_Handle);
@ -167,10 +214,11 @@ void timer_tim5_init(void) {
// PWM clock configuration
TIM5_Handle.Instance = TIM5;
TIM5_Handle.Init.Period = 2000; // timer cycles at 50Hz
TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz
TIM5_Handle.Init.ClockDivision = 0;
TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_PWM_Init(&TIM5_Handle);
}
@ -194,7 +242,7 @@ void timer_tim6_init(uint freq) {
TIM6_Handle.Instance = TIM6;
TIM6_Handle.Init.Period = period - 1;
TIM6_Handle.Init.Prescaler = prescaler - 1;
TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6
TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
HAL_TIM_Base_Init(&TIM6_Handle);
}
@ -218,19 +266,22 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
/******************************************************************************/
/* Micro Python bindings */
STATIC const mp_obj_type_t pyb_timer_channel_type;
STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *self = self_in;
if (self->tim.State == HAL_TIM_STATE_RESET) {
print(env, "Timer(%u)", self->tim_id);
} else {
print(env, "Timer(%u, prescaler=%u, period=%u, mode=%u, div=%u)",
print(env, "Timer(%u, prescaler=%u, period=%u, mode=%s, div=%u)",
self->tim_id,
self->tim.Init.Prescaler,
self->tim.Init.Period,
self->tim.Init.CounterMode,
self->tim.Init.ClockDivision
);
self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ? "UP" :
self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN ? "DOWN" : "CENTER",
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
}
}
@ -239,13 +290,45 @@ STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void
/// or by prescaler and period:
///
/// tim.init(freq=100) # set the timer to trigger at 100Hz
/// tim.init(prescaler=100, period=300) # set the prescaler and period directly
/// tim.init(prescaler=83, period=999) # set the prescaler and period directly
///
/// Keyword arguments:
///
/// - `freq` - specifies the periodic frequency of the timer. You migh also
/// view this as the frequency with which the timer goes through
/// one complete cycle.
///
/// - `prescaler` [0-0xffff] - specifies the value to be loaded into the
/// timer's Prescaler Register (PSC). The timer clock source is divided by
/// (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
/// have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
/// have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
/// - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
/// Specifies the value to be loaded into the timer's AutoReload
/// Register (ARR). This determines the period of the timer (i.e. when the
/// counter cycles). The timer counter will roll-over after `period + 1`
/// timer clock cycles.
///
/// - `mode` can be one of:
/// - `Timer.UP` - configures the timer to count from 0 to ARR (default)
/// - `Timer.DOWN` - configures the timer to count from ARR down to 0.
/// - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
/// then back down to 0.
///
/// - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
/// the sampling clock used by the digital filters.
///
/// - `callback` - as per Timer.callback()
///
/// You must either specify freq or both of period and prescaler.
STATIC const mp_arg_t pyb_timer_init_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
{ MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_CLOCKDIVISION_DIV1} },
{ MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
#define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args)
@ -281,7 +364,7 @@ STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, c
// respective APB clock. See DM00031020 Rev 4, page 115.
uint32_t period = MAX(1, 2 * tim_clock / vals[0].u_int);
uint32_t prescaler = 1;
while (period > 0xffff) {
while (period > TIMER_CNT_MASK(self)) {
period >>= 1;
prescaler <<= 1;
}
@ -296,9 +379,16 @@ STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, c
}
init->CounterMode = vals[3].u_int;
init->ClockDivision = vals[4].u_int;
init->ClockDivision = vals[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
vals[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
TIM_CLOCKDIVISION_DIV1;
init->RepetitionCounter = 0;
if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid counter_mode (%d)", init->CounterMode));
}
// init the TIM peripheral
switch (self->tim_id) {
case 1: __TIM1_CLK_ENABLE(); break;
@ -316,14 +406,18 @@ STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, c
case 13: __TIM13_CLK_ENABLE(); break;
case 14: __TIM14_CLK_ENABLE(); break;
}
HAL_TIM_Base_Init(&self->tim);
HAL_TIM_Base_Start(&self->tim);
// set the priority (if not a special timer)
if (self->tim_id != 3 && self->tim_id != 5) {
HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
}
HAL_TIM_Base_Init(&self->tim);
if (vals[5].u_obj == mp_const_none) {
HAL_TIM_Base_Start(&self->tim);
} else {
pyb_timer_callback(self, vals[5].u_obj);
}
return mp_const_none;
}
@ -337,19 +431,22 @@ STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t
// create new Timer object
pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
memset(tim, 0, sizeof(*tim));
tim->base.type = &pyb_timer_type;
tim->callback = mp_const_none;
memset(&tim->tim, 0, sizeof(tim->tim));
tim->channel = NULL;
// get TIM number
tim->tim_id = mp_obj_get_int(args[0]);
tim->is_32bit = false;
switch (tim->tim_id) {
case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; break;
case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; break;
case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
@ -386,21 +483,282 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
/// Deinitialises the timer.
///
/// Disables the callback (and the associated irq).
/// Disables any channel callbacks (and the associated irq).
/// Stops the timer, and disables the timer peripheral.
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
// Disable the interrupt
// Disable the base interrupt
pyb_timer_callback(self_in, mp_const_none);
pyb_timer_channel_obj_t *chan = self->channel;
self->channel = NULL;
// Disable the channel interrupts
while (chan != NULL) {
pyb_timer_channel_callback(chan, mp_const_none);
pyb_timer_channel_obj_t *prev_chan = chan;
chan = chan->next;
prev_chan->next = NULL;
}
HAL_TIM_Base_DeInit(&self->tim);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, mode, ...)
///
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
/// - `mode` can be one of:
/// - `Timer.PWM` - configure the timer in PWM mode (active high).
/// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
/// - `Timer.OC_TIMING` - indicates that no pin is driven.
/// - `Timer.OC_ACTIVE` - the pin will be made active when a compare
/// match occurs (active is determined by polarity)
/// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
/// match occurs.
/// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
/// - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
/// - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
/// - `Timer.IC` - configure the timer in Input Capture mode.
///
/// - `callback` - as per TimerChannel.callback()
///
/// - `pin` None (the default) or a Pin object. If specified (and not None)
/// this will cause the alternate function of the the indicated pin
/// to be configured for this timer channel. An error will be raised if
/// the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
/// - `pulse_width` - determines the initial pulse width value to use.
/// - `pulse_width_ratio` - determines the initial pulse width ratio to use.
///
/// Keyword arguments for Timer.OC modes:
///
/// - `compare` - determines the initial value of the compare register.
///
/// - `polarity` can be one of:
/// - `Timer.HIGH` - output is active high
/// - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
/// - `polarity` can be one of:
/// - `Timer.RISING` - captures on rising edge.
/// - `Timer.FALLING` - captures on falling edge.
/// - `Timer.BOTH` - captures on both edges.
///
/// PWM Example:
///
/// timer = pyb.Timer(2, freq=1000)
/// ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
/// ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
STATIC const mp_arg_t pyb_timer_channel_args[] = {
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_pulse_width_ratio, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
};
#define PYB_TIMER_CHANNEL_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_channel_args)
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_timer_obj_t *self = args[0];
mp_int_t channel = mp_obj_get_int(args[1]);
if (channel < 1 || channel > 4) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid channel (%d)", channel));
}
pyb_timer_channel_obj_t *chan = self->channel;
pyb_timer_channel_obj_t *prev_chan = NULL;
while (chan != NULL) {
if (chan->channel == channel) {
break;
}
prev_chan = chan;
chan = chan->next;
}
// If only the channel number is given return the previously allocated
// channel (or None if no previous channel).
if (n_args == 2) {
if (chan) {
return chan;
}
return mp_const_none;
}
// If there was already a channel, then remove it from the list. Note that
// the order we do things here is important so as to appear atomic to
// the IRQ handler.
if (chan) {
// Turn off any IRQ associated with the channel.
pyb_timer_channel_callback(chan, mp_const_none);
// Unlink the channel from the list.
if (prev_chan) {
prev_chan->next = chan->next;
}
self->channel = chan->next;
chan->next = NULL;
}
// Allocate and initialize a new channel
mp_arg_val_t vals[PYB_TIMER_CHANNEL_NUM_ARGS];
mp_arg_parse_all(n_args - 3, args + 3, kw_args, PYB_TIMER_CHANNEL_NUM_ARGS, pyb_timer_channel_args, vals);
chan = m_new_obj(pyb_timer_channel_obj_t);
memset(chan, 0, sizeof(*chan));
chan->base.type = &pyb_timer_channel_type;
chan->timer = self;
chan->channel = channel;
chan->mode = mp_obj_get_int(args[2]);
chan->callback = vals[0].u_obj;
mp_obj_t pin_obj = vals[1].u_obj;
if (pin_obj != mp_const_none) {
if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
}
const pin_obj_t *pin = pin_obj;
const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
if (af == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id));
}
// pin.init(mode=AF_PP, af=idx)
const mp_obj_t args[6] = {
(mp_obj_t)&pin_init_obj,
pin_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
MP_OBJ_NEW_QSTR(MP_QSTR_af), MP_OBJ_NEW_SMALL_INT(af->idx)
};
mp_call_method_n_kw(0, 2, args);
}
// Link the channel to the timer before we turn the channel on.
// Note that this needs to appear atomic to the IRQ handler (the write
// to self->channel is atomic, so we're good, but I thought I'd mention
// in case this was ever changed in the future).
chan->next = self->channel;
self->channel = chan;
switch (chan->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
if (vals[2].u_int != 0xffffffff) {
// absolute pulse width value given
oc_config.Pulse = vals[2].u_int;
} else if (vals[3].u_obj != mp_const_none) {
// pulse width ratio given
uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self)) + 1;
uint32_t cmp = mp_obj_get_float(vals[3].u_obj) * period;
if (cmp < 0) {
cmp = 0;
} else if (cmp > period) {
cmp = period;
}
oc_config.Pulse = cmp;
} else {
// nothing given, default to pulse width of 0
oc_config.Pulse = 0;
}
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
oc_config.Pulse = vals[4].u_int;
oc_config.OCPolarity = vals[5].u_int;
if (oc_config.OCPolarity == 0xffffffff) {
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
}
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", oc_config.OCPolarity));
}
HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
case CHANNEL_MODE_IC: {
TIM_IC_InitTypeDef ic_config;
ic_config.ICPolarity = vals[5].u_int;
if (ic_config.ICPolarity == 0xffffffff) {
ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
}
ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
ic_config.ICPrescaler = TIM_ICPSC_DIV1;
ic_config.ICFilter = 0;
if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", ic_config.ICPolarity));
}
HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid mode (%d)", chan->mode));
}
return chan;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
/// \method counter([value])
/// Get or set the timer counter.
mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
@ -415,7 +773,7 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_time
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
@ -430,14 +788,14 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_ti
/// \method period([value])
/// Get or set the period of the timer.
mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(self->tim.Instance->ARR & 0xffff);
return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
} else {
// set
__HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & 0xffff);
__HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
return mp_const_none;
}
}
@ -469,12 +827,29 @@ STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UP), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_DOWN), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CENTER), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IC), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_HIGH), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LOW), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RISING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FALLING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BOTH), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
const mp_obj_type_t pyb_timer_type = {
@ -485,36 +860,163 @@ const mp_obj_type_t pyb_timer_type = {
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};
void timer_irq_handler(uint tim_id) {
if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
// get the timer object
pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1];
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
STATIC void pyb_timer_channel_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *self = self_in;
if (tim == NULL) {
// timer object has not been set, so we can't do anything
return;
print(env, "TimerChannel(timer=%u, channel=%u, mode=%s)",
self->timer->tim_id,
self->channel,
qstr_str(channel_mode_info[self->mode].name));
}
// see if it was a TIM update event (the only event we currently interrupt on)
if (__HAL_TIM_GET_FLAG(&tim->tim, TIM_FLAG_UPDATE) != RESET) {
if (__HAL_TIM_GET_ITSTATUS(&tim->tim, TIM_IT_UPDATE) != RESET) {
/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.
/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.
/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
if (self->channel == 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d no channel specified", self->timer->tim_id));
}
if (n_args == 1) {
// get
return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
} else {
// set
__HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);
/// \method pulse_width_ratio([value])
/// Get or set the pulse width ratio associated with a channel. The value is
/// a floating-point number between 0.0 and 1.0, and is relative to the period
/// of the timer associated with this channel. For example, a ratio of 0.5
/// would be a 50% duty cycle.
STATIC mp_obj_t pyb_timer_channel_pulse_width_ratio(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
if (self->channel == 0) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d no channel specified", self->timer->tim_id));
}
uint32_t period = (__HAL_TIM_GetAutoreload(&self->timer->tim) & TIMER_CNT_MASK(self->timer)) + 1;
if (n_args == 1) {
// get
uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
return mp_obj_new_float((float)cmp / (float)period);
} else {
// set
uint32_t cmp = mp_obj_get_float(args[1]) * period;
if (cmp < 0) {
cmp = 0;
} else if (cmp > period) {
cmp = period;
}
__HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_ratio_obj, 1, 2, pyb_timer_channel_pulse_width_ratio);
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_channel_obj_t *self = self_in;
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
HAL_NVIC_EnableIRQ(self->timer->irqn);
// start timer, so that it interrupts on overflow
switch (self->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED:
HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE:
HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_IC:
HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
}
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);
STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_ratio), (mp_obj_t)&pyb_timer_channel_pulse_width_ratio_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
STATIC const mp_obj_type_t pyb_timer_channel_type = {
{ &mp_type_type },
.name = MP_QSTR_TimerChannel,
.print = pyb_timer_channel_print,
.locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};
STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
uint32_t irq_mask = TIMER_IRQ_MASK(channel);
if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
if (__HAL_TIM_GET_ITSTATUS(&tim->tim, irq_mask) != RESET) {
// clear the interrupt
__HAL_TIM_CLEAR_IT(&tim->tim, TIM_IT_UPDATE);
__HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);
// execute callback if it's set
if (tim->callback != mp_const_none) {
if (callback != mp_const_none) {
// When executing code within a handler we must lock the GC to prevent
// any memory allocations. We must also catch any exceptions.
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_1(tim->callback, tim);
mp_call_function_1(callback, tim);
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
tim->callback = mp_const_none;
__HAL_TIM_DISABLE_IT(&tim->tim, TIM_IT_UPDATE);
printf("Uncaught exception in Timer(" UINT_FMT ") interrupt handler\n", tim->tim_id);
__HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
if (channel == 0) {
printf("Uncaught exception in Timer(" UINT_FMT
") interrupt handler\n", tim->tim_id);
} else {
printf("Uncaught exception in Timer(" UINT_FMT ") channel "
UINT_FMT " interrupt handler\n", tim->tim_id, channel);
}
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
}
gc_unlock();
@ -522,4 +1024,37 @@ void timer_irq_handler(uint tim_id) {
}
}
}
void timer_irq_handler(uint tim_id) {
if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
// get the timer object
pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1];
if (tim == NULL) {
// Timer object has not been set, so we can't do anything.
// This can happen under normal circumstances for timers like
// 1 & 10 which use the same IRQ.
return;
}
// Check for timer (versus timer channel) interrupt.
timer_handle_irq_channel(tim, 0, tim->callback);
uint32_t handled = TIMER_IRQ_MASK(0);
// Check to see if a timer channel interrupt was pending
pyb_timer_channel_obj_t *chan = tim->channel;
while (chan != NULL) {
timer_handle_irq_channel(tim, chan->channel, chan->callback);
handled |= TIMER_IRQ_MASK(chan->channel);
chan = chan->next;
}
// Finally, clear any remaining interrupt sources. Otherwise we'll
// just get called continuously.
uint32_t unhandled = __HAL_TIM_GET_ITSTATUS(&tim->tim, 0xff & ~handled);
if (unhandled != 0) {
__HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
printf("Unhandled interrupt SR=0x%02lx (now disabled)\n", unhandled);
}
}
}

View File

@ -42,8 +42,11 @@ CFLAGS += -Og -ggdb
else
CFLAGS += -Os #-DNDEBUG
endif
CFLAGS += -fdata-sections -ffunction-sections
LDFLAGS += -Wl,--gc-sections
SRC_C = \
hal_ftm.c \
hal_gpio.c \
help.c \
import.c \
@ -54,7 +57,9 @@ SRC_C = \
memzip.c \
modpyb.c \
pin_defs_teensy.c \
reg.c \
teensy_hal.c \
timer.c \
uart.c \
usb.c \
@ -141,6 +146,7 @@ GEN_PINS_SRC = $(BUILD)/pins_gen.c
GEN_PINS_HDR = $(HEADER_BUILD)/pins.h
GEN_PINS_QSTR = $(BUILD)/pins_qstr.h
GEN_PINS_AF_CONST = $(HEADER_BUILD)/pins_af_const.h
GEN_PINS_AF_PY = $(BUILD)/pins_af.py
# Making OBJ use an order-only depenedency on the generated pins.h file
# has the side effect of making the pins.h file before we actually compile
@ -153,7 +159,7 @@ $(OBJ): | $(HEADER_BUILD)/pins.h
# both pins_$(BOARD).c and pins.h
$(BUILD)/%_gen.c $(HEADER_BUILD)/%.h $(HEADER_BUILD)/%_af_const.h $(BUILD)/%_qstr.h: teensy_%.csv $(MAKE_PINS) $(AF_FILE) $(PREFIX_FILE) | $(HEADER_BUILD)
$(ECHO) "Create $@"
$(Q)$(PYTHON) $(MAKE_PINS) --board $(BOARD_PINS) --af $(AF_FILE) --prefix $(PREFIX_FILE) --hdr $(GEN_PINS_HDR) --qstr $(GEN_PINS_QSTR) --af-const $(GEN_PINS_AF_CONST) > $(GEN_PINS_SRC)
$(Q)$(PYTHON) $(MAKE_PINS) --board $(BOARD_PINS) --af $(AF_FILE) --prefix $(PREFIX_FILE) --hdr $(GEN_PINS_HDR) --qstr $(GEN_PINS_QSTR) --af-const $(GEN_PINS_AF_CONST) --af-py $(GEN_PINS_AF_PY) > $(GEN_PINS_SRC)
$(BUILD)/pins_gen.o: $(BUILD)/pins_gen.c
$(call compile_c)

201
teensy/hal_ftm.c Normal file
View File

@ -0,0 +1,201 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <mk20dx128.h>
#include "teensy_hal.h"
void HAL_FTM_Base_Init(FTM_HandleTypeDef *hftm) {
/* Check the parameters */
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
assert_param(IS_FTM_PRESCALERSHIFT(hftm->Init.PrescalerShift));
assert_param(IS_FTM_COUNTERMODE(hftm->Init.CounterMode));
assert_param(IS_FTM_PERIOD(hftm->Init.Period));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->MODE = FTM_MODE_WPDIS;
FTMx->SC = 0;
FTMx->MOD = hftm->Init.Period;
uint32_t sc = FTM_SC_PS(hftm->Init.PrescalerShift);
if (hftm->Init.CounterMode == FTM_COUNTERMODE_CENTER) {
sc |= FTM_SC_CPWMS;
}
FTMx->SC = sc;
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_Base_Start(FTM_HandleTypeDef *hftm) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->CNT = 0;
FTMx->SC &= ~FTM_SC_CLKS(3);
FTMx->SC |= FTM_SC_CLKS(1);
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_Base_Start_IT(FTM_HandleTypeDef *hftm) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->CNT = 0;
FTMx->SC |= FTM_SC_CLKS(1) | FTM_SC_TOIE;
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_Base_DeInit(FTM_HandleTypeDef *hftm) {
assert_param(IS_FTM_INSTANCE(hftm->Instance));
hftm->State = HAL_FTM_STATE_BUSY;
__HAL_FTM_DISABLE_TOF_IT(hftm);
hftm->State = HAL_FTM_STATE_RESET;
}
void HAL_FTM_OC_Init(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_Init(hftm);
}
void HAL_FTM_OC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
assert_param(IS_FTM_CHANNEL(channel));
assert_param(IS_FTM_OC_MODE(sConfig->OCMode));
assert_param(IS_FTM_OC_PULSE(sConfig->Pulse));
assert_param(IS_FTM_OC_POLARITY(sConfig->OCPolarity));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->channel[channel].CSC = sConfig->OCMode;
FTMx->channel[channel].CV = sConfig->Pulse;
if (sConfig->OCPolarity & 1) {
FTMx->POL |= (1 << channel);
} else {
FTMx->POL &= ~(1 << channel);
}
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_OC_Start(FTM_HandleTypeDef *hftm, uint32_t channel) {
// Nothing else to do
}
void HAL_FTM_OC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
FTMx->channel[channel].CSC |= FTM_CSC_CHIE;
}
void HAL_FTM_OC_DeInit(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_DeInit(hftm);
}
void HAL_FTM_PWM_Init(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_Init(hftm);
}
void HAL_FTM_PWM_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
assert_param(IS_FTM_CHANNEL(channel));
assert_param(IS_FTM_PWM_MODE(sConfig->OCMode));
assert_param(IS_FTM_OC_PULSE(sConfig->Pulse));
assert_param(IS_FTM_OC_POLARITY(sConfig->OCPolarity));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->channel[channel].CSC = sConfig->OCMode;
FTMx->channel[channel].CV = sConfig->Pulse;
if (sConfig->OCPolarity & 1) {
FTMx->POL |= (1 << channel);
} else {
FTMx->POL &= ~(1 << channel);
}
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_PWM_Start(FTM_HandleTypeDef *hftm, uint32_t channel) {
// Nothing else to do
}
void HAL_FTM_PWM_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
FTMx->channel[channel].CSC |= FTM_CSC_CHIE;
}
void HAL_FTM_PWM_DeInit(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_DeInit(hftm);
}
void HAL_FTM_IC_Init(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_Init(hftm);
}
void HAL_FTM_IC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_IC_InitTypeDef* sConfig, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
assert_param(IS_FTM_CHANNEL(channel));
assert_param(IS_FTM_IC_POLARITY(sConfig->ICPolarity));
hftm->State = HAL_FTM_STATE_BUSY;
FTMx->channel[channel].CSC = sConfig->ICPolarity;
hftm->State = HAL_FTM_STATE_READY;
}
void HAL_FTM_IC_Start(FTM_HandleTypeDef *hftm, uint32_t channel) {
//FTM_TypeDef *FTMx = hftm->Instance;
//assert_param(IS_FTM_INSTANCE(FTMx));
// Nothing else to do
}
void HAL_FTM_IC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel) {
FTM_TypeDef *FTMx = hftm->Instance;
assert_param(IS_FTM_INSTANCE(FTMx));
FTMx->channel[channel].CSC |= FTM_CSC_CHIE;
}
void HAL_FTM_IC_DeInit(FTM_HandleTypeDef *hftm) {
HAL_FTM_Base_DeInit(hftm);
}

184
teensy/hal_ftm.h Normal file
View File

@ -0,0 +1,184 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define FTM0 ((FTM_TypeDef *)&FTM0_SC)
#define FTM1 ((FTM_TypeDef *)&FTM1_SC)
#define FTM2 ((FTM_TypeDef *)&FTM2_SC)
typedef struct {
volatile uint32_t CSC; // Channel x Status And Control
volatile uint32_t CV; // Channel x Value
} FTM_ChannelTypeDef;
typedef struct {
volatile uint32_t SC; // Status And Control
volatile uint32_t CNT; // Counter
volatile uint32_t MOD; // Modulo
FTM_ChannelTypeDef channel[8];
volatile uint32_t CNTIN; // Counter Initial Value
volatile uint32_t STATUS; // Capture And Compare Status
volatile uint32_t MODE; // Features Mode Selection
volatile uint32_t SYNC; // Synchronization
volatile uint32_t OUTINIT; // Initial State For Channels Output
volatile uint32_t OUTMASK; // Output Mask
volatile uint32_t COMBINE; // Function For Linked Channels
volatile uint32_t DEADTIME; // Deadtime Insertion Control
volatile uint32_t EXTTRIG; // FTM External Trigger
volatile uint32_t POL; // Channels Polarity
volatile uint32_t FMS; // Fault Mode Status
volatile uint32_t FILTER; // Input Capture Filter Control
volatile uint32_t FLTCTRL; // Fault Control
volatile uint32_t QDCTRL; // Quadrature Decoder Control And Status
volatile uint32_t CONF; // Configuration
volatile uint32_t FLTPOL; // FTM Fault Input Polarity
volatile uint32_t SYNCONF; // Synchronization Configuration
volatile uint32_t INVCTRL; // FTM Inverting Control
volatile uint32_t SWOCTRL; // FTM Software Output Control
volatile uint32_t PWMLOAD; // FTM PWM Load
} FTM_TypeDef;
typedef struct {
uint32_t PrescalerShift; // Sets the prescaler to 1 << PrescalerShift
uint32_t CounterMode; // One of FTM_COUNTERMODE_xxx
uint32_t Period; // Specifies the Period for determining timer overflow
} FTM_Base_InitTypeDef;
typedef struct {
uint32_t OCMode; // One of FTM_OCMODE_xxx
uint32_t Pulse; // Specifies initial pulse width (0-0xffff)
uint32_t OCPolarity; // One of FTM_OCPOLRITY_xxx
} FTM_OC_InitTypeDef;
typedef struct {
uint32_t ICPolarity; // Specifies Rising/Falling/Both
} FTM_IC_InitTypeDef;
#define IS_FTM_INSTANCE(INSTANCE) (((INSTANCE) == FTM0) || \
((INSTANCE) == FTM1) || \
((INSTANCE) == FTM2))
#define IS_FTM_PRESCALERSHIFT(PRESCALERSHIFT) (((PRESCALERSHIFT) & ~7) == 0)
#define FTM_COUNTERMODE_UP (0)
#define FTM_COUNTERMODE_CENTER (FTM_SC_CPWMS)
#define IS_FTM_COUNTERMODE(MODE) (((MODE) == FTM_COUNTERMODE_UP) ||\
((MODE) == FTM_COUNTERMODE_CENTER))
#define IS_FTM_PERIOD(PERIOD) (((PERIOD) & 0xFFFF0000) == 0)
#define FTM_CSC_CHF 0x80
#define FTM_CSC_CHIE 0x40
#define FTM_CSC_MSB 0x20
#define FTM_CSC_MSA 0x10
#define FTM_CSC_ELSB 0x08
#define FTM_CSC_ELSA 0x04
#define FTM_CSC_DMA 0x01
#define FTM_OCMODE_TIMING (0)
#define FTM_OCMODE_ACTIVE (FTM_CSC_MSA | FTM_CSC_ELSB | FTM_CSC_ELSA)
#define FTM_OCMODE_INACTIVE (FTM_CSC_MSA | FTM_CSC_ELSB)
#define FTM_OCMODE_TOGGLE (FTM_CSC_MSA | FTM_CSC_ELSA)
#define FTM_OCMODE_PWM1 (FTM_CSC_MSB | FTM_CSC_ELSB)
#define FTM_OCMODE_PWM2 (FTM_CSC_MSB | FTM_CSC_ELSA)
#define IS_FTM_OC_MODE(mode) ((mode) == FTM_OCMODE_TIMING || \
(mode) == FTM_OCMODE_ACTIVE || \
(mode) == FTM_OCMODE_INACTIVE || \
(mode) == FTM_OCMODE_TOGGLE )
#define IS_FTM_PWM_MODE(mode) ((mode) == FTM_OCMODE_PWM1 || \
(mode) == FTM_OCMODE_PWM2)
#define IS_FTM_CHANNEL(channel) (((channel) & ~7) == 0)
#define IS_FTM_PULSE(pulse) (((pulse) & ~0xffff) == 0)
#define FTM_OCPOLARITY_HIGH (0)
#define FTM_OCPOLARITY_LOW (1)
#define IS_FTM_OC_POLARITY(polarity) ((polarity) == FTM_OCPOLARITY_HIGH || \
(polarity) == FTM_OCPOLARITY_LOW)
#define FTM_ICPOLARITY_RISING (FTM_CSC_ELSA)
#define FTM_ICPOLARITY_FALLING (FTM_CSC_ELSB)
#define FTM_ICPOLARITY_BOTH (FTM_CSC_ELSA | FTM_CSC_ELSB)
#define IS_FTM_IC_POLARITY(polarity) ((polarity) == FTM_ICPOLARITY_RISING || \
(polarity) == FTM_ICPOLARITY_FALLING || \
(polarity) == FTM_ICPOLARITY_BOTH)
typedef enum {
HAL_FTM_STATE_RESET = 0x00,
HAL_FTM_STATE_READY = 0x01,
HAL_FTM_STATE_BUSY = 0x02,
} HAL_FTM_State;
typedef struct {
FTM_TypeDef *Instance;
FTM_Base_InitTypeDef Init;
HAL_FTM_State State;
} FTM_HandleTypeDef;
#define __HAL_FTM_GET_TOF_FLAG(HANDLE) (((HANDLE)->Instance->SC & FTM_SC_TOF) != 0)
#define __HAL_FTM_CLEAR_TOF_FLAG(HANDLE) ((HANDLE)->Instance->SC &= ~FTM_SC_TOF)
#define __HAL_FTM_GET_TOF_IT(HANDLE) (((HANDLE)->Instance->SC & FTM_SC_TOIE) != 0)
#define __HAL_FTM_ENABLE_TOF_IT(HANDLE) ((HANDLE)->Instance->SC |= FTM_SC_TOIE)
#define __HAL_FTM_DISABLE_TOF_IT(HANDLE) ((HANDLE)->Instance->SC &= ~FTM_SC_TOIE)
#define __HAL_FTM_GET_CH_FLAG(HANDLE, CH) (((HANDLE)->Instance->channel[CH].CSC & FTM_CSC_CHF) != 0)
#define __HAL_FTM_CLEAR_CH_FLAG(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC &= ~FTM_CSC_CHF)
#define __HAL_FTM_GET_CH_IT(HANDLE, CH) (((HANDLE)->Instance->channel[CH].CSC & FTM_CSC_CHIE) != 0)
#define __HAL_FTM_ENABLE_CH_IT(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC |= FTM_CSC_CHIE)
#define __HAL_FTM_DISABLE_CH_IT(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC &= ~FTM_CSC_CHIE)
void HAL_FTM_Base_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_Start(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_Start_IT(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_OC_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_OC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_OC_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_OC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_OC_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_PWM_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_PWM_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_PWM_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_PWM_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_PWM_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_IC_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_IC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_IC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_IC_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_IC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_IC_DeInit(FTM_HandleTypeDef *hftm);

View File

@ -17,7 +17,6 @@ void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
if ((GPIO_Init->Pin & bitmask) == 0) {
continue;
}
volatile uint32_t *port_pcr = GPIO_PIN_TO_PORT_PCR(GPIOx, position);
/*--------------------- GPIO Mode Configuration ------------------------*/
@ -50,6 +49,8 @@ void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
/* Check the Speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
*port_pcr |= PORT_PCR_DSE;
/* Configure the IO Speed */
if (GPIO_Init->Speed > GPIO_SPEED_MEDIUM) {
*port_pcr &= ~PORT_PCR_SRE;
@ -59,10 +60,12 @@ void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
/* Configure the IO Output Type */
if (GPIO_Init->Mode & GPIO_OUTPUT_TYPE) {
*port_pcr |= PORT_PCR_ODE;
*port_pcr |= PORT_PCR_ODE; // OD
} else {
*port_pcr &= ~PORT_PCR_ODE;
*port_pcr &= ~PORT_PCR_ODE; // PP
}
} else {
*port_pcr &= ~PORT_PCR_DSE;
}
/* Activate the Pull-up or Pull down resistor for the current IO */

View File

@ -8,7 +8,7 @@ import sys
import csv
SUPPORTED_FN = {
'FTM' : ['CH0', 'CH1', 'CH2', 'CH3',
'FTM' : ['CH0', 'CH1', 'CH2', 'CH3', 'CH4', 'CH5', 'CH6', 'CH7',
'QD_PHA', 'QD_PHB'],
'I2C' : ['SDA', 'SCL'],
'UART' : ['RX', 'TX', 'CTS', 'RTS'],
@ -313,6 +313,17 @@ class Pins(object):
print(' { %-*s %s },' % (mux_name_width + 26, key, val),
file=af_const_file)
def print_af_py(self, af_py_filename):
with open(af_py_filename, 'wt') as af_py_file:
print('PINS_AF = (', file=af_py_file);
for named_pin in self.board_pins:
print(" ('%s', " % named_pin.name(), end='', file=af_py_file)
for af in named_pin.pin().alt_fn:
if af.is_supported():
print("(%d, '%s'), " % (af.idx, af.af_str), end='', file=af_py_file)
print('),', file=af_py_file)
print(')', file=af_py_file)
def main():
parser = argparse.ArgumentParser(
@ -324,13 +335,19 @@ def main():
"-a", "--af",
dest="af_filename",
help="Specifies the alternate function file for the chip",
default="stm32f4xx-af.csv"
default="mk20dx256_af.csv"
)
parser.add_argument(
"--af-const",
dest="af_const_filename",
help="Specifies header file for alternate function constants.",
default="build/pins-af-const.h"
default="build/pins_af_const.h"
)
parser.add_argument(
"--af-py",
dest="af_py_filename",
help="Specifies the filename for the python alternate function mappings.",
default="build/pins_af.py"
)
parser.add_argument(
"-b", "--board",
@ -341,13 +358,13 @@ def main():
"-p", "--prefix",
dest="prefix_filename",
help="Specifies beginning portion of generated pins file",
default="stm32f4xx-prefix.c"
default="mk20dx256_prefix.c"
)
parser.add_argument(
"-q", "--qstr",
dest="qstr_filename",
help="Specifies name of generated qstr header file",
default="build/pins-qstr.h"
default="build/pins_qstr.h"
)
parser.add_argument(
"-r", "--hdr",
@ -381,6 +398,7 @@ def main():
pins.print_header(args.hdr_filename)
pins.print_qstr(args.qstr_filename)
pins.print_af_hdr(args.af_const_filename)
pins.print_af_py(args.af_py_filename)
if __name__ == "__main__":

View File

@ -61,5 +61,5 @@ Pin,Name,Default,ALT0,ALT1,ALT2,ALT3,ALT4,ALT5,ALT6,ALT7,EzPort
60,PTD3,DISABLED,,PTD3,SPI0_SIN,UART2_TX,,FB_AD3,,,
61,PTD4/LLWU_P14,DISABLED,,PTD4/LLWU_P14,SPI0_PCS1,UART0_RTS_b,FTM0_CH4,FB_AD2,EWM_IN,,
62,PTD5,ADC0_SE6b,ADC0_SE6b,PTD5,SPI0_PCS2,UART0_CTS_b/UART0_COL_b,FTM0_CH5,FB_AD1,EWM_OUT_b,,
63,PTD6/LLWU_P15,ADC0_SE7b,ADC0_SE7b,PTD6/LLWU_P15,SPI0_PCS3,UART0_RX,FTM0_CH6,FB_AD0,FTM0_FLT0,,
63,PTD6/LLWU_P15,ADC0_SE7b,ADC0_SE7b,PTD6/LLWU_P15,SPI0_PCS3,UART0_RX,FTM0_CH6,FB_AD0,FTM0_FLT0f,,
64,PTD7,DISABLED,,PTD7,CMT_IRO,UART0_TX,FTM0_CH7,,FTM0_FLT1,,

1 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
61 60 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FB_AD3
62 61 PTD4/LLWU_P14 DISABLED PTD4/LLWU_P14 SPI0_PCS1 UART0_RTS_b FTM0_CH4 FB_AD2 EWM_IN
63 62 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS_b/UART0_COL_b FTM0_CH5 FB_AD1 EWM_OUT_b
64 63 PTD6/LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/LLWU_P15 SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0 FTM0_FLT0f
65 64 PTD7 DISABLED PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1

View File

@ -43,7 +43,7 @@
#include "pyexec.h"
#include "led.h"
#include "pin.h"
//#include "timer.h"
#include "timer.h"
#include "extint.h"
#include "usrsw.h"
#include "rng.h"
@ -252,7 +252,7 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
// { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
//#if MICROPY_HW_ENABLE_RNG
// { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },

View File

@ -20,6 +20,12 @@
#define MICROPY_PY_SYS_STDFILES (1)
#define MICROPY_PY_CMATH (1)
#define MICROPY_TIMER_REG (0)
#define MICROPY_REG (MICROPY_TIMER_REG)
#define MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF (1)
#define MICROPY_EMERGENCY_EXCEPTION_BUF_SIZE (0)
// extra built in names to add to the global namespace
extern const struct _mp_obj_fun_builtin_t mp_builtin_help_obj;
extern const struct _mp_obj_fun_builtin_t mp_builtin_input_obj;

View File

@ -14,10 +14,13 @@
// GPIO_MODE_AF_PP, GPIO_MODE_AF_OD, or GPIO_MODE_ANALOG.
uint32_t pin_get_mode(const pin_obj_t *pin) {
if (pin->gpio == NULL) {
// Analog only pin
return GPIO_MODE_ANALOG;
}
volatile uint32_t *port_pcr = GPIO_PIN_TO_PORT_PCR(pin->gpio, pin->pin);
uint32_t pcr = *port_pcr;
uint32_t af = (*port_pcr & PORT_PCR_MUX_MASK) >> 8;;
uint32_t af = (pcr & PORT_PCR_MUX_MASK) >> 8;
if (af == 0) {
return GPIO_MODE_ANALOG;
}
@ -41,10 +44,18 @@ uint32_t pin_get_mode(const pin_obj_t *pin) {
// be one of GPIO_NOPULL, GPIO_PULLUP, or GPIO_PULLDOWN.
uint32_t pin_get_pull(const pin_obj_t *pin) {
if (pin->gpio == NULL) {
// Analog only pin
return GPIO_NOPULL;
}
volatile uint32_t *port_pcr = GPIO_PIN_TO_PORT_PCR(pin->gpio, pin->pin);
uint32_t pcr = *port_pcr;
if (pcr & PORT_PCR_PE) {
uint32_t af = (pcr & PORT_PCR_MUX_MASK) >> 8;
// pull is only valid for digital modes (hence the af > 0 test)
if (af > 0 && (pcr & PORT_PCR_PE) != 0) {
if (pcr & PORT_PCR_PS) {
return GPIO_PULLUP;
}
@ -56,6 +67,10 @@ uint32_t pin_get_pull(const pin_obj_t *pin) {
// Returns the af (alternate function) index currently set for a pin.
uint32_t pin_get_af(const pin_obj_t *pin) {
if (pin->gpio == NULL) {
// Analog only pin
return 0;
}
volatile uint32_t *port_pcr = GPIO_PIN_TO_PORT_PCR(pin->gpio, pin->pin);
return (*port_pcr & PORT_PCR_MUX_MASK) >> 8;
}

View File

@ -19,6 +19,10 @@ enum {
AF_PIN_TYPE_FTM_CH1,
AF_PIN_TYPE_FTM_CH2,
AF_PIN_TYPE_FTM_CH3,
AF_PIN_TYPE_FTM_CH4,
AF_PIN_TYPE_FTM_CH5,
AF_PIN_TYPE_FTM_CH6,
AF_PIN_TYPE_FTM_CH7,
AF_PIN_TYPE_FTM_QD_PHA,
AF_PIN_TYPE_FTM_QD_PHB,

View File

@ -87,6 +87,42 @@ Q(PULL_NONE)
Q(PULL_UP)
Q(PULL_DOWN)
// for Timer class
Q(Timer)
Q(init)
Q(deinit)
Q(channel)
Q(counter)
Q(prescaler)
Q(period)
Q(callback)
Q(freq)
Q(mode)
Q(reg)
Q(UP)
Q(CENTER)
Q(IC)
Q(PWM)
Q(PWM_INVERTED)
Q(OC_TIMING)
Q(OC_ACTIVE)
Q(OC_INACTIVE)
Q(OC_TOGGLE)
Q(OC_FORCED_ACTIVE)
Q(OC_FORCED_INACTIVE)
Q(HIGH)
Q(LOW)
Q(RISING)
Q(FALLING)
Q(BOTH)
// for TimerChannel class
Q(TimerChannel)
Q(pulse_width)
Q(compare)
Q(capture)
Q(polarity)
t
// for UART class
Q(UART)
Q(baudrate)

52
teensy/reg.c Normal file
View File

@ -0,0 +1,52 @@
#include <stdio.h>
#include <string.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "reg.h"
#if MICROPY_REG
mp_obj_t reg_cmd(void *base, reg_t *reg, mp_uint_t num_regs, uint n_args, const mp_obj_t *args) {
if (n_args == 0) {
// dump all regs
for (mp_uint_t reg_idx = 0; reg_idx < num_regs; reg_idx++, reg++) {
printf(" %-8s @0x%08x = 0x%08lx\n",
reg->name, (mp_uint_t)base + reg->offset, *(uint32_t *)((uint8_t *)base + reg->offset));
}
return mp_const_none;
}
mp_uint_t addr = 0;
if (MP_OBJ_IS_STR(args[0])) {
const char *name = mp_obj_str_get_str(args[0]);
mp_uint_t reg_idx;
for (reg_idx = 0; reg_idx < num_regs; reg_idx++, reg++) {
if (strcmp(name, reg->name) == 0) {
break;
}
}
if (reg_idx >= num_regs) {
printf("Unknown register: '%s'\n", name);
return mp_const_none;
}
addr = (mp_uint_t)base + reg->offset;
} else {
addr = (mp_uint_t)base + mp_obj_get_int(args[0]);
}
if (n_args < 2) {
// get
printf("0x%08lx\n", *(uint32_t *)addr);
} else {
*(uint32_t *)addr = mp_obj_get_int(args[1]);
}
return mp_const_none;
}
#endif

8
teensy/reg.h Normal file
View File

@ -0,0 +1,8 @@
typedef struct {
const char *name;
mp_uint_t offset;
} reg_t;
#define REG_ENTRY(st, name) { #name, offsetof(st, name) }
mp_obj_t reg_cmd(void *base, reg_t *reg, mp_uint_t num_reg, uint n_args, const mp_obj_t *args);

View File

@ -1,4 +1,5 @@
#include <mk20dx128.h>
#include "hal_ftm.h"
#ifdef USE_FULL_ASSERT
#define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__))
@ -7,9 +8,7 @@
#define assert_param(expr) ((void)0)
#endif /* USE_FULL_ASSERT */
#define FTM0 ((FTM_TypeDef *)&FTM0_SC)
#define FTM1 ((FTM_TypeDef *)&FTM1_SC)
#define FTM2 ((FTM_TypeDef *)&FTM2_SC)
#define HAL_NVIC_EnableIRQ(irq) NVIC_ENABLE_IRQ(irq)
#define GPIOA ((GPIO_TypeDef *)&GPIOA_PDOR)
#define GPIOB ((GPIO_TypeDef *)&GPIOB_PDOR)
@ -29,10 +28,6 @@
#define UART1 ((UART_TypeDef *)&UART1_BDH)
#define UART2 ((UART_TypeDef *)&UART2_BDH)
typedef struct {
uint32_t dummy;
} FTM_TypeDef;
typedef struct {
uint32_t dummy;
} I2C_TypeDef;
@ -93,10 +88,10 @@ typedef struct {
} GPIO_InitTypeDef;
#define GPIO_PORT_TO_PORT_NUM(GPIOx) \
((GPIOx->PDOR - GPIOA_PDOR) / (GPIOB_PDOR - GPIOA_PDOR))
((&GPIOx->PDOR - &GPIOA_PDOR) / (&GPIOB_PDOR - &GPIOA_PDOR))
#define GPIO_PIN_TO_PORT_PCR(GPIOx, pin) \
(&PORTA_PCR0 + GPIO_PORT_TO_PORT_NUM(GPIOx) * 32 + (pin))
(&PORTA_PCR0 + (GPIO_PORT_TO_PORT_NUM(GPIOx) * 0x400) + (pin))
#define GPIO_AF2_I2C0 2
#define GPIO_AF2_I2C1 2

View File

@ -53,3 +53,4 @@ A17,PTC8
A18,PTC10
A19,PTC11
A20,PTE0
LED,PTC5

1 D0 PTB16
53 A18 PTC10
54 A19 PTC11
55 A20 PTE0
56 LED PTC5

897
teensy/timer.c Normal file
View File

@ -0,0 +1,897 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stddef.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include MICROPY_HAL_H
#include "gc.h"
#include "pin.h"
#include "reg.h"
#include "timer.h"
typedef enum {
CHANNEL_MODE_PWM_NORMAL,
CHANNEL_MODE_PWM_INVERTED,
CHANNEL_MODE_OC_TIMING,
CHANNEL_MODE_OC_ACTIVE,
CHANNEL_MODE_OC_INACTIVE,
CHANNEL_MODE_OC_TOGGLE,
// CHANNEL_MODE_OC_FORCED_ACTIVE,
// CHANNEL_MODE_OC_FORCED_INACTIVE,
CHANNEL_MODE_IC,
} pyb_channel_mode;
STATIC const struct {
qstr name;
uint32_t oc_mode;
} gChannelMode[] = {
{ MP_QSTR_PWM, FTM_OCMODE_PWM1 },
{ MP_QSTR_PWM_INVERTED, FTM_OCMODE_PWM2 },
{ MP_QSTR_OC_TIMING, FTM_OCMODE_TIMING },
{ MP_QSTR_OC_ACTIVE, FTM_OCMODE_ACTIVE },
{ MP_QSTR_OC_INACTIVE, FTM_OCMODE_INACTIVE },
{ MP_QSTR_OC_TOGGLE, FTM_OCMODE_TOGGLE },
// { MP_QSTR_OC_FORCED_ACTIVE, FTM_OCMODE_FORCED_ACTIVE },
// { MP_QSTR_OC_FORCED_INACTIVE, FTM_OCMODE_FORCED_INACTIVE },
{ MP_QSTR_IC, 0 },
};
struct _pyb_timer_obj_t;
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint8_t channel;
uint8_t mode;
mp_obj_t callback;
struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
uint8_t tim_id;
uint8_t irqn;
mp_obj_t callback;
FTM_HandleTypeDef ftm;
pyb_timer_channel_obj_t *channel;
} pyb_timer_obj_t;
// Used to do callbacks to Python code on interrupt
STATIC pyb_timer_obj_t *pyb_timer_obj_all[3];
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all)
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
void timer_init0(void) {
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
pyb_timer_obj_all[i] = NULL;
}
}
// unregister all interrupt sources
void timer_deinit(void) {
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
pyb_timer_obj_t *tim = pyb_timer_obj_all[i];
if (tim != NULL) {
pyb_timer_deinit(tim);
}
}
}
mp_uint_t get_prescaler_shift(mp_int_t prescaler) {
mp_uint_t prescaler_shift;
for (prescaler_shift = 0; prescaler_shift < 8; prescaler_shift++) {
if (prescaler == (1 << prescaler_shift)) {
return prescaler_shift;
}
}
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "prescaler must be a power of 2 between 1 and 128, not %d", prescaler));
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *self = self_in;
if (self->ftm.State == HAL_FTM_STATE_RESET) {
print(env, "Timer(%u)", self->tim_id);
} else {
print(env, "Timer(%u, prescaler=%u, period=%u, mode=%s)",
self->tim_id,
1 << self->ftm.Init.PrescalerShift,
self->ftm.Init.Period,
self->ftm.Init.CounterMode == FTM_COUNTERMODE_UP ? "tUP" : "CENTER");
}
}
/// \method init(*, freq, prescaler, period)
/// Initialise the timer. Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
/// tim.init(freq=100) # set the timer to trigger at 100Hz
/// tim.init(prescaler=83, period=999) # set the prescaler and period directly
///
/// Keyword arguments:
///
/// - `freq` - specifies the periodic frequency of the timer. You migh also
/// view this as the frequency with which the timer goes through
/// one complete cycle.
///
/// - `prescaler` 1, 2, 4, 8 16 32, 64 or 128 - specifies the value to be loaded into the
/// timer's prescaler. The timer clock source is divided by
/// (`prescaler`) to arrive at the timer clock.
///
/// - `period` [0-0xffff] - Specifies the value to be loaded into the timer's
/// Modulo Register (MOD). This determines the period of the timer (i.e.
/// when the counter cycles). The timer counter will roll-over after
/// `period + 1` timer clock cycles.
///
/// - `mode` can be one of:
/// - `Timer.UP` - configures the timer to count from 0 to MOD (default)
/// - `Timer.CENTER` - confgures the timer to count from 0 to MOD and
/// then back down to 0.
///
/// - `callback` - as per Timer.callback()
///
/// You must either specify freq or both of period and prescaler.
STATIC const mp_arg_t pyb_timer_init_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = FTM_COUNTERMODE_UP} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
#define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args)
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals);
FTM_HandleTypeDef *ftm = &self->ftm;
// set the TIM configuration values
FTM_Base_InitTypeDef *init = &ftm->Init;
if (vals[0].u_int != 0xffffffff) {
// set prescaler and period from frequency
if (vals[0].u_int == 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency"));
}
uint32_t period = MAX(1, F_BUS / vals[0].u_int);
uint32_t prescaler_shift = 0;
while (period > 0x10000 && prescaler_shift < 7) {
period >>= 1;
prescaler_shift++;
}
if (period > 0x10000) {
period = 0x10000;
}
init->PrescalerShift = prescaler_shift;
init->Period = period - 1;
} else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) {
// set prescaler and period directly
init->PrescalerShift = get_prescaler_shift(vals[1].u_int);
init->Period = vals[2].u_int;
if (!IS_FTM_PERIOD(init->Period)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "period must be between 0 and 65535, not %d", init->Period));
}
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
}
init->CounterMode = vals[3].u_int;
if (!IS_FTM_COUNTERMODE(init->CounterMode)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "invalid counter mode: %d", init->CounterMode));
}
// Currently core/mk20dx128.c sets SIM_SCGC6_FTM0, SIM_SCGC6_FTM1, SIM_SCGC3_FTM2
// so we don't need to do it here.
NVIC_SET_PRIORITY(self->irqn, 0xe); // next-to lowest priority
HAL_FTM_Base_Init(ftm);
if (vals[4].u_obj == mp_const_none) {
HAL_FTM_Base_Start(ftm);
} else {
pyb_timer_callback(self, vals[4].u_obj);
}
return mp_const_none;
}
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id. If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// create new Timer object
pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
memset(tim, 0, sizeof(*tim));
tim->base.type = &pyb_timer_type;
tim->callback = mp_const_none;
tim->channel = NULL;
// get FTM number
tim->tim_id = mp_obj_get_int(args[0]);
switch (tim->tim_id) {
case 0: tim->ftm.Instance = FTM0; tim->irqn = IRQ_FTM0; break;
case 1: tim->ftm.Instance = FTM1; tim->irqn = IRQ_FTM1; break;
case 2: tim->ftm.Instance = FTM2; tim->irqn = IRQ_FTM2; break;
default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
}
// set the global variable for interrupt callbacks
if (tim->tim_id < PYB_TIMER_OBJ_ALL_NUM) {
pyb_timer_obj_all[tim->tim_id] = tim;
}
return (mp_obj_t)tim;
}
STATIC mp_obj_t pyb_timer_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
/// \method deinit()
/// Deinitialises the timer.
///
/// Disables the callback (and the associated irq).
/// Stops the timer, and disables the timer peripheral.
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
// Disable the interrupt
pyb_timer_callback(self_in, mp_const_none);
pyb_timer_channel_obj_t *chan = self->channel;
self->channel = NULL;
// Disable the channel interrupts
while (chan != NULL) {
pyb_timer_channel_callback(chan, mp_const_none);
pyb_timer_channel_obj_t *prev_chan = chan;
chan = chan->next;
prev_chan->next = NULL;
}
HAL_FTM_Base_DeInit(&self->ftm);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, ...)
///
/// If only a channel nunber is passed, then a previously initialized channel
/// object is returned.
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
/// - `mode` can be one of:
/// - `Timer.PWM` - configure the timer in PWM mode (active high).
/// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
/// - `Timer.OC_TIMING` - indicates that no pin is driven.
/// - `Timer.OC_ACTIVE` - the pin will be made active when a compare
/// match occurs (active is determined by polarity)
/// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
/// match occurs.
/// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
/// - `Timer.IC` - configure the timer in Input Capture mode.
///
/// - `callback` - as per TimerChannel.callback()
///
/// - `pin` None (the default) or a Pin object. If specified (and not None)
/// this will cause the alternate function of the the indicated pin
/// to be configured for this timer channel. An error will be raised if
/// the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
/// - 'pulse_width' - determines the initial pulse width to use.
///
/// Keyword arguments for Timer.OC modes:
///
/// - `compare` - determines the initial value of the compare register.
///
/// - `polarity` can be one of:
/// - `Timer.HIGH` - output is active high
/// - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
/// - `polarity` can be one of:
/// - `Timer.RISING` - captures on rising edge.
/// - `Timer.FALLING` - captures on falling edge.
/// - `Timer.BOTH` - captures on both edges.
///
/// PWM Example:
///
/// timer = pyb.Timer(0, prescaler=128, period=37500, counter_mode=pyb.Timer.COUNTER_MODE_CENTER)
/// ch0 = t0.channel(0, pyb.Timer.PWM, pin=pyb.Pin.board.D22, pulse_width=(t0.period() + 1) // 4)
/// ch1 = t0.channel(1, pyb.Timer.PWM, pin=pyb.Pin.board.D23, pulse_width=(t0.period() + 1) // 2)
STATIC const mp_arg_t pyb_timer_channel_args[] = {
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
};
#define PYB_TIMER_CHANNEL_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_channel_args)
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
mp_arg_check_num(n_args, n_args - 2, 2, MP_OBJ_FUN_ARGS_MAX, true);
pyb_timer_obj_t *self = args[0];
mp_int_t channel = mp_obj_get_int(args[1]);
if (channel < 0 || channel > 7) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid channel (%d)", channel));
}
pyb_timer_channel_obj_t *chan = self->channel;
pyb_timer_channel_obj_t *prev_chan = NULL;
while (chan != NULL) {
if (chan->channel == channel) {
break;
}
prev_chan = chan;
chan = chan->next;
}
if (kw_args->used == 0) {
// Return the previously allocated channel
if (chan) {
return chan;
}
return mp_const_none;
}
// If there was already a channel, then remove it from the list. Note that
// the order we do things here is important so as to appear atomic to
// the IRQ handler.
if (chan) {
// Turn off any IRQ associated with the channel.
pyb_timer_channel_callback(chan, mp_const_none);
// Unlink the channel from the list.
if (prev_chan) {
prev_chan->next = chan->next;
}
self->channel = chan->next;
chan->next = NULL;
}
// Allocate and initialize a new channel
mp_arg_val_t vals[PYB_TIMER_CHANNEL_NUM_ARGS];
mp_arg_parse_all(n_args - 3, args + 3, kw_args, PYB_TIMER_CHANNEL_NUM_ARGS, pyb_timer_channel_args, vals);
chan = m_new_obj(pyb_timer_channel_obj_t);
memset(chan, 0, sizeof(*chan));
chan->base.type = &pyb_timer_channel_type;
chan->timer = self;
chan->channel = channel;
chan->mode = mp_obj_get_int(args[2]);
chan->callback = vals[0].u_obj;
mp_obj_t pin_obj = vals[1].u_obj;
if (pin_obj != mp_const_none) {
if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
}
const pin_obj_t *pin = pin_obj;
const pin_af_obj_t *af = pin_find_af(pin, AF_FN_FTM, self->tim_id);
if (af == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id));
}
// pin.init(mode=AF_PP, af=idx)
const mp_obj_t args[6] = {
(mp_obj_t)&pin_init_obj,
pin_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
MP_OBJ_NEW_QSTR(MP_QSTR_af), MP_OBJ_NEW_SMALL_INT(af->idx)
};
mp_call_method_n_kw(0, 2, args);
}
// Link the channel to the timer before we turn the channel on.
// Note that this needs to appear atomic to the IRQ handler (the write
// to self->channel is atomic, so we're good, but I thought I'd mention
// in case this was ever changed in the future).
chan->next = self->channel;
self->channel = chan;
switch (chan->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED: {
FTM_OC_InitTypeDef oc_config;
oc_config.OCMode = gChannelMode[chan->mode].oc_mode;
oc_config.Pulse = vals[2].u_int;
oc_config.OCPolarity = FTM_OCPOLARITY_HIGH;
HAL_FTM_PWM_ConfigChannel(&self->ftm, &oc_config, channel);
if (chan->callback == mp_const_none) {
HAL_FTM_PWM_Start(&self->ftm, channel);
} else {
HAL_FTM_PWM_Start_IT(&self->ftm, channel);
}
break;
}
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE: {
FTM_OC_InitTypeDef oc_config;
oc_config.OCMode = gChannelMode[chan->mode].oc_mode;
oc_config.Pulse = vals[3].u_int;
oc_config.OCPolarity = vals[4].u_int;
if (oc_config.OCPolarity == 0xffffffff) {
oc_config.OCPolarity = FTM_OCPOLARITY_HIGH;
}
if (!IS_FTM_OC_POLARITY(oc_config.OCPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", oc_config.OCPolarity));
}
HAL_FTM_OC_ConfigChannel(&self->ftm, &oc_config, channel);
if (chan->callback == mp_const_none) {
HAL_FTM_OC_Start(&self->ftm, channel);
} else {
HAL_FTM_OC_Start_IT(&self->ftm, channel);
}
break;
}
case CHANNEL_MODE_IC: {
FTM_IC_InitTypeDef ic_config;
ic_config.ICPolarity = vals[4].u_int;
if (ic_config.ICPolarity == 0xffffffff) {
ic_config.ICPolarity = FTM_ICPOLARITY_RISING;
}
if (!IS_FTM_IC_POLARITY(ic_config.ICPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", ic_config.ICPolarity));
}
HAL_FTM_IC_ConfigChannel(&self->ftm, &ic_config, chan->channel);
if (chan->callback == mp_const_none) {
HAL_FTM_IC_Start(&self->ftm, channel);
} else {
HAL_FTM_IC_Start_IT(&self->ftm, channel);
}
break;
}
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid mode (%d)", chan->mode));
}
return chan;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 3, pyb_timer_channel);
/// \method counter([value])
/// Get or set the timer counter.
mp_obj_t pyb_timer_counter(uint n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(self->ftm.Instance->CNT);
}
// set - In order to write to CNT we need to set CNTIN
self->ftm.Instance->CNTIN = mp_obj_get_int(args[1]);
self->ftm.Instance->CNT = 0; // write any value to load CNTIN into CNT
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
mp_obj_t pyb_timer_prescaler(uint n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(1 << (self->ftm.Instance->SC & 7));
}
// set
mp_uint_t prescaler_shift = get_prescaler_shift(mp_obj_get_int(args[1]));
mp_uint_t sc = self->ftm.Instance->SC;
sc &= ~7;
sc |= FTM_SC_PS(prescaler_shift);
self->ftm.Instance->SC = sc;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);
/// \method period([value])
/// Get or set the period of the timer.
mp_obj_t pyb_timer_period(uint n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(self->ftm.Instance->MOD & 0xffff);
}
// set
mp_int_t period = mp_obj_get_int(args[1]) & 0xffff;
self->ftm.Instance->CNT = 0;
self->ftm.Instance->MOD = period;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_obj_t *self = self_in;
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_FTM_DISABLE_TOF_IT(&self->ftm);
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
HAL_NVIC_EnableIRQ(self->irqn);
// start timer, so that it interrupts on overflow
HAL_FTM_Base_Start_IT(&self->ftm);
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);
#if MICROPY_TIMER_REG
reg_t timer_reg[] = {
REG_ENTRY(FTM_TypeDef, SC),
REG_ENTRY(FTM_TypeDef, CNT),
REG_ENTRY(FTM_TypeDef, MOD),
REG_ENTRY(FTM_TypeDef, CNTIN),
REG_ENTRY(FTM_TypeDef, STATUS),
REG_ENTRY(FTM_TypeDef, MODE),
REG_ENTRY(FTM_TypeDef, SYNC),
REG_ENTRY(FTM_TypeDef, OUTINIT),
REG_ENTRY(FTM_TypeDef, OUTMASK),
REG_ENTRY(FTM_TypeDef, COMBINE),
REG_ENTRY(FTM_TypeDef, DEADTIME),
REG_ENTRY(FTM_TypeDef, EXTTRIG),
REG_ENTRY(FTM_TypeDef, POL),
REG_ENTRY(FTM_TypeDef, FMS),
REG_ENTRY(FTM_TypeDef, FILTER),
REG_ENTRY(FTM_TypeDef, FLTCTRL),
REG_ENTRY(FTM_TypeDef, QDCTRL),
REG_ENTRY(FTM_TypeDef, CONF),
REG_ENTRY(FTM_TypeDef, FLTPOL),
REG_ENTRY(FTM_TypeDef, SYNCONF),
REG_ENTRY(FTM_TypeDef, INVCTRL),
REG_ENTRY(FTM_TypeDef, SWOCTRL),
REG_ENTRY(FTM_TypeDef, PWMLOAD),
};
mp_obj_t pyb_timer_reg(uint n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
return reg_cmd(self->ftm.Instance, timer_reg, MP_ARRAY_SIZE(timer_reg), n_args - 1, args + 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_reg_obj, 1, 3, pyb_timer_reg);
#endif // MICROPY_TIMER_REG
STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
#if MICROPY_TIMER_REG
{ MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pyb_timer_reg_obj },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_UP), MP_OBJ_NEW_SMALL_INT(FTM_COUNTERMODE_UP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CENTER), MP_OBJ_NEW_SMALL_INT(FTM_COUNTERMODE_CENTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IC), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_HIGH), MP_OBJ_NEW_SMALL_INT(FTM_OCPOLARITY_HIGH) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LOW), MP_OBJ_NEW_SMALL_INT(FTM_OCPOLARITY_LOW) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RISING), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_RISING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FALLING), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_FALLING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BOTH), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_BOTH) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
const mp_obj_type_t pyb_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = pyb_timer_print,
.make_new = pyb_timer_make_new,
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
STATIC void pyb_timer_channel_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *self = self_in;
print(env, "TimerChannel(timer=%u, channel=%u mode=%s)",
self->timer->tim_id,
self->channel,
qstr_str(gChannelMode[self->mode].name));
}
/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.
/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.
/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
STATIC mp_obj_t pyb_timer_channel_capture_compare(uint n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
if (self->channel == 0xffffffff) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d no channel specified", self->timer->tim_id));
}
FTM_TypeDef *FTMx = self->timer->ftm.Instance;
if (n_args == 1) {
// get
return mp_obj_new_int(FTMx->channel[self->channel].CV);
}
mp_int_t pw = mp_obj_get_int(args[1]);
// set
FTMx->channel[self->channel].CV = pw;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_channel_obj_t *self = self_in;
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_FTM_DISABLE_CH_IT(&self->timer->ftm, self->channel);
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
HAL_NVIC_EnableIRQ(self->timer->irqn);
// start timer, so that it interrupts on overflow
switch (self->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED:
HAL_FTM_PWM_Start_IT(&self->timer->ftm, self->channel);
break;
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
HAL_FTM_OC_Start_IT(&self->timer->ftm, self->channel);
break;
case CHANNEL_MODE_IC:
HAL_FTM_IC_Start_IT(&self->timer->ftm, self->channel);
break;
}
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);
#if MICROPY_TIMER_REG
reg_t timer_channel_reg[] = {
REG_ENTRY(FTM_ChannelTypeDef, CSC),
REG_ENTRY(FTM_ChannelTypeDef, CV),
};
mp_obj_t pyb_timer_channel_reg(uint n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
return reg_cmd(&self->timer->ftm.Instance->channel[self->channel],
timer_channel_reg, MP_ARRAY_SIZE(timer_channel_reg),
n_args - 1, args + 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_reg_obj, 1, 3, pyb_timer_channel_reg);
#endif
STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
#if MICROPY_TIMER_REG
{ MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pyb_timer_channel_reg_obj },
#endif
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
const mp_obj_type_t pyb_timer_channel_type = {
{ &mp_type_type },
.name = MP_QSTR_TimerChannel,
.print = pyb_timer_channel_print,
.locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};
STATIC bool ftm_handle_irq_callback(pyb_timer_obj_t *self, mp_uint_t channel, mp_obj_t callback) {
// execute callback if it's set
if (callback == mp_const_none) {
return false;
}
bool handled = false;
// When executing code within a handler we must lock the GC to prevent
// any memory allocations. We must also catch any exceptions.
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_1(callback, self);
nlr_pop();
handled = true;
} else {
// Uncaught exception; disable the callback so it doesn't run again.
self->callback = mp_const_none;
if (channel == 0xffffffff) {
printf("Uncaught exception in Timer(" UINT_FMT
") interrupt handler\n", self->tim_id);
} else {
printf("Uncaught exception in Timer(" UINT_FMT ") channel "
UINT_FMT " interrupt handler\n", self->tim_id, channel);
}
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
}
gc_unlock();
return handled;
}
STATIC void ftm_irq_handler(uint tim_id) {
if (tim_id >= PYB_TIMER_OBJ_ALL_NUM) {
return;
}
// get the timer object
pyb_timer_obj_t *self = pyb_timer_obj_all[tim_id];
if (self == NULL) {
// timer object has not been set, so we can't do anything
printf("No timer object for id=%d\n", tim_id);
return;
}
FTM_HandleTypeDef *hftm = &self->ftm;
bool handled = false;
// Check for timer (versus timer channel) interrupt.
if (__HAL_FTM_GET_TOF_IT(hftm) && __HAL_FTM_GET_TOF_FLAG(hftm)) {
__HAL_FTM_CLEAR_TOF_FLAG(hftm);
if (ftm_handle_irq_callback(self, 0xffffffff, self->callback)) {
handled = true;
} else {
__HAL_FTM_DISABLE_TOF_IT(&self->ftm);
printf("No callback for Timer %d TOF (now disabled)\n", tim_id);
}
}
uint32_t processed = 0;
// Check to see if a timer channel interrupt is pending
pyb_timer_channel_obj_t *chan = self->channel;
while (chan != NULL) {
processed |= (1 << chan->channel);
if (__HAL_FTM_GET_CH_IT(&self->ftm, chan->channel) && __HAL_FTM_GET_CH_FLAG(&self->ftm, chan->channel)) {
__HAL_FTM_CLEAR_CH_FLAG(&self->ftm, chan->channel);
if (ftm_handle_irq_callback(self, chan->channel, chan->callback)) {
handled = true;
} else {
__HAL_FTM_DISABLE_CH_IT(&self->ftm, chan->channel);
printf("No callback for Timer %d channel %u (now disabled)\n",
self->tim_id, chan->channel);
}
}
chan = chan->next;
}
if (!handled) {
// An interrupt occurred for a channel we didn't process. Find it and
// turn it off.
for (mp_uint_t channel = 0; channel < 8; channel++) {
if ((processed & (1 << channel)) == 0) {
if (__HAL_FTM_GET_CH_FLAG(&self->ftm, channel) != 0) {
__HAL_FTM_CLEAR_CH_FLAG(&self->ftm, channel);
__HAL_FTM_DISABLE_CH_IT(&self->ftm, channel);
printf("Unhandled interrupt Timer %d channel %u (now disabled)\n",
tim_id, channel);
}
}
}
}
}
void ftm0_isr(void) {
ftm_irq_handler(0);
}
void ftm1_isr(void) {
ftm_irq_handler(1);
}
void ftm2_isr(void) {
ftm_irq_handler(2);
}

31
teensy/timer.h Normal file
View File

@ -0,0 +1,31 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
extern const mp_obj_type_t pyb_timer_type;
extern const mp_obj_type_t pyb_timer_channel_type;
void timer_init0(void);
void timer_deinit(void);