Style overhaul, extra error checks

This commit is contained in:
Hierophect 2019-11-12 11:26:14 -05:00
parent ed3e377390
commit bbc366b85b
6 changed files with 254 additions and 168 deletions

View File

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -38,57 +38,26 @@
#include "tick.h"
#include "stm32f4xx_hal.h"
#define ALL_UARTS 0xFFFF
STATIC bool reserved_uart[MAX_UART];
int errflag; //Used to restart read halts
STATIC void uart_clock_enable(uint16_t mask);
STATIC void uart_clock_disable(uint16_t mask);
STATIC void uart_assign_irq(busio_uart_obj_t* self, USART_TypeDef* USARTx);
void uart_reset(void) {
#ifdef USART1
reserved_uart[0] = false;
MP_STATE_PORT(cpy_uart_obj_all)[0] = NULL;
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
#endif
#ifdef USART2
reserved_uart[1] = false;
MP_STATE_PORT(cpy_uart_obj_all)[1] = NULL;
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
#endif
#ifdef USART3
reserved_uart[2] = false;
MP_STATE_PORT(cpy_uart_obj_all)[2] = NULL;
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
#endif
#ifdef UART4
reserved_uart[3] = false;
MP_STATE_PORT(cpy_uart_obj_all)[3] = NULL;
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
#endif
#ifdef UART5
reserved_uart[4] = false;
MP_STATE_PORT(cpy_uart_obj_all)[4] = NULL;
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
#endif
#ifdef USART6
reserved_uart[5] = false;
MP_STATE_PORT(cpy_uart_obj_all)[5] = NULL;
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
#endif
for (uint8_t i = 0; i < MAX_UART; i++) {
reserved_uart[i] = false;
MP_STATE_PORT(cpy_uart_obj_all)[i] = NULL;
}
uart_clock_disable(ALL_UARTS);
}
STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t *self, bool pin_eval,
STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t* self, bool pin_eval,
int uart_index, bool uart_taken) {
if(pin_eval) {
if (pin_eval) {
//assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[uart_index] = self;
return mcu_uart_banks[uart_index];
@ -101,66 +70,8 @@ STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t *self, bool pin_eva
}
}
STATIC void uart_clk_irq_enable(busio_uart_obj_t *self, USART_TypeDef * USARTx) {
#ifdef USART1
if(USARTx==USART1) {
reserved_uart[0] = true;
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
self->irq = USART1_IRQn;
}
#endif
#ifdef USART2
if(USARTx==USART2) {
reserved_uart[1] = true;
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
self->irq = USART2_IRQn;
}
#endif
#ifdef USART3
if(USARTx==USART3) {
reserved_uart[2] = true;
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
self->irq = USART3_IRQn;
}
#endif
#ifdef UART4
if(USARTx==UART4) {
reserved_uart[3] = true;
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
self->irq = UART4_IRQn;
}
#endif
#ifdef UART5
if(USARTx==UART5) {
reserved_uart[4] = true;
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
self->irq = UART5_IRQn;
}
#endif
#ifdef USART6
if(USARTx==USART6) {
reserved_uart[5] = true;
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
self->irq = USART6_IRQn;
}
#endif
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
void common_hal_busio_uart_construct(busio_uart_obj_t* self,
const mcu_pin_obj_t* tx, const mcu_pin_obj_t* rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
uint16_t receiver_buffer_size) {
@ -170,18 +81,19 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
uint8_t tx_len = sizeof(mcu_uart_tx_list)/sizeof(*mcu_uart_tx_list);
uint8_t rx_len = sizeof(mcu_uart_rx_list)/sizeof(*mcu_uart_rx_list);
bool uart_taken = false;
uint8_t uart_index = 0; //origin 0 corrected
//Can have both pins, or either
if ((tx != mp_const_none) && (rx != mp_const_none)) {
//normal find loop if both pins exist
for(uint i=0; i<tx_len;i++) {
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//rx
for(uint j=0; j<rx_len;j++) {
for (uint j = 0; j < rx_len; j++) {
if (mcu_uart_rx_list[j].pin == rx
&& mcu_uart_rx_list[j].uart_index == mcu_uart_tx_list[i].uart_index) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) {
if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
@ -193,14 +105,15 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
}
}
}
USARTx = assign_uart_or_throw(self, (self->tx!=NULL && self->rx!=NULL),
self->tx->uart_index-1, uart_taken);
} else if (tx==mp_const_none) {
uart_index = self->tx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL && self->rx != NULL),
uart_index, uart_taken);
} else if (tx == mp_const_none) {
//If there is no tx, run only rx
for(uint i=0; i<rx_len;i++) {
for (uint i = 0; i < rx_len; i++) {
if (mcu_uart_rx_list[i].pin == rx) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_rx_list[i].uart_index-1]) {
if (reserved_uart[mcu_uart_rx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
@ -209,14 +122,15 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
break;
}
}
USARTx = assign_uart_or_throw(self, (self->rx!=NULL),
self->rx->uart_index-1, uart_taken);
} else if (rx==mp_const_none) {
uart_index = self->rx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->rx != NULL),
uart_index, uart_taken);
} else if (rx == mp_const_none) {
//If there is no rx, run only tx
for(uint i=0; i<tx_len;i++) {
for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) {
//keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) {
if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true;
continue;
}
@ -225,8 +139,9 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
break;
}
}
USARTx = assign_uart_or_throw(self, (self->tx!=NULL),
(self->tx->uart_index-1), uart_taken);
uart_index = self->tx->uart_index - 1;
USARTx = assign_uart_or_throw(self, (self->tx != NULL),
uart_index, uart_taken);
} else {
//both pins cannot be empty
mp_raise_ValueError(translate("Supply at least one UART pin"));
@ -239,10 +154,13 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
if ( bits != 8 && bits != 9 ) {
mp_raise_ValueError(translate("Invalid word/bit length"));
}
if ( USARTx == NULL) { //this can only be hit if the periph file is wrong
mp_raise_ValueError(translate("Internal define error"));
}
//GPIO Init
GPIO_InitTypeDef GPIO_InitStruct = {0};
if (self->tx!=NULL) {
if (self->tx != NULL) {
GPIO_InitStruct.Pin = pin_mask(tx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
@ -250,7 +168,7 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
GPIO_InitStruct.Alternate = self->tx->altfn_index;
HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct);
}
if (self->rx!=NULL) {
if (self->rx != NULL) {
GPIO_InitStruct.Pin = pin_mask(rx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
@ -259,14 +177,17 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct);
}
uart_clk_irq_enable(self,USARTx);
//reserve uart and enable the peripheral
reserved_uart[uart_index] = true;
uart_clock_enable(1 << (uart_index));
uart_assign_irq(self, USARTx);
self->handle.Instance = USARTx;
self->handle.Init.BaudRate = baudrate;
self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
self->handle.Init.StopBits = (stop>1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity==PARITY_ODD) ? UART_PARITY_ODD :
(parity==PARITY_EVEN) ? UART_PARITY_EVEN :
self->handle.Init.StopBits = (stop > 1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity == PARITY_ODD) ? UART_PARITY_ODD :
(parity == PARITY_EVEN) ? UART_PARITY_EVEN :
UART_PARITY_NONE;
self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX :
(self->tx != NULL) ? UART_MODE_TX :
@ -312,7 +233,7 @@ bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if(common_hal_busio_uart_deinited(self)) return;
if (common_hal_busio_uart_deinited(self)) return;
reset_pin_number(self->tx->pin->port,self->tx->pin->number);
reset_pin_number(self->rx->pin->port,self->rx->pin->number);
@ -335,7 +256,7 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
while ( (ringbuf_count(&self->rbuf) < len) && (ticks_ms - start_ticks < self->timeout_ms) ) {
RUN_BACKGROUND_TASKS;
//restart if it failed in the callback
if(errflag != HAL_OK) {
if (errflag != HAL_OK) {
errflag = HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
}
// Allow user to break out of a timeout with a KeyboardInterrupt.
@ -348,10 +269,8 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
HAL_NVIC_DisableIRQ(self->irq);
// copy received data
rx_bytes = ringbuf_count(&self->rbuf);
//Used for debugging
//mp_printf(&mp_plat_print, "Read: count:%d, buffer location%p, er:%d\n", rx_bytes, &self->rbuf,errflag);
rx_bytes = MIN(rx_bytes, len);
for ( uint16_t i = 0; i < rx_bytes; i++ ) {
for (uint16_t i = 0; i < rx_bytes; i++) {
data[i] = ringbuf_get(&self->rbuf);
}
HAL_NVIC_EnableIRQ(self->irq);
@ -368,28 +287,27 @@ size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data,
if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin"));
}
bool write_err = false; //write error shouldn't disable interrupts
HAL_NVIC_DisableIRQ(self->irq);
if (HAL_UART_Transmit(&self->handle, (uint8_t *)data, len, self->timeout_ms) != HAL_OK) {
mp_raise_ValueError(translate("UART write error"));
if (HAL_UART_Transmit(&self->handle, (uint8_t*)data, len, self->timeout_ms) != HAL_OK) {
write_err = true;
}
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
HAL_NVIC_SetPriority(self->irq, UART_IRQPRI, UART_IRQSUB_PRI);
HAL_NVIC_EnableIRQ(self->irq);
if (write_err) mp_raise_ValueError(translate("UART write error"));
return len;
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle)
{
for(int i=0; i<7; i++) {
for (int i = 0; i < 7; i++) {
//get context pointer and cast it as struct pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if(handle == &context->handle) {
busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[i];
if (handle == &context->handle) {
//check if transaction is ongoing
if((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
if ((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
return;
}
ringbuf_put_n(&context->rbuf, &context->rx_char, 1);
@ -412,9 +330,9 @@ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle)
__HAL_UART_CLEAR_OREFLAG(UartHandle);
}
//restart serial read after an error
for(int i=0; i<7; i++) {
for (int i = 0; i < 7; i++) {
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if(UartHandle == &context->handle) {
if (UartHandle == &context->handle) {
HAL_UART_Receive_IT(UartHandle, &context->rx_char, 1);
return;
}
@ -431,11 +349,11 @@ void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrat
if (baudrate == self->baudrate) return;
//Otherwise de-init and set new rate
if(HAL_UART_DeInit(&self->handle) != HAL_OK) {
if (HAL_UART_DeInit(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART De-init error"));
}
self->handle.Init.BaudRate = baudrate;
if(HAL_UART_Init(&self->handle) != HAL_OK) {
if (HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART Re-init error"));
}
@ -454,13 +372,13 @@ void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
return __HAL_UART_GET_FLAG(&self->handle,UART_FLAG_TXE);
return __HAL_UART_GET_FLAG(&self->handle, UART_FLAG_TXE);
}
STATIC void call_hal_irq(int uart_num) {
//Create casted context pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[uart_num-1];
if(context != NULL) {
busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[uart_num - 1];
if (context != NULL) {
HAL_NVIC_ClearPendingIRQ(context->irq);
HAL_UART_IRQHandler(&context->handle);
}
@ -490,3 +408,182 @@ void UART5_IRQHandler(void) {
void USART6_IRQHandler(void) {
call_hal_irq(6);
}
STATIC void uart_clock_enable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_ENABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_ENABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_ENABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_ENABLE();
}
#endif
}
STATIC void uart_clock_disable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_DISABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_DISABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_DISABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_DISABLE();
}
#endif
}
STATIC void uart_assign_irq(busio_uart_obj_t *self, USART_TypeDef * USARTx) {
#ifdef USART1
if (USARTx == USART1) self->irq = USART1_IRQn;
#endif
#ifdef USART2
if (USARTx == USART2) self->irq = USART2_IRQn;
#endif
#ifdef USART3
if (USARTx == USART3) self->irq = USART3_IRQn;
#endif
#ifdef UART4
if (USARTx == UART4) self->irq = UART4_IRQn;
#endif
#ifdef UART5
if (USARTx == UART5) self->irq = UART5_IRQn;
#endif
#ifdef USART6
if (USARTx == USART6) self->irq = USART6_IRQn;
#endif
#ifdef UART7
if (USARTx == UART7) self->irq = UART7_IRQn;
#endif
#ifdef UART8
if (USARTx == UART8) self->irq = UART8_IRQn;
#endif
#ifdef UART9
if (USARTx == UART9) self->irq = UART9_IRQn;
#endif
#ifdef UART10
if (USARTx == UART10) self->irq = UART10_IRQn;
#endif
}

View File

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -57,11 +57,4 @@ typedef struct {
void uart_reset(void);
void USART1_IRQHandler(void);
void USART2_IRQHandler(void);
void USART3_IRQHandler(void);
void UART4_IRQHandler(void);
void UART5_IRQHandler(void);
void USART6_IRQHandler(void);
// void UART_IRQHandler(void);
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H

View File

@ -39,8 +39,10 @@
#include "py/circuitpy_mpconfig.h"
#define MAX_UART 10 //how many UART are implemented
#define MICROPY_PORT_ROOT_POINTERS \
void *cpy_uart_obj_all[6]; \
void *cpy_uart_obj_all[MAX_UART]; \
CIRCUITPY_COMMON_ROOT_POINTERS
#endif // __INCLUDED_MPCONFIGPORT_H

View File

@ -33,8 +33,6 @@
#include "stm32f4xx_hal.h"
#include "stm32f4/pins.h"
#define MAX_UART 6 //how many UART are implemented
// I2C
// TODO: these objects should be condensed into a single 'periph_pin' unless we
// find a compelling reason to store more unique data in them.

View File

@ -42,12 +42,12 @@
#include "stm32f4xx_hal.h"
safe_mode_t port_init(void) {
HAL_Init();
HAL_Init();
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
stm32f4_peripherals_clocks_init();
stm32f4_peripherals_gpio_init();
stm32f4_peripherals_clocks_init();
stm32f4_peripherals_gpio_init();
tick_init();
board_init();
@ -56,7 +56,7 @@ safe_mode_t port_init(void) {
}
void reset_port(void) {
reset_all_pins();
reset_all_pins();
i2c_reset();
spi_reset();
uart_reset();
@ -68,7 +68,7 @@ void reset_to_bootloader(void) {
}
void reset_cpu(void) {
NVIC_SystemReset();
NVIC_SystemReset();
}
uint32_t *port_stack_get_limit(void) {
@ -90,7 +90,7 @@ uint32_t port_get_saved_word(void) {
}
void HardFault_Handler(void) {
reset_into_safe_mode(HARD_CRASH);
reset_into_safe_mode(HARD_CRASH);
while (true) {
asm("nop;");
}

View File

@ -64,10 +64,6 @@ void tick_init() {
SysTick_Config(ticks_per_ms); // interrupt is enabled
NVIC_EnableIRQ(SysTick_IRQn);
// Set all peripheral interrupt priorities to the lowest priority by default.
// for (uint16_t i = 0; i < PERIPH_COUNT_IRQn; i++) {
// NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL);
// }
// Bump up the systick interrupt so nothing else interferes with timekeeping.
NVIC_SetPriority(SysTick_IRQn, 0);
NVIC_SetPriority(OTG_FS_IRQn, 1);