raspberrypi: implement os.urandom

Since the datasheet cast some doubt on the strength of the "rosc_hw->randombit",
I use the SHA256 hash function to create a high quality random seed
from random values of uncertain entropy, as well as to generate a sequence
of random values from that seed using SHA256 as a cryptographically-secure
random number generator.

In practice, it produces over 100kB/s of random data which does not
have any gross problems according to _PractRand_.
This commit is contained in:
Jeff Epler 2021-02-17 16:50:49 -06:00
parent 261b077209
commit ab5eb86118
3 changed files with 67 additions and 2 deletions

View File

@ -14,6 +14,7 @@
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
/****************************** MACROS ******************************/

View File

@ -199,6 +199,7 @@ SRC_C += \
audio_dma.c \
background.c \
peripherals/pins.c \
extmod/crypto-algorithms/sha256.c \
fatfs_port.c \
lib/libc/string0.c \
lib/mp-readline/readline.c \

View File

@ -30,6 +30,11 @@
#include "py/objtuple.h"
#include "py/qstr.h"
#include "extmod/crypto-algorithms/sha256.h"
#include "hardware/structs/rosc.h"
#include <string.h>
STATIC const qstr os_uname_info_fields[] = {
MP_QSTR_sysname, MP_QSTR_nodename,
@ -57,6 +62,64 @@ mp_obj_t common_hal_os_uname(void) {
return (mp_obj_t)&os_uname_info_obj;
}
bool common_hal_os_urandom(uint8_t* buffer, uint32_t length) {
return false;
// NIST Special Publication 800-90B (draft) recommends several extractors,
// including the SHA hash family and states that if the amount of entropy input
// is twice the number of bits output from them, that output can be considered
// essentially fully random. If every RANDOM_SAFETY_MARGIN bits from
// `rosc_hw->randombit` have at least 1 bit of entropy, then this criterion is met.
//
// This works by seeding the `random_state` with plenty of random bits (SHA256
// as entropy harvesting function), then using that state it as a counter input
// (SHA256 as a CSPRNG), re-seeding at least every 256 blocks (8kB).
//
// In practice, `PractRand` doesn't detect any gross problems with the output
// random numbers on samples of 1 to 8 megabytes, no matter the setting of
// RANDOM_SAFETY_MARGIN. (it does detect "unusual" results from time to time,
// as it will with any RNG)
#define RANDOM_SAFETY_MARGIN (4)
static BYTE random_state[SHA256_BLOCK_SIZE];
static void seed_random_bits(BYTE out[SHA256_BLOCK_SIZE]) {
CRYAL_SHA256_CTX context;
sha256_init(&context);
for (int i=0; i<2*RANDOM_SAFETY_MARGIN; i++) {
for(int j=0; j<SHA256_BLOCK_SIZE; j++) {
out[j] = rosc_hw->randombit & 1;
for(int k=0; k<8; k++) {
out[j] = (out[j] << 1) ^ (rosc_hw->randombit & 1);
}
}
sha256_update(&context, out, SHA256_BLOCK_SIZE);
}
sha256_final(&context, out);
}
static void get_random_bits(BYTE out[SHA256_BLOCK_SIZE]) {
if (!random_state[0]++) {
seed_random_bits(random_state);
}
CRYAL_SHA256_CTX context;
sha256_init(&context);
sha256_update(&context, random_state, SHA256_BLOCK_SIZE);
sha256_final(&context, out);
}
bool common_hal_os_urandom(uint8_t* buffer, uint32_t length) {
#define ROSC_POWER_SAVE (1) // assume ROSC is not necessarily active all the time
#if ROSC_POWER_SAVE
uint32_t old_rosc_ctrl = rosc_hw->ctrl;
rosc_hw->ctrl = (old_rosc_ctrl & ~ROSC_CTRL_ENABLE_BITS) | (ROSC_CTRL_ENABLE_VALUE_ENABLE << 12);
#endif
while (length) {
size_t n = MIN(length, SHA256_BLOCK_SIZE);
BYTE sha_buf[SHA256_BLOCK_SIZE];
get_random_bits(sha_buf);
memcpy(buffer, sha_buf, n);
buffer += n;
length -= n;
}
#if ROSC_POWER_SAVE
rosc_hw->ctrl = old_rosc_ctrl;
#endif
return true;
}