Fixed remaining issues with flash organization and writing

This commit is contained in:
Hierophect 2019-08-13 18:05:40 -04:00
parent 300dc68955
commit c4c55fffb1
4 changed files with 116 additions and 182 deletions

View File

@ -1,189 +1,109 @@
/*
******************************************************************************
**
** File : LinkerScript.ld
**
** Author : Auto-generated by Ac6 System Workbench
**
** Abstract : Linker script for STM32F411VETx series
** 512Kbytes FLASH and 128Kbytes RAM
**
** Set heap size, stack size and stack location according
** to application requirements.
**
** Set memory bank area and size if external memory is used.
**
** Target : STMicroelectronics STM32
**
** Distribution: The file is distributed “as is,” without any warranty
** of any kind.
**
*****************************************************************************
** @attention
**
** <h2><center>&copy; COPYRIGHT(c) 2014 Ac6</center></h2>
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
** 1. Redistributions of source code must retain the above copyright notice,
** this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright notice,
** this list of conditions and the following disclaimer in the documentation
** and/or other materials provided with the distribution.
** 3. Neither the name of Ac6 nor the names of its contributors
** may be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
** AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
** SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
*****************************************************************************
GNU linker script for STM32F411 via Micropython
*/
/* Entry Point */
ENTRY(Reset_Handler)
/* Highest address of the user mode stack */
_estack = 0x20020000; /* end of RAM */
/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_Size = 0x200; /* required amount of heap */
_Min_Stack_Size = 0x400; /* required amount of stack */
/* Specify the memory areas */
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 512K - 256 - 100K
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 512K /* entire flash */
FLASH_ISR (rx) : ORIGIN = 0x08000000, LENGTH = 16K /* sector 0 */
FLASH_FS (rx) : ORIGIN = 0x08004000, LENGTH = 112K /* sectors 1,2,3 are 16K, 4 is 64K */
FLASH_TEXT (rx) : ORIGIN = 0x08020000, LENGTH = 384K /* sectors 5,6,7 are 128K */
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
}
/* Define output sections */
/* produce a link error if there is not this amount of RAM for these sections */
_minimum_stack_size = 2K;
_minimum_heap_size = 16K;
/* Define tho top end of the stack. The stack is full descending so begins just
above last byte of RAM. Note that EABI requires the stack to be 8-byte
aligned for a call. */
_estack = ORIGIN(RAM) + LENGTH(RAM);
/* RAM extents for the garbage collector */
_ram_start = ORIGIN(RAM);
_ram_end = ORIGIN(RAM) + LENGTH(RAM);
_heap_start = _ebss; /* heap starts just after statically allocated memory */
_heap_end = 0x2001c000; /* tunable */
ENTRY(Reset_Handler)
/* define output sections */
SECTIONS
{
/* The startup code goes first into FLASH */
.isr_vector :
{
. = ALIGN(4);
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
} >FLASH
/* The startup code goes first into FLASH */
.isr_vector :
{
. = ALIGN(4);
KEEP(*(.isr_vector)) /* Startup code */
/* The program code and other data goes into FLASH */
.text :
{
. = ALIGN(4);
*(.text) /* .text sections (code) */
*(.text*) /* .text* sections (code) */
*(.glue_7) /* glue arm to thumb code */
*(.glue_7t) /* glue thumb to arm code */
*(.eh_frame)
/* This first flash block is 16K annd the isr vectors only take up
about 400 bytes. Micropython pads this with files, but this didn't
work with the size of Circuitpython's ff object. */
KEEP (*(.init))
KEEP (*(.fini))
. = ALIGN(4);
} >FLASH_ISR
. = ALIGN(4);
_etext = .; /* define a global symbols at end of code */
} >FLASH
/* The program code and other data goes into FLASH */
.text :
{
. = ALIGN(4);
*(.text*) /* .text* sections (code) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
/* *(.glue_7) */ /* glue arm to thumb code */
/* *(.glue_7t) */ /* glue thumb to arm code */
/* Constant data goes into FLASH */
.rodata :
{
. = ALIGN(4);
*(.rodata) /* .rodata sections (constants, strings, etc.) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
. = ALIGN(4);
} >FLASH
. = ALIGN(4);
_etext = .; /* define a global symbol at end of code */
} >FLASH_TEXT
.ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } >FLASH
.ARM : {
__exidx_start = .;
*(.ARM.exidx*)
__exidx_end = .;
} >FLASH
/* used by the startup to initialize data */
_sidata = LOADADDR(.data);
.preinit_array :
{
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP (*(.preinit_array*))
PROVIDE_HIDDEN (__preinit_array_end = .);
} >FLASH
.init_array :
{
PROVIDE_HIDDEN (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array*))
PROVIDE_HIDDEN (__init_array_end = .);
} >FLASH
.fini_array :
{
PROVIDE_HIDDEN (__fini_array_start = .);
KEEP (*(SORT(.fini_array.*)))
KEEP (*(.fini_array*))
PROVIDE_HIDDEN (__fini_array_end = .);
} >FLASH
/* This is the initialized data section
The program executes knowing that the data is in the RAM
but the loader puts the initial values in the FLASH (inidata).
It is one task of the startup to copy the initial values from FLASH to RAM. */
.data :
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start; used by startup code in order to initialise the .data section in RAM */
*(.data*) /* .data* sections */
/* used by the startup to initialize data */
_sidata = LOADADDR(.data);
. = ALIGN(4);
_edata = .; /* define a global symbol at data end; used by startup code in order to initialise the .data section in RAM */
} >RAM AT> FLASH_TEXT
/* Initialized data sections goes into RAM, load LMA copy after code */
.data :
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start */
*(.data) /* .data sections */
*(.data*) /* .data* sections */
/* Uninitialized data section */
.bss :
{
. = ALIGN(4);
_sbss = .; /* define a global symbol at bss start; used by startup code */
*(.bss*)
*(COMMON)
. = ALIGN(4);
_edata = .; /* define a global symbol at data end */
} >RAM AT> FLASH
. = ALIGN(4);
_ebss = .; /* define a global symbol at bss end; used by startup code and GC */
} >RAM
/* this is to define the start of the heap, and make sure we have a minimum size */
.heap :
{
. = ALIGN(4);
. = . + _minimum_heap_size;
. = ALIGN(4);
} >RAM
/* Uninitialized data section */
. = ALIGN(4);
.bss :
{
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .; /* define a global symbol at bss start */
__bss_start__ = _sbss;
*(.bss)
*(.bss*)
*(COMMON)
/* this just checks there is enough RAM for the stack */
.stack :
{
. = ALIGN(4);
. = . + _minimum_stack_size;
. = ALIGN(4);
} >RAM
. = ALIGN(4);
_ebss = .; /* define a global symbol at bss end */
__bss_end__ = _ebss;
} >RAM
/* User_heap_stack section, used to check that there is enough RAM left */
._user_heap_stack :
{
. = ALIGN(8);
PROVIDE ( end = . );
PROVIDE ( _end = . );
. = . + _Min_Heap_Size;
. = . + _Min_Stack_Size;
. = ALIGN(8);
} >RAM
/* Remove information from the standard libraries */
/DISCARD/ :
{
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
}
.ARM.attributes 0 : { *(.ARM.attributes) }
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -37,6 +37,6 @@
#define CIRCUITPY_INTERNAL_NVM_SIZE 256
#define BOARD_FLASH_SIZE (0x8080000 - 0x2000 - 0x019000 - CIRCUITPY_INTERNAL_NVM_SIZE)
#define BOARD_FLASH_SIZE (FLASH_SIZE - 0x2000 - 0x01C000 - CIRCUITPY_INTERNAL_NVM_SIZE)
#define AUTORESET_DELAY_MS 500

View File

@ -1,4 +1,4 @@
/*
/*f
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
@ -61,6 +61,8 @@ static const flash_layout_t flash_layout[] = {
#endif
};
static uint8_t sector_copy[0x4000] __attribute__((aligned(4)));
//Return the sector of a given flash address.
uint32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) {
if (addr >= flash_layout[0].base_address) {
@ -127,19 +129,31 @@ bool supervisor_flash_write_block(const uint8_t *src, uint32_t block) {
return false;
}
// unlock
// unlock flash
HAL_FLASH_Unlock();
// set up for erase
FLASH_EraseInitTypeDef EraseInitStruct;
// erase the sector(s)
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
//get the sector number
EraseInitStruct.Sector = flash_get_sector_info(dest, NULL, NULL);
//find end address, subtract for number of sectors
EraseInitStruct.NbSectors = flash_get_sector_info(dest + FILESYSTEM_BLOCK_SIZE - 1, NULL, NULL) - EraseInitStruct.Sector + 1;
// get the sector information
uint32_t sector_size;
uint32_t sector_start_addr;
EraseInitStruct.Sector = flash_get_sector_info(dest, &sector_start_addr, &sector_size);
EraseInitStruct.NbSectors = 1;
if (sector_size>0x4000) return false;
// copy the sector
memcpy(sector_copy,(void *)sector_start_addr,sector_size);
// // overwrite sector data
memcpy(sector_copy+(dest-sector_start_addr),src,FILESYSTEM_BLOCK_SIZE);
// find end address, subtract for number of sectors
// Shouldn't be required since blocks will always fit in a single sector, they should never overlap
//EraseInitStruct.NbSectors = flash_get_sector_info(dest + FILESYSTEM_BLOCK_SIZE - 1, NULL, NULL) - EraseInitStruct.Sector + 1;
// erase the sector
uint32_t SectorError = 0;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) {
// error occurred during sector erase
@ -157,16 +171,15 @@ bool supervisor_flash_write_block(const uint8_t *src, uint32_t block) {
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
__HAL_FLASH_DATA_CACHE_ENABLE();
// program the flash word by word
for (int i = 0; i < (FILESYSTEM_BLOCK_SIZE / 4); i++) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, dest, *src) != HAL_OK) {
// reprogram the sector
for (int i = 0; i < sector_size; i++) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_BYTE, sector_start_addr, (uint64_t)sector_copy[i]) != HAL_OK) {
// error occurred during flash write
HAL_FLASH_Lock(); // lock the flash
mp_printf(&mp_plat_print, "FLASH WRITE ERROR");
return false;
}
dest += 4;
src += 1; //src += 4;
sector_start_addr += 1;
}
// lock the flash

View File

@ -33,17 +33,18 @@
#ifdef STM32F411xE
#define STM32_FLASH_SIZE 0x80000 //512KiB
#define INTERNAL_FLASH_FILESYSTEM_SIZE 0x19000 //100KiB
#define INTERNAL_FLASH_FILESYSTEM_SIZE 0x1C000 //112KiB
#endif
#ifdef STM32F412Zx
#define STM32_FLASH_SIZE 0x100000 //512KiB
#define INTERNAL_FLASH_FILESYSTEM_SIZE 0x19000 //100KiB
#define STM32_FLASH_SIZE 0x100000 //1MB
#define INTERNAL_FLASH_FILESYSTEM_SIZE 0x1C000 //112KiB
#endif
#define STM32_FLASH_OFFSET 0x8000000 //All STM32 chips map to this flash location
#define INTERNAL_FLASH_FILESYSTEM_START_ADDR ((STM32_FLASH_SIZE + STM32_FLASH_OFFSET) - INTERNAL_FLASH_FILESYSTEM_SIZE - CIRCUITPY_INTERNAL_NVM_SIZE)
#define INTERNAL_FLASH_FILESYSTEM_START_ADDR 0x08004000
//#define INTERNAL_FLASH_FILESYSTEM_START_ADDR ((STM32_FLASH_SIZE + STM32_FLASH_OFFSET) - INTERNAL_FLASH_FILESYSTEM_SIZE - CIRCUITPY_INTERNAL_NVM_SIZE)
#define INTERNAL_FLASH_FILESYSTEM_NUM_BLOCKS (INTERNAL_FLASH_FILESYSTEM_SIZE / FILESYSTEM_BLOCK_SIZE)
#define INTERNAL_FLASH_SYSTICK_MASK (0x1ff) // 512ms