docs/reference/packages: Add chapter on distribution packages and deployment.
A long overdue overview of preparing packages, installing them with upip, freezing, dealing with resources. Initial version, more iterations required.
This commit is contained in:
parent
e7fc765880
commit
c60fc670ea
@ -24,6 +24,7 @@ implementation and the best practices to use them.
|
|||||||
isr_rules.rst
|
isr_rules.rst
|
||||||
speed_python.rst
|
speed_python.rst
|
||||||
constrained.rst
|
constrained.rst
|
||||||
|
packages.rst
|
||||||
|
|
||||||
.. only:: port_pyboard
|
.. only:: port_pyboard
|
||||||
|
|
||||||
|
274
docs/reference/packages.rst
Normal file
274
docs/reference/packages.rst
Normal file
@ -0,0 +1,274 @@
|
|||||||
|
Distribution packages, package management, and deploying applications
|
||||||
|
=====================================================================
|
||||||
|
|
||||||
|
Just as the "big" Python, MicroPython supports creation of "third party"
|
||||||
|
packages, distributing them, and easily installing them in each user's
|
||||||
|
environment. This chapter discusses how these actions are achieved.
|
||||||
|
Some familiarity with Python packaging is recommended.
|
||||||
|
|
||||||
|
Overview
|
||||||
|
--------
|
||||||
|
|
||||||
|
Steps below represent a high-level workflow when creating and consuming
|
||||||
|
packages:
|
||||||
|
|
||||||
|
1. Python modules and packages are turned into distribution package
|
||||||
|
archives, and published at the Python Package Index (PyPI).
|
||||||
|
2. `upip` package manager can be used to install a distribution package
|
||||||
|
on a `MicroPython port` with networking capabilities (for example,
|
||||||
|
on the Unix port).
|
||||||
|
3. For ports without networking capabilities, an "installation image"
|
||||||
|
can be prepared on the Unix port, and transferred to a device by
|
||||||
|
suitable means.
|
||||||
|
4. For low-memory ports, the installation image can be frozen as the
|
||||||
|
bytecode into MicroPython executable, thus minimizing the memory
|
||||||
|
storage overheads.
|
||||||
|
|
||||||
|
The sections below describe this process in details.
|
||||||
|
|
||||||
|
Distribution packages
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
Python modules and packages can be packaged into archives suitable for
|
||||||
|
transfer between systems, storing at the well-known location (PyPI),
|
||||||
|
and downloading on demand for deployment. These archives are known as
|
||||||
|
*distribution packages* (to differentiate them from Python packages
|
||||||
|
(means to organize Python source code)).
|
||||||
|
|
||||||
|
The MicroPython distribution package format is a well-known tar.gz
|
||||||
|
format, with some adaptations however. The Gzip compressor, used as
|
||||||
|
an external wrapper for TAR archives, by default uses 32KB dictionary
|
||||||
|
size, which means that to uncompress a compressed stream, 32KB of
|
||||||
|
contguous memory needs to be allocated. This requirement may be not
|
||||||
|
satisfiable on low-memory devices, which may have total memory available
|
||||||
|
less than that amount, and even if not, a contiguous block like that
|
||||||
|
may be hard to allocate due to `memory fragmentation`. To accommodate
|
||||||
|
these constraints, MicroPython distribution packages use Gzip compression
|
||||||
|
with the dictionary size of 4K, which should be a suitable compromise
|
||||||
|
with still achieving some compression while being able to uncompressed
|
||||||
|
even by the smallest devices.
|
||||||
|
|
||||||
|
Besides the small compression dictionary size, MicroPython distribution
|
||||||
|
packages also have other optimizations, like removing any files from
|
||||||
|
the archive which aren't used by the installation process. In particular,
|
||||||
|
`upip` package manager doesn't execute ``setup.py`` during installation
|
||||||
|
(see below), and thus that file is not included in the archive.
|
||||||
|
|
||||||
|
At the same time, these optimizations make MicroPython distribution
|
||||||
|
packages not compatible with `CPython`'s package manager, ``pip``.
|
||||||
|
This isn't considered a big problem, because:
|
||||||
|
|
||||||
|
1. Packages can be installed with `upip`, and then can be used with
|
||||||
|
CPython (if they are compatible with it).
|
||||||
|
2. In the other direction, majority of CPython packages would be
|
||||||
|
incompatible with MicroPython by various reasons, first of all,
|
||||||
|
the reliance on features not implemented by MicroPython.
|
||||||
|
|
||||||
|
Summing up, the MicroPython distribution package archives are highly
|
||||||
|
optimized for MicroPython's target environments, which are highly
|
||||||
|
resource constrained devices.
|
||||||
|
|
||||||
|
|
||||||
|
``upip`` package manager
|
||||||
|
------------------------
|
||||||
|
|
||||||
|
MicroPython distribution packages are intended to be installed using
|
||||||
|
the `upip` package manager. `upip` is a Python application which is
|
||||||
|
usually distributed (as frozen bytecode) with network-enabled
|
||||||
|
`MicroPython ports <MicroPython port>`. At the very least,
|
||||||
|
`upip` is available in the `MicroPython Unix port`.
|
||||||
|
|
||||||
|
On any `MicroPython port` providing `upip`, it can be accessed as
|
||||||
|
following::
|
||||||
|
|
||||||
|
import upip
|
||||||
|
upip.help()
|
||||||
|
upip.install(package_or_package_list, [path])
|
||||||
|
|
||||||
|
Where *package_or_package_list* is the name of a distribution
|
||||||
|
package to install, or a list of such names to install multiple
|
||||||
|
packages. Optional *path* parameter specifies filesystem
|
||||||
|
location to install under and defaults to the standard library
|
||||||
|
location (see below).
|
||||||
|
|
||||||
|
An example of installing a specific package and then using it::
|
||||||
|
|
||||||
|
>>> import upip
|
||||||
|
>>> upip.install("micropython-pystone_lowmem")
|
||||||
|
[...]
|
||||||
|
>>> import pystone_lowmem
|
||||||
|
>>> pystone_lowmem.main()
|
||||||
|
|
||||||
|
Note that the name of Python package and the name of distribution
|
||||||
|
package for it in general don't have to match, and oftentimes they
|
||||||
|
don't. This is because PyPI provides a central package repository
|
||||||
|
for all different Python implementations and versions, and thus
|
||||||
|
distribution package names may need to be namespaced for a particular
|
||||||
|
implementation. For example, all packages from `micropython-lib`
|
||||||
|
follow this naming convention: for a Python module or package named
|
||||||
|
``foo``, the distribution package name is ``micropython-foo``.
|
||||||
|
|
||||||
|
For the ports which run MicroPython executable from the OS command
|
||||||
|
prompts (like the Unix port), `upip` can be (and indeed, usually is)
|
||||||
|
run from the command line instead of MicroPython's own REPL. The
|
||||||
|
commands which corresponds to the example above are::
|
||||||
|
|
||||||
|
micropython -m upip -h
|
||||||
|
micropython -m upip install [-p <path>] <packages>...
|
||||||
|
micropython -m upip install micropython-pystone_lowmem
|
||||||
|
|
||||||
|
[TODO: Describe installation path.]
|
||||||
|
|
||||||
|
|
||||||
|
Cross-installing packages
|
||||||
|
-------------------------
|
||||||
|
|
||||||
|
For `MicroPython ports <MicroPython port>` without native networking
|
||||||
|
capabilities, the recommend process is "cross-installing" them into a
|
||||||
|
"directory image" using the `MicroPython Unix port`, and then
|
||||||
|
transferring this image to a device by suitable means.
|
||||||
|
|
||||||
|
Installing to a directory image involves using ``-p`` switch to `upip`::
|
||||||
|
|
||||||
|
micropython -m upip install -p install_image micropython-pystone_lowmem
|
||||||
|
|
||||||
|
After this command, the package content (and contents of every depenency
|
||||||
|
packages) will be available in the ``install_image/`` subdirectory. You
|
||||||
|
would need to transfer contents of this directory (without the
|
||||||
|
``install_image/`` prefix) to the device, at the suitable location, where
|
||||||
|
it can be found by the Python ``import`` statement (see discussion of
|
||||||
|
the `upip` installation path above).
|
||||||
|
|
||||||
|
|
||||||
|
Cross-installing packages with freezing
|
||||||
|
---------------------------------------
|
||||||
|
|
||||||
|
For the low-memory `MicroPython ports <MicroPython port>`, the process
|
||||||
|
described in the previous section does not provide the most efficient
|
||||||
|
resource usage,because the packages are installed in the source form,
|
||||||
|
so need to be compiled to the bytecome on each import. This compilation
|
||||||
|
requires RAM, and the resulting bytecode is also stored in RAM, reducing
|
||||||
|
its amount available for storing application data. Moreover, the process
|
||||||
|
above requires presence of the filesystem on a device, and the most
|
||||||
|
resource-constrained devices may not even have it.
|
||||||
|
|
||||||
|
The bytecode freezing is a process which resolves all the issues
|
||||||
|
mentioned above:
|
||||||
|
|
||||||
|
* The source code is pre-compiled into bytecode and store as such.
|
||||||
|
* The bytecode is stored in ROM, not RAM.
|
||||||
|
* Filesystem is not required for frozen packages.
|
||||||
|
|
||||||
|
Using frozen bytecode requires building the executable (firmware)
|
||||||
|
for a given `MicroPython port` from the C source code. Consequently,
|
||||||
|
the process is:
|
||||||
|
|
||||||
|
1. Follow the instructions for a particular port on setting up a
|
||||||
|
toolchain and building the port. For example, for ESP8266 port,
|
||||||
|
study instructions in ``ports/esp8266/README.md`` and follow them.
|
||||||
|
Make sure you can build the port and deploy the resulting
|
||||||
|
executable/firmware successfully before proceeding to the next steps.
|
||||||
|
2. Build `MicroPython Unix port` and make sure it is in your PATH and
|
||||||
|
you can execute ``micropython``.
|
||||||
|
3. Change to port's directory (e.g. ``ports/esp8266/`` for ESP8266).
|
||||||
|
4. Run ``make clean-frozen``. This step cleans up any previous
|
||||||
|
modules which were installed for freezing (consequently, you need
|
||||||
|
to skip this step to add additional modules, instead of starting
|
||||||
|
from scratch).
|
||||||
|
5. Run ``micropython -m upip install -p modules <packages>...`` to
|
||||||
|
install packages you want to freeze.
|
||||||
|
6. Run ``make clean``.
|
||||||
|
7. Run ``make``.
|
||||||
|
|
||||||
|
After this, you should have the executable/firmware with modules as
|
||||||
|
the bytecode inside, which you can deploy the usual way.
|
||||||
|
|
||||||
|
Few notes:
|
||||||
|
|
||||||
|
1. Step 5 in the sequence above assumes that the distribution package
|
||||||
|
is available from PyPI. If that is not the case, you would need
|
||||||
|
to copy Python source files manually to ``modules/`` subdirectory
|
||||||
|
of the port port directory. (Note that upip does not support
|
||||||
|
installing from e.g. version control repositories).
|
||||||
|
2. The firmware for baremetal devices usually has size restrictions,
|
||||||
|
so adding too many frozen modules may overflow it. Usually, you
|
||||||
|
would get a linking error if this happens. However, in some cases,
|
||||||
|
an image may be produced, which is not runnable on a device. Such
|
||||||
|
cases are in general bugs, and should be reported and further
|
||||||
|
investigated. If you face such a situation, as an initial step,
|
||||||
|
you may want to decrease the amount of frozen modules included.
|
||||||
|
|
||||||
|
|
||||||
|
Application resources
|
||||||
|
---------------------
|
||||||
|
|
||||||
|
A complete application, besides the source code, oftentimes also consists
|
||||||
|
of data files, e.g. web page templates, game images, etc. It's clear how
|
||||||
|
to deal with those when application is installed manually - you just put
|
||||||
|
those data files in the filesystem at some location and use the normal
|
||||||
|
file access functions.
|
||||||
|
|
||||||
|
The situation is different when deploying applications from packages - this
|
||||||
|
is more advanced, streamlined and flexible way, but also requires more
|
||||||
|
advanced approach to accessing data files. This approach is treating
|
||||||
|
the data files as "resources", and abstracting away access to them.
|
||||||
|
|
||||||
|
Python supports resource access using its "setuptools" library, using
|
||||||
|
``pkg_resources`` module. MicroPython, following its usual approach,
|
||||||
|
implements subset of the functionality of that module, specifically
|
||||||
|
`pkg_resources.resource_stream(package, resource)` function.
|
||||||
|
The idea is that an application calls this function, passing a
|
||||||
|
resource identifier, which is a relative path to data file within
|
||||||
|
the specified package (usually top-level application package). It
|
||||||
|
returns a stream object which can be used to access resource contents.
|
||||||
|
Thus, the ``resource_stream()`` emulates interface of the standard
|
||||||
|
`open()` function.
|
||||||
|
|
||||||
|
Implementation-wise, ``resource_stream()`` uses file operations
|
||||||
|
underlyingly, if distribution package is install in the filesystem.
|
||||||
|
However, it also supports functioning without the underlying filesystem,
|
||||||
|
e.g. if the package is frozen as the bytecode. This however requires
|
||||||
|
an extra intermediate step when packaging application - creation of
|
||||||
|
"Python resource module".
|
||||||
|
|
||||||
|
The idea of this module is to convert binary data to a Python bytes
|
||||||
|
object, and put it into the dictionary, indexed by the resource name.
|
||||||
|
This conversion is done using ``tools/mpy_bin2res.py`` script from
|
||||||
|
the MicroPython distribution.
|
||||||
|
|
||||||
|
Let's trace the complete process using the following example. Suppose
|
||||||
|
your application has the following structure::
|
||||||
|
|
||||||
|
my_app/
|
||||||
|
__main__.py
|
||||||
|
utils.py
|
||||||
|
data/
|
||||||
|
page.html
|
||||||
|
image.png
|
||||||
|
|
||||||
|
``__main__.py`` and ``utils.py`` should access resources using the
|
||||||
|
following calls::
|
||||||
|
|
||||||
|
import pkg_resources
|
||||||
|
|
||||||
|
pkg_resources.resource_stream(__name__, "data/page.html")
|
||||||
|
pkg_resources.resource_stream(__name__, "data/image.png")
|
||||||
|
|
||||||
|
You can develop and debug using the `MicroPython Unix port` as usual.
|
||||||
|
When times come to make a distribution package out of it, you would
|
||||||
|
need to run following command, with ``my_app/`` being the current
|
||||||
|
directory (and assuming ``mpy_bin2res.py`` is in your path)::
|
||||||
|
|
||||||
|
mpy_bin2res.py data/page.html data/image.png
|
||||||
|
|
||||||
|
This will produce a Python resource module named ``R.py``. Afterwards,
|
||||||
|
you package the project for distribution as usual (using ``setup.py sdist``).
|
||||||
|
Prepared like this, your application will work both when deployed to
|
||||||
|
filesystem and as frozen bytecode.
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
|
||||||
|
* Python Packaging User Guide: https://packaging.python.org/
|
||||||
|
* Setuptools documentation: https://setuptools.readthedocs.io/
|
||||||
|
* Distutils documentation: https://docs.python.org/3/library/distutils.html
|
Loading…
Reference in New Issue
Block a user