stmhal: Turn off DMA clocks when idle for 100 msec

Turning on each DMA block increases the current consumption
by about 8 mA. This code adds an idle timer for each DMA
block and turns off the clocks when no streams are in use
for 128 msec. Having a small timeout allows for improved
performance when back-to-back transfers are being performed.

The 128 msec is basically a guess.
This commit is contained in:
Dave Hylands 2015-11-15 17:02:43 -08:00 committed by Damien George
parent 9f5486c7e2
commit b677f03407
3 changed files with 139 additions and 18 deletions

View File

@ -33,7 +33,9 @@
#include "py/obj.h"
#include "irq.h"
#define NSTREAM (16)
#define NSTREAMS_PER_CONTROLLER (8)
#define NCONTROLLERS (2)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Stream0_IRQn,
@ -72,7 +74,16 @@ const DMA_InitTypeDef dma_init_struct_spi_i2c = {
};
static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
static uint32_t dma_last_channel[NSTREAM];
static uint8_t dma_last_channel[NSTREAM];
static volatile uint32_t dma_enable_mask = 0;
volatile dma_idle_count_t dma_idle;
#define DMA1_ENABLE_MASK 0x00ff // Bits in dma_enable_mask corresponfing to DMA1
#define DMA2_ENABLE_MASK 0xff00 // Bits in dma_enable_mask corresponding to DMA2
#define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid
#define DMA_CHANNEL_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 24)
void DMA1_Stream0_IRQHandler(void) { if (dma_handle[0] != NULL) { HAL_DMA_IRQHandler(dma_handle[0]); } }
void DMA1_Stream1_IRQHandler(void) { if (dma_handle[1] != NULL) { HAL_DMA_IRQHandler(dma_handle[1]); } }
@ -91,19 +102,76 @@ void DMA2_Stream5_IRQHandler(void) { if (dma_handle[13] != NULL) { HAL_DMA_IRQHa
void DMA2_Stream6_IRQHandler(void) { if (dma_handle[14] != NULL) { HAL_DMA_IRQHandler(dma_handle[14]); } }
void DMA2_Stream7_IRQHandler(void) { if (dma_handle[15] != NULL) { HAL_DMA_IRQHandler(dma_handle[15]); } }
#define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
#define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
static int get_dma_id(DMA_Stream_TypeDef *dma_stream) {
if ((uint32_t)dma_stream < DMA2_BASE) {
return ((uint32_t)dma_stream - DMA1_Stream0_BASE) / 0x18;
int dma_id;
if (dma_stream < DMA2_Stream0) {
dma_id = dma_stream - DMA1_Stream0;
} else {
return (NSTREAM / 2) + ((uint32_t)dma_stream - DMA2_Stream0_BASE) / 0x18;
dma_id = NSTREAMS_PER_CONTROLLER + (dma_stream - DMA2_Stream0);
}
return dma_id;
}
// Resets the idle counter for the DMA controller associated with dma_id.
static void dma_tickle(int dma_id) {
if (dma_id < NSTREAMS_PER_CONTROLLER) {
dma_idle.counter[0] = 1;
} else {
dma_idle.counter[1] = 1;
}
}
static void dma_enable_clock(int dma_id) {
// We don't want dma_tick_handler() to turn off the clock right after we
// enable it, so we need to mark the channel in use in an atomic fashion.
mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
uint32_t old_enable_mask = dma_enable_mask;
dma_enable_mask |= (1 << dma_id);
MICROPY_END_ATOMIC_SECTION(irq_state);
if (dma_id <= 7) {
if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
__DMA1_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA1) needs to be invalidated.
for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
}
}
} else {
if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
__DMA2_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA1) needs to be invalidated.
for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
dma_last_channel[channel] = DMA_INVALID_CHANNEL;
}
}
}
}
static void dma_disable_clock(int dma_id) {
// We just mark the clock as disabled here, but we don't actually disable it.
// We wait for the timer to expire first, which means that back-to-back
// transfers don't have to initialize as much.
dma_tickle(dma_id);
dma_enable_mask &= ~(1 << dma_id);
}
void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_InitTypeDef *dma_init, uint32_t dma_channel, uint32_t direction, void *data) {
int dma_id = get_dma_id(dma_stream);
//printf("dma_init(%p, %p(%d), 0x%x, 0x%x, %p)\n", dma, dma_stream, dma_id, (uint)dma_channel, (uint)direction, data);
// TODO possibly don't need to clear the entire structure
// Some drivers allocate the DMA_HandleTypeDef from the stack
// (i.e. dac, i2c, spi) and for those cases we need to clear the
// structure so we don't get random values from the stack)
memset(dma, 0, sizeof(*dma));
// set global pointer for IRQ handler
@ -119,22 +187,20 @@ void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_
// caller must implement other half by doing: data->xxx = dma
dma->Parent = data;
dma_enable_clock(dma_id);
// if this stream was previously configured for this channel then we
// can skip most of the initialisation
if (dma_last_channel[dma_id] == dma_channel) {
uint8_t channel_uint8 = DMA_CHANNEL_AS_UINT8(dma_channel);
if (dma_last_channel[dma_id] == channel_uint8) {
goto same_channel;
}
dma_last_channel[dma_id] = dma_channel;
// enable clock for needed DMA peripheral
if (dma_id <= 7) {
__DMA1_CLK_ENABLE();
} else {
__DMA2_CLK_ENABLE();
}
dma_last_channel[dma_id] = channel_uint8;
// reset and configure DMA peripheral
HAL_DMA_DeInit(dma);
if (HAL_DMA_GetState(dma) != HAL_DMA_STATE_RESET) {
HAL_DMA_DeInit(dma);
}
HAL_DMA_Init(dma);
HAL_NVIC_SetPriority(dma_irqn[dma_id], IRQ_PRI_DMA, IRQ_SUBPRI_DMA);
@ -146,11 +212,41 @@ void dma_deinit(DMA_HandleTypeDef *dma) {
int dma_id = get_dma_id(dma->Instance);
HAL_NVIC_DisableIRQ(dma_irqn[dma_id]);
dma_handle[dma_id] = NULL;
dma_disable_clock(dma_id);
}
void dma_invalidate_channel(DMA_Stream_TypeDef *dma_stream, uint32_t dma_channel) {
int dma_id = get_dma_id(dma_stream);
if (dma_last_channel[dma_id] == dma_channel) {
dma_last_channel[dma_id] = 0xffffffff;
if (dma_last_channel[dma_id] == DMA_CHANNEL_AS_UINT8(dma_channel)) {
dma_last_channel[dma_id] = DMA_INVALID_CHANNEL;
}
}
// Called from the SysTick handler (once per millisecond)
void dma_idle_handler() {
static const uint32_t controller_mask[] = {
DMA1_ENABLE_MASK, DMA2_ENABLE_MASK
};
for (int controller = 0; controller < NCONTROLLERS; controller++) {
if (dma_idle.counter[controller] == 0) {
continue;
}
if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
if ((dma_enable_mask & controller_mask[controller]) == 0) {
// Nothing is active and we've reached our idle timeout,
// Now we'll really disable the clock.
dma_idle.counter[controller] = 0;
if (controller == 0) {
__DMA1_CLK_DISABLE();
} else {
__DMA2_CLK_DISABLE();
}
} else {
// Something is still active, but the counter never got
// reset, so we'll reset the counter here.
dma_idle.counter[controller] = 1;
}
}
}
}

View File

@ -24,8 +24,28 @@
* THE SOFTWARE.
*/
//TODO: Put stream/channel defs for i2c/spi/can, etc here
#define DMA_STREAM_SDIO_RX DMA2_Stream3
#define DMA_CHANNEL_SDIO_RX DMA_CHANNEL_4
#define DMA_STREAM_SDIO_TX DMA2_Stream6
#define DMA_CHANNEL_SDIO_TX DMA_CHANNEL_4
typedef union {
uint16_t enabled; // Used to test if both counters are == 0
uint8_t counter[2];
} dma_idle_count_t;
extern volatile dma_idle_count_t dma_idle;
#define DMA_IDLE_ENABLED() (dma_idle.enabled != 0)
#define DMA_SYSTICK_MASK 0x0F
#define DMA_MSECS_PER_SYSTICK (DMA_SYSTICK_MASK + 1)
#define DMA_IDLE_TICK_MAX (8) // 128 msec
#define DMA_IDLE_TICK(tick) (((tick) & DMA_SYSTICK_MASK) == 0)
extern const DMA_InitTypeDef dma_init_struct_spi_i2c;
void dma_init(DMA_HandleTypeDef *dma, DMA_Stream_TypeDef *dma_stream, const DMA_InitTypeDef *dma_init, uint32_t dma_channel, uint32_t direction, void *data);
void dma_deinit(DMA_HandleTypeDef *dma);
void dma_invalidate_channel(DMA_Stream_TypeDef *dma_stream, uint32_t dma_channel);
void dma_idle_handler();

View File

@ -77,6 +77,7 @@
#include "uart.h"
#include "storage.h"
#include "can.h"
#include "dma.h"
extern void __fatal_error(const char*);
extern PCD_HandleTypeDef pcd_handle;
@ -267,6 +268,10 @@ void SysTick_Handler(void) {
// the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
// work properly.
SysTick->CTRL;
if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
dma_idle_handler();
}
}
/******************************************************************************/