Style overhaul, extra error checks

This commit is contained in:
Hierophect 2019-11-12 11:26:14 -05:00
parent ed3e377390
commit bbc366b85b
6 changed files with 254 additions and 168 deletions

View File

@ -3,7 +3,7 @@
* *
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2016 Damien P. George * Copyright (c) 2019 Lucian Copeland for Adafruit Industries
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -38,57 +38,26 @@
#include "tick.h" #include "tick.h"
#include "stm32f4xx_hal.h" #include "stm32f4xx_hal.h"
#define ALL_UARTS 0xFFFF
STATIC bool reserved_uart[MAX_UART]; STATIC bool reserved_uart[MAX_UART];
int errflag; //Used to restart read halts int errflag; //Used to restart read halts
STATIC void uart_clock_enable(uint16_t mask);
STATIC void uart_clock_disable(uint16_t mask);
STATIC void uart_assign_irq(busio_uart_obj_t* self, USART_TypeDef* USARTx);
void uart_reset(void) { void uart_reset(void) {
#ifdef USART1 for (uint8_t i = 0; i < MAX_UART; i++) {
reserved_uart[0] = false; reserved_uart[i] = false;
MP_STATE_PORT(cpy_uart_obj_all)[0] = NULL; MP_STATE_PORT(cpy_uart_obj_all)[i] = NULL;
__HAL_RCC_USART1_FORCE_RESET(); }
__HAL_RCC_USART1_RELEASE_RESET(); uart_clock_disable(ALL_UARTS);
__HAL_RCC_USART1_CLK_DISABLE();
#endif
#ifdef USART2
reserved_uart[1] = false;
MP_STATE_PORT(cpy_uart_obj_all)[1] = NULL;
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
#endif
#ifdef USART3
reserved_uart[2] = false;
MP_STATE_PORT(cpy_uart_obj_all)[2] = NULL;
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
#endif
#ifdef UART4
reserved_uart[3] = false;
MP_STATE_PORT(cpy_uart_obj_all)[3] = NULL;
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
#endif
#ifdef UART5
reserved_uart[4] = false;
MP_STATE_PORT(cpy_uart_obj_all)[4] = NULL;
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
#endif
#ifdef USART6
reserved_uart[5] = false;
MP_STATE_PORT(cpy_uart_obj_all)[5] = NULL;
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
#endif
} }
STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t *self, bool pin_eval, STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t* self, bool pin_eval,
int uart_index, bool uart_taken) { int uart_index, bool uart_taken) {
if(pin_eval) { if (pin_eval) {
//assign a root pointer pointer for IRQ //assign a root pointer pointer for IRQ
MP_STATE_PORT(cpy_uart_obj_all)[uart_index] = self; MP_STATE_PORT(cpy_uart_obj_all)[uart_index] = self;
return mcu_uart_banks[uart_index]; return mcu_uart_banks[uart_index];
@ -101,66 +70,8 @@ STATIC USART_TypeDef * assign_uart_or_throw(busio_uart_obj_t *self, bool pin_eva
} }
} }
void common_hal_busio_uart_construct(busio_uart_obj_t* self,
STATIC void uart_clk_irq_enable(busio_uart_obj_t *self, USART_TypeDef * USARTx) { const mcu_pin_obj_t* tx, const mcu_pin_obj_t* rx, uint32_t baudrate,
#ifdef USART1
if(USARTx==USART1) {
reserved_uart[0] = true;
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
self->irq = USART1_IRQn;
}
#endif
#ifdef USART2
if(USARTx==USART2) {
reserved_uart[1] = true;
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
self->irq = USART2_IRQn;
}
#endif
#ifdef USART3
if(USARTx==USART3) {
reserved_uart[2] = true;
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
self->irq = USART3_IRQn;
}
#endif
#ifdef UART4
if(USARTx==UART4) {
reserved_uart[3] = true;
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
self->irq = UART4_IRQn;
}
#endif
#ifdef UART5
if(USARTx==UART5) {
reserved_uart[4] = true;
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
self->irq = UART5_IRQn;
}
#endif
#ifdef USART6
if(USARTx==USART6) {
reserved_uart[5] = true;
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
self->irq = USART6_IRQn;
}
#endif
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
uint16_t receiver_buffer_size) { uint16_t receiver_buffer_size) {
@ -170,18 +81,19 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
uint8_t tx_len = sizeof(mcu_uart_tx_list)/sizeof(*mcu_uart_tx_list); uint8_t tx_len = sizeof(mcu_uart_tx_list)/sizeof(*mcu_uart_tx_list);
uint8_t rx_len = sizeof(mcu_uart_rx_list)/sizeof(*mcu_uart_rx_list); uint8_t rx_len = sizeof(mcu_uart_rx_list)/sizeof(*mcu_uart_rx_list);
bool uart_taken = false; bool uart_taken = false;
uint8_t uart_index = 0; //origin 0 corrected
//Can have both pins, or either //Can have both pins, or either
if ((tx != mp_const_none) && (rx != mp_const_none)) { if ((tx != mp_const_none) && (rx != mp_const_none)) {
//normal find loop if both pins exist //normal find loop if both pins exist
for(uint i=0; i<tx_len;i++) { for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) { if (mcu_uart_tx_list[i].pin == tx) {
//rx //rx
for(uint j=0; j<rx_len;j++) { for (uint j = 0; j < rx_len; j++) {
if (mcu_uart_rx_list[j].pin == rx if (mcu_uart_rx_list[j].pin == rx
&& mcu_uart_rx_list[j].uart_index == mcu_uart_tx_list[i].uart_index) { && mcu_uart_rx_list[j].uart_index == mcu_uart_tx_list[i].uart_index) {
//keep looking if the UART is taken, edge case //keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) { if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true; uart_taken = true;
continue; continue;
} }
@ -193,14 +105,15 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
} }
} }
} }
USARTx = assign_uart_or_throw(self, (self->tx!=NULL && self->rx!=NULL), uart_index = self->tx->uart_index - 1;
self->tx->uart_index-1, uart_taken); USARTx = assign_uart_or_throw(self, (self->tx != NULL && self->rx != NULL),
} else if (tx==mp_const_none) { uart_index, uart_taken);
} else if (tx == mp_const_none) {
//If there is no tx, run only rx //If there is no tx, run only rx
for(uint i=0; i<rx_len;i++) { for (uint i = 0; i < rx_len; i++) {
if (mcu_uart_rx_list[i].pin == rx) { if (mcu_uart_rx_list[i].pin == rx) {
//keep looking if the UART is taken, edge case //keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_rx_list[i].uart_index-1]) { if (reserved_uart[mcu_uart_rx_list[i].uart_index - 1]) {
uart_taken = true; uart_taken = true;
continue; continue;
} }
@ -209,14 +122,15 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
break; break;
} }
} }
USARTx = assign_uart_or_throw(self, (self->rx!=NULL), uart_index = self->rx->uart_index - 1;
self->rx->uart_index-1, uart_taken); USARTx = assign_uart_or_throw(self, (self->rx != NULL),
} else if (rx==mp_const_none) { uart_index, uart_taken);
} else if (rx == mp_const_none) {
//If there is no rx, run only tx //If there is no rx, run only tx
for(uint i=0; i<tx_len;i++) { for (uint i = 0; i < tx_len; i++) {
if (mcu_uart_tx_list[i].pin == tx) { if (mcu_uart_tx_list[i].pin == tx) {
//keep looking if the UART is taken, edge case //keep looking if the UART is taken, edge case
if(reserved_uart[mcu_uart_tx_list[i].uart_index-1]) { if (reserved_uart[mcu_uart_tx_list[i].uart_index - 1]) {
uart_taken = true; uart_taken = true;
continue; continue;
} }
@ -225,8 +139,9 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
break; break;
} }
} }
USARTx = assign_uart_or_throw(self, (self->tx!=NULL), uart_index = self->tx->uart_index - 1;
(self->tx->uart_index-1), uart_taken); USARTx = assign_uart_or_throw(self, (self->tx != NULL),
uart_index, uart_taken);
} else { } else {
//both pins cannot be empty //both pins cannot be empty
mp_raise_ValueError(translate("Supply at least one UART pin")); mp_raise_ValueError(translate("Supply at least one UART pin"));
@ -239,10 +154,13 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
if ( bits != 8 && bits != 9 ) { if ( bits != 8 && bits != 9 ) {
mp_raise_ValueError(translate("Invalid word/bit length")); mp_raise_ValueError(translate("Invalid word/bit length"));
} }
if ( USARTx == NULL) { //this can only be hit if the periph file is wrong
mp_raise_ValueError(translate("Internal define error"));
}
//GPIO Init //GPIO Init
GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitTypeDef GPIO_InitStruct = {0};
if (self->tx!=NULL) { if (self->tx != NULL) {
GPIO_InitStruct.Pin = pin_mask(tx->number); GPIO_InitStruct.Pin = pin_mask(tx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
@ -250,7 +168,7 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
GPIO_InitStruct.Alternate = self->tx->altfn_index; GPIO_InitStruct.Alternate = self->tx->altfn_index;
HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct); HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct);
} }
if (self->rx!=NULL) { if (self->rx != NULL) {
GPIO_InitStruct.Pin = pin_mask(rx->number); GPIO_InitStruct.Pin = pin_mask(rx->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Pull = GPIO_PULLUP;
@ -259,14 +177,17 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct); HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct);
} }
uart_clk_irq_enable(self,USARTx); //reserve uart and enable the peripheral
reserved_uart[uart_index] = true;
uart_clock_enable(1 << (uart_index));
uart_assign_irq(self, USARTx);
self->handle.Instance = USARTx; self->handle.Instance = USARTx;
self->handle.Init.BaudRate = baudrate; self->handle.Init.BaudRate = baudrate;
self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B; self->handle.Init.WordLength = (bits == 9) ? UART_WORDLENGTH_9B : UART_WORDLENGTH_8B;
self->handle.Init.StopBits = (stop>1) ? UART_STOPBITS_2 : UART_STOPBITS_1; self->handle.Init.StopBits = (stop > 1) ? UART_STOPBITS_2 : UART_STOPBITS_1;
self->handle.Init.Parity = (parity==PARITY_ODD) ? UART_PARITY_ODD : self->handle.Init.Parity = (parity == PARITY_ODD) ? UART_PARITY_ODD :
(parity==PARITY_EVEN) ? UART_PARITY_EVEN : (parity == PARITY_EVEN) ? UART_PARITY_EVEN :
UART_PARITY_NONE; UART_PARITY_NONE;
self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX : self->handle.Init.Mode = (self->tx != NULL && self->rx != NULL) ? UART_MODE_TX_RX :
(self->tx != NULL) ? UART_MODE_TX : (self->tx != NULL) ? UART_MODE_TX :
@ -312,7 +233,7 @@ bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
} }
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if(common_hal_busio_uart_deinited(self)) return; if (common_hal_busio_uart_deinited(self)) return;
reset_pin_number(self->tx->pin->port,self->tx->pin->number); reset_pin_number(self->tx->pin->port,self->tx->pin->number);
reset_pin_number(self->rx->pin->port,self->rx->pin->number); reset_pin_number(self->rx->pin->port,self->rx->pin->number);
@ -335,7 +256,7 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
while ( (ringbuf_count(&self->rbuf) < len) && (ticks_ms - start_ticks < self->timeout_ms) ) { while ( (ringbuf_count(&self->rbuf) < len) && (ticks_ms - start_ticks < self->timeout_ms) ) {
RUN_BACKGROUND_TASKS; RUN_BACKGROUND_TASKS;
//restart if it failed in the callback //restart if it failed in the callback
if(errflag != HAL_OK) { if (errflag != HAL_OK) {
errflag = HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1); errflag = HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
} }
// Allow user to break out of a timeout with a KeyboardInterrupt. // Allow user to break out of a timeout with a KeyboardInterrupt.
@ -348,10 +269,8 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
HAL_NVIC_DisableIRQ(self->irq); HAL_NVIC_DisableIRQ(self->irq);
// copy received data // copy received data
rx_bytes = ringbuf_count(&self->rbuf); rx_bytes = ringbuf_count(&self->rbuf);
//Used for debugging
//mp_printf(&mp_plat_print, "Read: count:%d, buffer location%p, er:%d\n", rx_bytes, &self->rbuf,errflag);
rx_bytes = MIN(rx_bytes, len); rx_bytes = MIN(rx_bytes, len);
for ( uint16_t i = 0; i < rx_bytes; i++ ) { for (uint16_t i = 0; i < rx_bytes; i++) {
data[i] = ringbuf_get(&self->rbuf); data[i] = ringbuf_get(&self->rbuf);
} }
HAL_NVIC_EnableIRQ(self->irq); HAL_NVIC_EnableIRQ(self->irq);
@ -368,28 +287,27 @@ size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data,
if (self->tx == NULL) { if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin")); mp_raise_ValueError(translate("No TX pin"));
} }
bool write_err = false; //write error shouldn't disable interrupts
HAL_NVIC_DisableIRQ(self->irq); HAL_NVIC_DisableIRQ(self->irq);
if (HAL_UART_Transmit(&self->handle, (uint8_t*)data, len, self->timeout_ms) != HAL_OK) {
if (HAL_UART_Transmit(&self->handle, (uint8_t *)data, len, self->timeout_ms) != HAL_OK) { write_err = true;
mp_raise_ValueError(translate("UART write error"));
} }
HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1); HAL_UART_Receive_IT(&self->handle, &self->rx_char, 1);
HAL_NVIC_SetPriority(self->irq, UART_IRQPRI, UART_IRQSUB_PRI);
HAL_NVIC_EnableIRQ(self->irq); HAL_NVIC_EnableIRQ(self->irq);
if (write_err) mp_raise_ValueError(translate("UART write error"));
return len; return len;
} }
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle) void HAL_UART_RxCpltCallback(UART_HandleTypeDef *handle)
{ {
for(int i=0; i<7; i++) { for (int i = 0; i < 7; i++) {
//get context pointer and cast it as struct pointer //get context pointer and cast it as struct pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i]; busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[i];
if(handle == &context->handle) { if (handle == &context->handle) {
//check if transaction is ongoing //check if transaction is ongoing
if((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) { if ((HAL_UART_GetState(handle) & HAL_UART_STATE_BUSY_RX) == HAL_UART_STATE_BUSY_RX) {
return; return;
} }
ringbuf_put_n(&context->rbuf, &context->rx_char, 1); ringbuf_put_n(&context->rbuf, &context->rx_char, 1);
@ -412,9 +330,9 @@ void HAL_UART_ErrorCallback(UART_HandleTypeDef *UartHandle)
__HAL_UART_CLEAR_OREFLAG(UartHandle); __HAL_UART_CLEAR_OREFLAG(UartHandle);
} }
//restart serial read after an error //restart serial read after an error
for(int i=0; i<7; i++) { for (int i = 0; i < 7; i++) {
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i]; busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[i];
if(UartHandle == &context->handle) { if (UartHandle == &context->handle) {
HAL_UART_Receive_IT(UartHandle, &context->rx_char, 1); HAL_UART_Receive_IT(UartHandle, &context->rx_char, 1);
return; return;
} }
@ -431,11 +349,11 @@ void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrat
if (baudrate == self->baudrate) return; if (baudrate == self->baudrate) return;
//Otherwise de-init and set new rate //Otherwise de-init and set new rate
if(HAL_UART_DeInit(&self->handle) != HAL_OK) { if (HAL_UART_DeInit(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART De-init error")); mp_raise_ValueError(translate("UART De-init error"));
} }
self->handle.Init.BaudRate = baudrate; self->handle.Init.BaudRate = baudrate;
if(HAL_UART_Init(&self->handle) != HAL_OK) { if (HAL_UART_Init(&self->handle) != HAL_OK) {
mp_raise_ValueError(translate("UART Re-init error")); mp_raise_ValueError(translate("UART Re-init error"));
} }
@ -454,13 +372,13 @@ void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
} }
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
return __HAL_UART_GET_FLAG(&self->handle,UART_FLAG_TXE); return __HAL_UART_GET_FLAG(&self->handle, UART_FLAG_TXE);
} }
STATIC void call_hal_irq(int uart_num) { STATIC void call_hal_irq(int uart_num) {
//Create casted context pointer //Create casted context pointer
busio_uart_obj_t * context = (busio_uart_obj_t *)MP_STATE_PORT(cpy_uart_obj_all)[uart_num-1]; busio_uart_obj_t * context = (busio_uart_obj_t*)MP_STATE_PORT(cpy_uart_obj_all)[uart_num - 1];
if(context != NULL) { if (context != NULL) {
HAL_NVIC_ClearPendingIRQ(context->irq); HAL_NVIC_ClearPendingIRQ(context->irq);
HAL_UART_IRQHandler(&context->handle); HAL_UART_IRQHandler(&context->handle);
} }
@ -490,3 +408,182 @@ void UART5_IRQHandler(void) {
void USART6_IRQHandler(void) { void USART6_IRQHandler(void) {
call_hal_irq(6); call_hal_irq(6);
} }
STATIC void uart_clock_enable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_ENABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_ENABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_ENABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_ENABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_ENABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_ENABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_ENABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_ENABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_ENABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_ENABLE();
}
#endif
}
STATIC void uart_clock_disable(uint16_t mask) {
#ifdef USART1
if (mask & (1 << 0)) {
__HAL_RCC_USART1_FORCE_RESET();
__HAL_RCC_USART1_RELEASE_RESET();
__HAL_RCC_USART1_CLK_DISABLE();
}
#endif
#ifdef USART2
if (mask & (1 << 1)) {
__HAL_RCC_USART2_FORCE_RESET();
__HAL_RCC_USART2_RELEASE_RESET();
__HAL_RCC_USART2_CLK_DISABLE();
}
#endif
#ifdef USART3
if (mask & (1 << 2)) {
__HAL_RCC_USART3_FORCE_RESET();
__HAL_RCC_USART3_RELEASE_RESET();
__HAL_RCC_USART3_CLK_DISABLE();
}
#endif
#ifdef UART4
if (mask & (1 << 3)) {
__HAL_RCC_UART4_FORCE_RESET();
__HAL_RCC_UART4_RELEASE_RESET();
__HAL_RCC_UART4_CLK_DISABLE();
}
#endif
#ifdef UART5
if (mask & (1 << 4)) {
__HAL_RCC_UART5_FORCE_RESET();
__HAL_RCC_UART5_RELEASE_RESET();
__HAL_RCC_UART5_CLK_DISABLE();
}
#endif
#ifdef USART6
if (mask & (1 << 5)) {
__HAL_RCC_USART6_FORCE_RESET();
__HAL_RCC_USART6_RELEASE_RESET();
__HAL_RCC_USART6_CLK_DISABLE();
}
#endif
#ifdef UART7
if (mask & (1 << 6)) {
__HAL_RCC_UART7_FORCE_RESET();
__HAL_RCC_UART7_RELEASE_RESET();
__HAL_RCC_UART7_CLK_DISABLE();
}
#endif
#ifdef UART8
if (mask & (1 << 7)) {
__HAL_RCC_UART8_FORCE_RESET();
__HAL_RCC_UART8_RELEASE_RESET();
__HAL_RCC_UART8_CLK_DISABLE();
}
#endif
#ifdef UART9
if (mask & (1 << 8)) {
__HAL_RCC_UART9_FORCE_RESET();
__HAL_RCC_UART9_RELEASE_RESET();
__HAL_RCC_UART9_CLK_DISABLE();
}
#endif
#ifdef UART10
if (mask & (1 << 9)) {
__HAL_RCC_UART10_FORCE_RESET();
__HAL_RCC_UART10_RELEASE_RESET();
__HAL_RCC_UART10_CLK_DISABLE();
}
#endif
}
STATIC void uart_assign_irq(busio_uart_obj_t *self, USART_TypeDef * USARTx) {
#ifdef USART1
if (USARTx == USART1) self->irq = USART1_IRQn;
#endif
#ifdef USART2
if (USARTx == USART2) self->irq = USART2_IRQn;
#endif
#ifdef USART3
if (USARTx == USART3) self->irq = USART3_IRQn;
#endif
#ifdef UART4
if (USARTx == UART4) self->irq = UART4_IRQn;
#endif
#ifdef UART5
if (USARTx == UART5) self->irq = UART5_IRQn;
#endif
#ifdef USART6
if (USARTx == USART6) self->irq = USART6_IRQn;
#endif
#ifdef UART7
if (USARTx == UART7) self->irq = UART7_IRQn;
#endif
#ifdef UART8
if (USARTx == UART8) self->irq = UART8_IRQn;
#endif
#ifdef UART9
if (USARTx == UART9) self->irq = UART9_IRQn;
#endif
#ifdef UART10
if (USARTx == UART10) self->irq = UART10_IRQn;
#endif
}

View File

@ -3,7 +3,7 @@
* *
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2016 Scott Shawcroft * Copyright (c) 2019 Lucian Copeland for Adafruit Industries
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -57,11 +57,4 @@ typedef struct {
void uart_reset(void); void uart_reset(void);
void USART1_IRQHandler(void);
void USART2_IRQHandler(void);
void USART3_IRQHandler(void);
void UART4_IRQHandler(void);
void UART5_IRQHandler(void);
void USART6_IRQHandler(void);
// void UART_IRQHandler(void);
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H #endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H

View File

@ -39,8 +39,10 @@
#include "py/circuitpy_mpconfig.h" #include "py/circuitpy_mpconfig.h"
#define MAX_UART 10 //how many UART are implemented
#define MICROPY_PORT_ROOT_POINTERS \ #define MICROPY_PORT_ROOT_POINTERS \
void *cpy_uart_obj_all[6]; \ void *cpy_uart_obj_all[MAX_UART]; \
CIRCUITPY_COMMON_ROOT_POINTERS CIRCUITPY_COMMON_ROOT_POINTERS
#endif // __INCLUDED_MPCONFIGPORT_H #endif // __INCLUDED_MPCONFIGPORT_H

View File

@ -33,8 +33,6 @@
#include "stm32f4xx_hal.h" #include "stm32f4xx_hal.h"
#include "stm32f4/pins.h" #include "stm32f4/pins.h"
#define MAX_UART 6 //how many UART are implemented
// I2C // I2C
// TODO: these objects should be condensed into a single 'periph_pin' unless we // TODO: these objects should be condensed into a single 'periph_pin' unless we
// find a compelling reason to store more unique data in them. // find a compelling reason to store more unique data in them.

View File

@ -42,12 +42,12 @@
#include "stm32f4xx_hal.h" #include "stm32f4xx_hal.h"
safe_mode_t port_init(void) { safe_mode_t port_init(void) {
HAL_Init(); HAL_Init();
__HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE(); __HAL_RCC_PWR_CLK_ENABLE();
stm32f4_peripherals_clocks_init(); stm32f4_peripherals_clocks_init();
stm32f4_peripherals_gpio_init(); stm32f4_peripherals_gpio_init();
tick_init(); tick_init();
board_init(); board_init();
@ -56,7 +56,7 @@ safe_mode_t port_init(void) {
} }
void reset_port(void) { void reset_port(void) {
reset_all_pins(); reset_all_pins();
i2c_reset(); i2c_reset();
spi_reset(); spi_reset();
uart_reset(); uart_reset();
@ -68,7 +68,7 @@ void reset_to_bootloader(void) {
} }
void reset_cpu(void) { void reset_cpu(void) {
NVIC_SystemReset(); NVIC_SystemReset();
} }
uint32_t *port_stack_get_limit(void) { uint32_t *port_stack_get_limit(void) {
@ -90,7 +90,7 @@ uint32_t port_get_saved_word(void) {
} }
void HardFault_Handler(void) { void HardFault_Handler(void) {
reset_into_safe_mode(HARD_CRASH); reset_into_safe_mode(HARD_CRASH);
while (true) { while (true) {
asm("nop;"); asm("nop;");
} }

View File

@ -64,10 +64,6 @@ void tick_init() {
SysTick_Config(ticks_per_ms); // interrupt is enabled SysTick_Config(ticks_per_ms); // interrupt is enabled
NVIC_EnableIRQ(SysTick_IRQn); NVIC_EnableIRQ(SysTick_IRQn);
// Set all peripheral interrupt priorities to the lowest priority by default.
// for (uint16_t i = 0; i < PERIPH_COUNT_IRQn; i++) {
// NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL);
// }
// Bump up the systick interrupt so nothing else interferes with timekeeping. // Bump up the systick interrupt so nothing else interferes with timekeeping.
NVIC_SetPriority(SysTick_IRQn, 0); NVIC_SetPriority(SysTick_IRQn, 0);
NVIC_SetPriority(OTG_FS_IRQn, 1); NVIC_SetPriority(OTG_FS_IRQn, 1);