docs/library/btree: Add btree module docs.
This commit is contained in:
parent
4c392243ae
commit
bb296482c3
144
docs/library/btree.rst
Normal file
144
docs/library/btree.rst
Normal file
@ -0,0 +1,144 @@
|
||||
:mod:`btree` -- simple BTree database
|
||||
=====================================
|
||||
|
||||
.. module:: btree
|
||||
:synopsis: simple BTree database
|
||||
|
||||
The ``btree`` module implements a simple key-value database using external
|
||||
storage (disk files, or in general case, a random-access stream). Keys are
|
||||
stored sorted in the database, and besides efficient retrieval by a key
|
||||
value, a database also supports efficient ordered range scans (retrieval
|
||||
of values with the keys in a given range). On the application interface
|
||||
side, BTree database work as close a possible to a way standard `dict`
|
||||
type works, one notable difference is that both keys and values must
|
||||
be `bytes` objects (so, if you want to store objects of other types, you
|
||||
need to serialize them to `bytes` first).
|
||||
|
||||
The module is based on the well-known BerkelyDB library, version 1.xx.
|
||||
|
||||
Example::
|
||||
|
||||
import btree
|
||||
|
||||
# First, we need to open a stream which holds a database
|
||||
# This is usually a file, but can be in-memory database
|
||||
# using uio.BytesIO, a raw flash section, etc.
|
||||
f = open("mydb", "w+b")
|
||||
|
||||
# Now open a database itself
|
||||
db = btree.open(f)
|
||||
|
||||
# The keys you add will be sorted internally in the database
|
||||
db[b"3"] = b"three"
|
||||
db[b"1"] = b"one"
|
||||
db[b"2"] = b"two"
|
||||
|
||||
# Prints b'two'
|
||||
print(db[b"2"])
|
||||
|
||||
# Iterate over sorted keys in the database, starting from b"2"
|
||||
# until the end of the database, returning only values.
|
||||
# Mind that arguments passed to values() method are *key* values.
|
||||
# Prints:
|
||||
# b'two'
|
||||
# b'three'
|
||||
for word in db.values(b"2"):
|
||||
print(word)
|
||||
|
||||
del db[b"2"]
|
||||
|
||||
# No longer true, prints False
|
||||
print(b"2" in db)
|
||||
|
||||
# Prints:
|
||||
# b"1"
|
||||
# b"3"
|
||||
for key in db:
|
||||
print(key)
|
||||
|
||||
db.close()
|
||||
|
||||
# Don't forget to close the underlying stream!
|
||||
f.close()
|
||||
|
||||
|
||||
Functions
|
||||
---------
|
||||
|
||||
.. function:: open(stream, \*, flags=0, cachesize=0, pagesize=0, minkeypage=0)
|
||||
|
||||
Open a database from a random-access `stream` (like an open file). All
|
||||
other parameters are optional and keyword-only, and allow to tweak advanced
|
||||
paramters of the database operation (most users will not need them):
|
||||
|
||||
* `flags` - Currently unused.
|
||||
* `cachesize` - Suggested maximum memory cache size in bytes. For a
|
||||
board with enough memory using larger values may improve performance.
|
||||
The value is only a recommendation, the module may use more memory if
|
||||
values set too low.
|
||||
* `pagesize` - Page size used for the nodes in BTree. Acceptable range
|
||||
is 512-65536. If 0, underlying I/O block size will be used (the best
|
||||
compromise between memory usage and performance).
|
||||
* `minkeypage` - Minimum number of keys to store per page. Default value
|
||||
of 0 equivalent to 2.
|
||||
|
||||
Returns a `BTree` object, which implements a dictionary protocol (set
|
||||
of methods), and some additional methods described below.
|
||||
|
||||
Methods
|
||||
-------
|
||||
|
||||
.. method:: btree.close()
|
||||
|
||||
Close the database. It's mandatory to close the database at the end of
|
||||
processing, as some unwritten data may be still in the cache. Note that
|
||||
this does not close underlying streamw with which the database was opened,
|
||||
it should be closed separately (which is also mandatory to make sure that
|
||||
data flushed from buffer to the underlying storage).
|
||||
|
||||
.. method:: btree.flush()
|
||||
|
||||
Flush any data in cache to the underlying stream.
|
||||
|
||||
.. method:: btree.__getitem__(key)
|
||||
.. method:: btree.get(key, default=None)
|
||||
.. method:: btree.__setitem__(key, val)
|
||||
.. method:: btree.__detitem__(key)
|
||||
.. method:: btree.__contains__(key)
|
||||
|
||||
Standard dictionary methods.
|
||||
|
||||
.. method:: btree.__iter__()
|
||||
|
||||
A BTree object can be iterated over directly (similar to a dictionary)
|
||||
to get access to all keys in order.
|
||||
|
||||
.. method:: btree.keys([start_key, [end_key, [flags]]])
|
||||
.. method:: btree.values([start_key, [end_key, [flags]]])
|
||||
.. method:: btree.items([start_key, [end_key, [flags]]])
|
||||
|
||||
These methods are similar to standard dictionary methods, but also can
|
||||
take optional parameters to iterate over a key sub-range, instead of
|
||||
the entire database. Note that for all 3 methods, `start_key` and
|
||||
`end_key` arguments represent key values. For example, ``values()``
|
||||
method will iterate over values corresponding to they key range
|
||||
given. None values for `start_key` means "from the first key", no
|
||||
`end_key` or its value of None means "until the end of database".
|
||||
By default, range is inclusive of `start_key` and exclusive of
|
||||
`end_key`, you can include `end_key` in iteration by passing `flags`
|
||||
of `btree.INCL`. You can iterate in descending key direction
|
||||
by passing `flags` of `btree.DESC`. The flags values can be ORed
|
||||
together.
|
||||
|
||||
Constants
|
||||
---------
|
||||
|
||||
.. data:: INCL
|
||||
|
||||
A flag for `keys()`, `values()`, `items()` methods to specify that
|
||||
scanning should be inclusive of the end key.
|
||||
|
||||
.. data:: DESC
|
||||
|
||||
A flag for `keys()`, `values()`, `items()` methods to specify that
|
||||
scanning should be in descending direction of keys.
|
@ -153,6 +153,7 @@ the following libraries.
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
btree.rst
|
||||
framebuf.rst
|
||||
machine.rst
|
||||
micropython.rst
|
||||
|
Loading…
x
Reference in New Issue
Block a user