Make natmods work again.

And put back our magic number, because our bytecode format differs
from upstream

drop btree & framebuf natmods, they had additional problems I didn't
want to fix right now.
This commit is contained in:
Jeff Epler 2023-08-19 16:50:04 -05:00
parent 6598fc0c42
commit a94301122a
No known key found for this signature in database
GPG Key ID: D5BF15AB975AB4DE
32 changed files with 636 additions and 28 deletions

View File

@ -55,8 +55,6 @@ jobs:
run: |
make -C examples/natmod/features1
make -C examples/natmod/features2
make -C examples/natmod/btree
make -C examples/natmod/framebuf
make -C examples/natmod/uheapq
make -C examples/natmod/urandom
make -C examples/natmod/ure

View File

@ -66,7 +66,7 @@ If importing an .mpy file fails then try the following:
print()
* Check the validity of the .mpy file by inspecting the first two bytes of
the file. The first byte should be an uppercase 'M' and the second byte
the file. The first byte should be an uppercase 'C' and the second byte
will be the version number, which should match the system version from above.
If it doesn't match then rebuild the .mpy file.
@ -144,7 +144,7 @@ The .mpy header is:
====== ================================
size field
====== ================================
byte value 0x4d (ASCII 'M')
byte value 0x43 (ASCII 'C')
byte .mpy version number
byte feature flags
byte number of bits in a small int

1
examples/natmod/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.mpy

View File

@ -0,0 +1,14 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module
MOD = features0
# Source files (.c or .py)
SRC = features0.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
# Include to get the rules for compiling and linking the module
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,40 @@
/* This example demonstrates the following features in a native module:
- defining a simple function exposed to Python
- defining a local, helper C function
- getting and creating integer objects
*/
// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"
// Helper function to compute factorial
STATIC mp_int_t factorial_helper(mp_int_t x) {
if (x == 0) {
return 1;
}
return x * factorial_helper(x - 1);
}
// This is the function which will be called from Python, as factorial(x)
STATIC mp_obj_t factorial(mp_obj_t x_obj) {
// Extract the integer from the MicroPython input object
mp_int_t x = mp_obj_get_int(x_obj);
// Calculate the factorial
mp_int_t result = factorial_helper(x);
// Convert the result to a MicroPython integer object and return it
return mp_obj_new_int(result);
}
// Define a Python reference to the function above
STATIC MP_DEFINE_CONST_FUN_OBJ_1(factorial_obj, factorial);
// This is the entry point and is called when the module is imported
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// This must be first, it sets up the globals dict and other things
MP_DYNRUNTIME_INIT_ENTRY
// Make the function available in the module's namespace
mp_store_global(MP_QSTR_factorial, MP_OBJ_FROM_PTR(&factorial_obj));
// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,14 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module
MOD = features1
# Source files (.c or .py)
SRC = features1.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
# Include to get the rules for compiling and linking the module
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,106 @@
/* This example demonstrates the following features in a native module:
- defining simple functions exposed to Python
- defining local, helper C functions
- defining constant integers and strings exposed to Python
- getting and creating integer objects
- creating Python lists
- raising exceptions
- allocating memory
- BSS and constant data (rodata)
- relocated pointers in rodata
*/
// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"
// BSS (zero) data
uint16_t data16[4];
// Constant data (rodata)
const uint8_t table8[] = { 0, 1, 1, 2, 3, 5, 8, 13 };
const uint16_t table16[] = { 0x1000, 0x2000 };
// Constant data pointing to BSS/constant data
uint16_t *const table_ptr16a[] = { &data16[0], &data16[1], &data16[2], &data16[3] };
const uint16_t *const table_ptr16b[] = { &table16[0], &table16[1] };
// A simple function that adds its 2 arguments (must be integers)
STATIC mp_obj_t add(mp_obj_t x_in, mp_obj_t y_in) {
mp_int_t x = mp_obj_get_int(x_in);
mp_int_t y = mp_obj_get_int(y_in);
return mp_obj_new_int(x + y);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
// A local helper function (not exposed to Python)
STATIC mp_int_t fibonacci_helper(mp_int_t x) {
if (x < MP_ARRAY_SIZE(table8)) {
return table8[x];
} else {
return fibonacci_helper(x - 1) + fibonacci_helper(x - 2);
}
}
// A function which computes Fibonacci numbers
STATIC mp_obj_t fibonacci(mp_obj_t x_in) {
mp_int_t x = mp_obj_get_int(x_in);
if (x < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("can't compute negative Fibonacci number"));
}
return mp_obj_new_int(fibonacci_helper(x));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(fibonacci_obj, fibonacci);
// A function that accesses the BSS data
STATIC mp_obj_t access(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// Create a list holding all items from data16
mp_obj_list_t *lst = MP_OBJ_TO_PTR(mp_obj_new_list(MP_ARRAY_SIZE(data16), NULL));
for (int i = 0; i < MP_ARRAY_SIZE(data16); ++i) {
lst->items[i] = mp_obj_new_int(data16[i]);
}
return MP_OBJ_FROM_PTR(lst);
} else if (n_args == 1) {
// Get one item from data16
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
return mp_obj_new_int(data16[idx]);
} else {
// Set one item in data16 (via table_ptr16a)
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
*table_ptr16a[idx] = mp_obj_get_int(args[1]);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(access_obj, 0, 2, access);
// A function that allocates memory and creates a bytearray
STATIC mp_obj_t make_array(void) {
uint16_t *ptr = m_new(uint16_t, MP_ARRAY_SIZE(table_ptr16b));
for (int i = 0; i < MP_ARRAY_SIZE(table_ptr16b); ++i) {
ptr[i] = *table_ptr16b[i];
}
return mp_obj_new_bytearray_by_ref(sizeof(uint16_t) * MP_ARRAY_SIZE(table_ptr16b), ptr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(make_array_obj, make_array);
// This is the entry point and is called when the module is imported
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// This must be first, it sets up the globals dict and other things
MP_DYNRUNTIME_INIT_ENTRY
// Messages can be printed as usually
mp_printf(&mp_plat_print, "initialising module self=%p\n", self);
// Make the functions available in the module's namespace
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
mp_store_global(MP_QSTR_fibonacci, MP_OBJ_FROM_PTR(&fibonacci_obj));
mp_store_global(MP_QSTR_access, MP_OBJ_FROM_PTR(&access_obj));
mp_store_global(MP_QSTR_make_array, MP_OBJ_FROM_PTR(&make_array_obj));
// Add some constants to the module's namespace
mp_store_global(MP_QSTR_VAL, MP_OBJ_NEW_SMALL_INT(42));
mp_store_global(MP_QSTR_MSG, MP_OBJ_NEW_QSTR(MP_QSTR_HELLO_MICROPYTHON));
// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,14 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module
MOD = features2
# Source files (.c or .py)
SRC = main.c prod.c test.py
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
# Include to get the rules for compiling and linking the module
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,83 @@
/* This example demonstrates the following features in a native module:
- using floats
- defining additional code in Python (see test.py)
- have extra C code in a separate file (see prod.c)
*/
// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"
// Include the header for auxiliary C code for this module
#include "prod.h"
// Automatically detect if this module should include double-precision code.
// If double precision is supported by the target architecture then it can
// be used in native module regardless of what float setting the target
// MicroPython runtime uses (being none, float or double).
#if defined(__i386__) || defined(__x86_64__) || (defined(__ARM_FP) && (__ARM_FP & 8))
#define USE_DOUBLE 1
#else
#define USE_DOUBLE 0
#endif
// A function that uses the default float type configured for the current target
// This default can be overridden by specifying MICROPY_FLOAT_IMPL at the make level
STATIC mp_obj_t add(mp_obj_t x, mp_obj_t y) {
return mp_obj_new_float(mp_obj_get_float(x) + mp_obj_get_float(y));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
// A function that explicitly uses single precision floats
STATIC mp_obj_t add_f(mp_obj_t x, mp_obj_t y) {
return mp_obj_new_float_from_f(mp_obj_get_float_to_f(x) + mp_obj_get_float_to_f(y));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_f_obj, add_f);
#if USE_DOUBLE
// A function that explicitly uses double precision floats
STATIC mp_obj_t add_d(mp_obj_t x, mp_obj_t y) {
return mp_obj_new_float_from_d(mp_obj_get_float_to_d(x) + mp_obj_get_float_to_d(y));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_d_obj, add_d);
#endif
// A function that computes the product of floats in an array.
// This function uses the most general C argument interface, which is more difficult
// to use but has access to the globals dict of the module via self->globals.
STATIC mp_obj_t productf(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// Check number of arguments is valid
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// Extract buffer pointer and verify typecode
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_RW);
if (bufinfo.typecode != 'f') {
mp_raise_ValueError(MP_ERROR_TEXT("expecting float array"));
}
// Compute product, store result back in first element of array
float *ptr = bufinfo.buf;
float prod = prod_array(bufinfo.len / sizeof(*ptr), ptr);
ptr[0] = prod;
return mp_const_none;
}
// This is the entry point and is called when the module is imported
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// This must be first, it sets up the globals dict and other things
MP_DYNRUNTIME_INIT_ENTRY
// Make the functions available in the module's namespace
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
mp_store_global(MP_QSTR_add_f, MP_OBJ_FROM_PTR(&add_f_obj));
#if USE_DOUBLE
mp_store_global(MP_QSTR_add_d, MP_OBJ_FROM_PTR(&add_d_obj));
#endif
// The productf function uses the most general C argument interface
mp_store_global(MP_QSTR_productf, MP_DYNRUNTIME_MAKE_FUNCTION(productf));
// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,9 @@
#include "prod.h"
float prod_array(int n, float *ar) {
float ans = 1;
for (int i = 0; i < n; ++i) {
ans *= ar[i];
}
return ans;
}

View File

@ -0,0 +1 @@
float prod_array(int n, float *ar);

View File

@ -0,0 +1,29 @@
# This Python code will be merged with the C code in main.c
import array
def isclose(a, b):
return abs(a - b) < 1e-3
def test():
tests = [
isclose(add(0.1, 0.2), 0.3),
isclose(add_f(0.1, 0.2), 0.3),
]
ar = array.array("f", [1, 2, 3.5])
productf(ar)
tests.append(isclose(ar[0], 7))
if "add_d" in globals():
tests.append(isclose(add_d(0.1, 0.2), 0.3))
print(tests)
if not all(tests):
raise SystemExit(1)
test()

View File

@ -0,0 +1,14 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module
MOD = features3
# Source files (.c or .py)
SRC = features3.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
# Include to get the rules for compiling and linking the module
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,60 @@
/* This example demonstrates the following features in a native module:
- using types
- using constant objects
- creating dictionaries
*/
// Include the header file to get access to the MicroPython API.
#include "py/dynruntime.h"
// A function that returns a tuple of object types.
STATIC mp_obj_t get_types(void) {
return mp_obj_new_tuple(9, ((mp_obj_t []) {
MP_OBJ_FROM_PTR(&mp_type_type),
MP_OBJ_FROM_PTR(&mp_type_NoneType),
MP_OBJ_FROM_PTR(&mp_type_bool),
MP_OBJ_FROM_PTR(&mp_type_int),
MP_OBJ_FROM_PTR(&mp_type_str),
MP_OBJ_FROM_PTR(&mp_type_bytes),
MP_OBJ_FROM_PTR(&mp_type_tuple),
MP_OBJ_FROM_PTR(&mp_type_list),
MP_OBJ_FROM_PTR(&mp_type_dict),
}));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(get_types_obj, get_types);
// A function that returns a tuple of constant objects.
STATIC mp_obj_t get_const_objects(void) {
return mp_obj_new_tuple(5, ((mp_obj_t []) {
mp_const_none,
mp_const_false,
mp_const_true,
mp_const_empty_bytes,
mp_const_empty_tuple,
}));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(get_const_objects_obj, get_const_objects);
// A function that creates a dictionary from the given arguments.
STATIC mp_obj_t make_dict(size_t n_args, const mp_obj_t *args) {
mp_obj_t dict = mp_obj_new_dict(n_args / 2);
for (; n_args >= 2; n_args -= 2, args += 2) {
mp_obj_dict_store(dict, args[0], args[1]);
}
return dict;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(make_dict_obj, 0, MP_OBJ_FUN_ARGS_MAX, make_dict);
// This is the entry point and is called when the module is imported.
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
// This must be first, it sets up the globals dict and other things.
MP_DYNRUNTIME_INIT_ENTRY
// Make the functions available in the module's namespace.
mp_store_global(MP_QSTR_make_dict, MP_OBJ_FROM_PTR(&make_dict_obj));
mp_store_global(MP_QSTR_get_types, MP_OBJ_FROM_PTR(&get_types_obj));
mp_store_global(MP_QSTR_get_const_objects, MP_OBJ_FROM_PTR(&get_const_objects_obj));
// This must be last, it restores the globals dict.
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,13 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module (different to built-in uheapq so it can coexist)
MOD = uheapq_$(ARCH)
# Source files (.c or .py)
SRC = uheapq.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,16 @@
#define MICROPY_PY_UHEAPQ (1)
#include "py/dynruntime.h"
#include "extmod/moduheapq.c"
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
MP_DYNRUNTIME_INIT_ENTRY
mp_store_global(MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR_uheapq));
mp_store_global(MP_QSTR_heappush, MP_OBJ_FROM_PTR(&mod_uheapq_heappush_obj));
mp_store_global(MP_QSTR_heappop, MP_OBJ_FROM_PTR(&mod_uheapq_heappop_obj));
mp_store_global(MP_QSTR_heapify, MP_OBJ_FROM_PTR(&mod_uheapq_heapify_obj));
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,13 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module (different to built-in urandom so it can coexist)
MOD = urandom_$(ARCH)
# Source files (.c or .py)
SRC = urandom.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,33 @@
#define MICROPY_PY_URANDOM (1)
#define MICROPY_PY_URANDOM_EXTRA_FUNCS (1)
#include "py/dynruntime.h"
// Dynamic native modules don't support a data section so these must go in the BSS
uint32_t yasmarang_pad, yasmarang_n, yasmarang_d;
uint8_t yasmarang_dat;
#include "extmod/modurandom.c"
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
MP_DYNRUNTIME_INIT_ENTRY
yasmarang_pad = 0xeda4baba;
yasmarang_n = 69;
yasmarang_d = 233;
mp_store_global(MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR_urandom));
mp_store_global(MP_QSTR_getrandbits, MP_OBJ_FROM_PTR(&mod_urandom_getrandbits_obj));
mp_store_global(MP_QSTR_seed, MP_OBJ_FROM_PTR(&mod_urandom_seed_obj));
#if MICROPY_PY_URANDOM_EXTRA_FUNCS
mp_store_global(MP_QSTR_randrange, MP_OBJ_FROM_PTR(&mod_urandom_randrange_obj));
mp_store_global(MP_QSTR_randint, MP_OBJ_FROM_PTR(&mod_urandom_randint_obj));
mp_store_global(MP_QSTR_choice, MP_OBJ_FROM_PTR(&mod_urandom_choice_obj));
#if MICROPY_PY_BUILTINS_FLOAT
mp_store_global(MP_QSTR_random, MP_OBJ_FROM_PTR(&mod_urandom_random_obj));
mp_store_global(MP_QSTR_uniform, MP_OBJ_FROM_PTR(&mod_urandom_uniform_obj));
#endif
#endif
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,13 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module (different to built-in ure so it can coexist)
MOD = ure_$(ARCH)
# Source files (.c or .py)
SRC = ure.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
include $(MPY_DIR)/py/dynruntime.mk

78
examples/natmod/ure/ure.c Normal file
View File

@ -0,0 +1,78 @@
#define MICROPY_STACK_CHECK (1)
#define MICROPY_PY_URE (1)
#define MICROPY_PY_URE_MATCH_GROUPS (1)
#define MICROPY_PY_URE_MATCH_SPAN_START_END (1)
#define MICROPY_PY_URE_SUB (0) // requires vstr interface
#include <alloca.h>
#include "py/dynruntime.h"
#define STACK_LIMIT (2048)
const char *stack_top;
void mp_stack_check(void) {
// Assumes descending stack on target
volatile char dummy;
if (stack_top - &dummy >= STACK_LIMIT) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("maximum recursion depth exceeded"));
}
}
#if !defined(__linux__)
void *memcpy(void *dst, const void *src, size_t n) {
return mp_fun_table.memmove_(dst, src, n);
}
void *memset(void *s, int c, size_t n) {
return mp_fun_table.memset_(s, c, n);
}
#endif
void *memmove(void *dest, const void *src, size_t n) {
return mp_fun_table.memmove_(dest, src, n);
}
mp_obj_type_t match_type;
mp_obj_type_t re_type;
#include "extmod/modure.c"
mp_map_elem_t match_locals_dict_table[5];
STATIC MP_DEFINE_CONST_DICT(match_locals_dict, match_locals_dict_table);
mp_map_elem_t re_locals_dict_table[3];
STATIC MP_DEFINE_CONST_DICT(re_locals_dict, re_locals_dict_table);
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
MP_DYNRUNTIME_INIT_ENTRY
char dummy;
stack_top = &dummy;
// Because MP_QSTR_start/end/split are static, xtensa and xtensawin will make a small data section
// to copy in this key/value pair if they are specified as a struct, so assign them separately.
match_type.base.type = (void*)&mp_fun_table.type_type;
match_type.name = MP_QSTR_match;
match_type.print = match_print;
match_locals_dict_table[0] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_group), MP_OBJ_FROM_PTR(&match_group_obj) };
match_locals_dict_table[1] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_groups), MP_OBJ_FROM_PTR(&match_groups_obj) };
match_locals_dict_table[2] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_span), MP_OBJ_FROM_PTR(&match_span_obj) };
match_locals_dict_table[3] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_start), MP_OBJ_FROM_PTR(&match_start_obj) };
match_locals_dict_table[4] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_end), MP_OBJ_FROM_PTR(&match_end_obj) };
match_type.locals_dict = (void*)&match_locals_dict;
re_type.base.type = (void*)&mp_fun_table.type_type;
re_type.name = MP_QSTR_ure;
re_type.print = re_print;
re_locals_dict_table[0] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_match), MP_OBJ_FROM_PTR(&re_match_obj) };
re_locals_dict_table[1] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_search), MP_OBJ_FROM_PTR(&re_search_obj) };
re_locals_dict_table[2] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_split), MP_OBJ_FROM_PTR(&re_split_obj) };
re_type.locals_dict = (void*)&re_locals_dict;
mp_store_global(MP_QSTR_compile, MP_OBJ_FROM_PTR(&mod_re_compile_obj));
mp_store_global(MP_QSTR_match, MP_OBJ_FROM_PTR(&re_match_obj));
mp_store_global(MP_QSTR_search, MP_OBJ_FROM_PTR(&re_search_obj));
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -0,0 +1,13 @@
# Location of top-level MicroPython directory
MPY_DIR = ../../..
# Name of module (different to built-in uzlib so it can coexist)
MOD = uzlib_$(ARCH)
# Source files (.c or .py)
SRC = uzlib.c
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
ARCH = x64
include $(MPY_DIR)/py/dynruntime.mk

View File

@ -0,0 +1,40 @@
#define MICROPY_PY_UZLIB (1)
#include "py/dynruntime.h"
#if !defined(__linux__)
void *memset(void *s, int c, size_t n) {
return mp_fun_table.memset_(s, c, n);
}
#endif
mp_obj_full_type_t decompio_type;
mp_stream_p_t decompio_stream_p;
#include "extmod/moduzlib.c"
mp_map_elem_t decompio_locals_dict_table[3];
STATIC MP_DEFINE_CONST_DICT(decompio_locals_dict, decompio_locals_dict_table);
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
MP_DYNRUNTIME_INIT_ENTRY
decompio_stream_p.name = MP_QSTR_protocol_stream;
decompio_stream_p.read = decompio_read;
decompio_type.base.type = mp_fun_table.type_type;
decompio_type.flags = MP_TYPE_FLAG_EXTENDED;
decompio_type.name = MP_QSTR_DecompIO;
decompio_type.make_new = decompio_make_new;
decompio_type.ext[0].protocol = &decompio_stream_p;
decompio_locals_dict_table[0] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_read), MP_OBJ_FROM_PTR(&mp_stream_read_obj) };
decompio_locals_dict_table[1] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), MP_OBJ_FROM_PTR(&mp_stream_readinto_obj) };
decompio_locals_dict_table[2] = (mp_map_elem_t){ MP_OBJ_NEW_QSTR(MP_QSTR_readline), MP_OBJ_FROM_PTR(&mp_stream_unbuffered_readline_obj) };
decompio_type.locals_dict = (void*)&decompio_locals_dict;
mp_store_global(MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR_uzlib));
mp_store_global(MP_QSTR_decompress, MP_OBJ_FROM_PTR(&mod_uzlib_decompress_obj));
mp_store_global(MP_QSTR_DecompIO, MP_OBJ_FROM_PTR(&decompio_type));
MP_DYNRUNTIME_INIT_EXIT
}

View File

@ -175,6 +175,12 @@ static inline mp_obj_t mp_obj_len_dyn(mp_obj_t o) {
return mp_fun_table.call_function_n_kw(mp_fun_table.load_name(MP_QSTR_len), 1, &o);
}
static inline void *mp_obj_malloc_helper_dyn(size_t num_bytes, const mp_obj_type_t *type) {
mp_obj_base_t *base = (mp_obj_base_t *)m_malloc(num_bytes);
base->type = type;
return base;
}
/******************************************************************************/
// General runtime functions

View File

@ -389,7 +389,7 @@ STATIC mp_raw_code_t *load_raw_code(mp_reader_t *reader, mp_module_context_t *co
mp_compiled_module_t mp_raw_code_load(mp_reader_t *reader, mp_module_context_t *context) {
byte header[4];
read_bytes(reader, header, sizeof(header));
if (header[0] != 'M'
if (header[0] != 'C'
|| header[1] != MPY_VERSION
|| MPY_FEATURE_DECODE_FLAGS(header[2]) != MPY_FEATURE_FLAGS
|| header[3] > MP_SMALL_INT_BITS) {
@ -579,12 +579,12 @@ STATIC void save_raw_code(mp_print_t *print, const mp_raw_code_t *rc) {
void mp_raw_code_save(mp_compiled_module_t *cm, mp_print_t *print) {
// header contains:
// byte 'M'
// byte 'C'
// byte version
// byte feature flags
// byte number of bits in a small int
byte header[4] = {
'M',
'C',
MPY_VERSION,
MPY_FEATURE_ENCODE_FLAGS(MPY_FEATURE_FLAGS_DYNAMIC),
#if MICROPY_DYNAMIC_COMPILER

View File

@ -29,6 +29,7 @@
// The first four must fit in 8 bits, see emitbc.c
// The remaining must fit in 16 bits, see scope.h
// and must match definitions in mpy-tool.py and mpy_ld.py
#define MP_SCOPE_FLAG_ALL_SIG (0x1f)
#define MP_SCOPE_FLAG_GENERATOR (0x01)
#define MP_SCOPE_FLAG_VARKEYWORDS (0x02)

View File

@ -50,8 +50,8 @@ class UserFS:
# these are the test .mpy files
user_files = {
"/mod0.mpy": b"", # empty file
"/mod1.mpy": b"M", # too short header
"/mod2.mpy": b"M\x00\x00\x00", # bad version
"/mod1.mpy": b"C", # too short header
"/mod2.mpy": b"C\x00\x00\x00", # bad version
}
# create and mount a user filesystem

View File

@ -50,11 +50,11 @@ class UserFS:
# these are the test .mpy files
valid_header = bytes([77, 6, mpy_arch, 31])
valid_header = bytes([ord("C"), 6, mpy_arch, 31])
# fmt: off
user_files = {
# bad architecture
'/mod0.mpy': b'M\x06\xfc\x1f',
'/mod0.mpy': b'C\x06\xfc\x1f',
# test loading of viper and asm
'/mod1.mpy': valid_header + (
@ -99,7 +99,7 @@ user_files = {
b'\x22' # 4 bytes, no children, viper code
b'\x00\x00\x00\x00' # dummy machine code
b'\x70' # scope_flags: VIPERBSS | VIPERRODATA | VIPERRELOC
b'\xe0' # scope_flags: VIPERBSS | VIPERRODATA | VIPERRELOC
b'\x06\x04' # rodata=6 bytes, bss=4 bytes
b'rodata' # rodata content
b'\x03\x01\x00' # dummy relocation of rodata

View File

@ -1,9 +1,5 @@
# Test that native code loaded from a .mpy file is retained after a GC.
# This is known not to work in CircuitPython. Fixes welcome.
print("SKIP")
raise SystemExit
try:
import gc, sys, uio, uos
@ -53,9 +49,9 @@ class UserFS:
# by the required value of sys.implementation._mpy.
features0_file_contents = {
# -march=x64
0x806: b'M\x06\x08\x1f\x02\x004build/features0.native.mpy\x00\x12factorial\x00\x8a\x02\xe9/\x00\x00\x00SH\x8b\x1d\x83\x00\x00\x00\xbe\x02\x00\x00\x00\xffS\x18\xbf\x01\x00\x00\x00H\x85\xc0u\x0cH\x8bC \xbe\x02\x00\x00\x00[\xff\xe0H\x0f\xaf\xf8H\xff\xc8\xeb\xe6ATUSH\x8b\x1dQ\x00\x00\x00H\x8bG\x08L\x8bc(H\x8bx\x08A\xff\xd4H\x8d5+\x00\x00\x00H\x89\xc5H\x8b\x059\x00\x00\x00\x0f\xb7x\x02\xffShH\x89\xefA\xff\xd4H\x8b\x03[]A\\\xc3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x11$\r&\xa3 \x01"\xff',
0x806: b'C\x06\x08\x1f\x02\x004build/features0.native.mpy\x00\x12factorial\x00\x8a\x02\xe9/\x00\x00\x00SH\x8b\x1d\x83\x00\x00\x00\xbe\x02\x00\x00\x00\xffS\x18\xbf\x01\x00\x00\x00H\x85\xc0u\x0cH\x8bC \xbe\x02\x00\x00\x00[\xff\xe0H\x0f\xaf\xf8H\xff\xc8\xeb\xe6ATUSH\x8b\x1dQ\x00\x00\x00H\x8bG\x08L\x8bc(H\x8bx\x08A\xff\xd4H\x8d5+\x00\x00\x00H\x89\xc5H\x8b\x059\x00\x00\x00\x0f\xb7x\x02\xffShH\x89\xefA\xff\xd4H\x8b\x03[]A\\\xc3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x11$\r&\xa5 \x01"\xff',
# -march=armv6m
0x1006: b"M\x06\x10\x1f\x02\x004build/features0.native.mpy\x00\x12factorial\x00\x88\x02\x18\xe0\x00\x00\x10\xb5\tK\tJ{D\x9cX\x02!\xe3h\x98G\x03\x00\x01 \x00+\x02\xd0XC\x01;\xfa\xe7\x02!#i\x98G\x10\xbd\xc0Fj\x00\x00\x00\x00\x00\x00\x00\xf8\xb5\nN\nK~D\xf4XChgiXh\xb8G\x05\x00\x07K\x08I\xf3XyDX\x88ck\x98G(\x00\xb8G h\xf8\xbd\xc0F:\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x11<\r>\xa38\x01:\xff",
0x1006: b'C\x06\x14\x1f\x02\x004build/features0.native.mpy\x00\x12factorial\x00\x88"\x1a\xe0\x00\x00\x13\xb5\nK\nJ{D\x9cX\x02!\xe3h\x98G\x03F\x01 3\xb9\x02!#i\x01\x93\x02\xb0\xbd\xe8\x10@\x18GXC\x01;\xf4\xe7\x00\xbfn\x00\x00\x00\x00\x00\x00\x00\xf8\xb5\nN\nK~D\xf4XChgiXh\xb8G\x05F\x07K\x08I\xf2XyDP\x88ck\x98G(F\xb8G h\xf8\xbd\x00\xbf:\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x11>\r@\xa5:\x01<\xff',
}
# Populate armv7m-derived archs based on armv6m.

View File

@ -316,8 +316,8 @@ class mpyFile:
def __init__(self, encoded_mpy):
# this matches mp-raw_code_save in py/persistentcode.c
first_byte = encoded_mpy.read(1)
if first_byte != b"M":
raise ValueError("Not a valid first byte. Should be 'M' but is {}".format(first_byte))
if first_byte != b"C":
raise ValueError("Not a valid first byte. Should be 'C' but is {}".format(first_byte))
self.version = encoded_mpy.read(1)[0]
self.feature_flags = encoded_mpy.read(1)[0]
self.small_int_bits = encoded_mpy.read(1)[0]

View File

@ -125,6 +125,7 @@ MP_PERSISTENT_OBJ_FLOAT = 8
MP_PERSISTENT_OBJ_COMPLEX = 9
MP_PERSISTENT_OBJ_TUPLE = 10
# Circuitpython: this does not match upstream because we added MP_SCOPE_FLAG_ASYNC
MP_SCOPE_FLAG_VIPERRELOC = 0x10
MP_SCOPE_FLAG_VIPERRODATA = 0x20
MP_SCOPE_FLAG_VIPERBSS = 0x40
@ -1328,7 +1329,7 @@ def read_mpy(filename):
# Read and verify the header.
header = reader.read_bytes(4)
if header[0] != ord("M"):
if header[0] != ord("C"):
raise MPYReadError(filename, "not a valid .mpy file")
if header[1] != config.MPY_VERSION:
raise MPYReadError(filename, "incompatible .mpy version")
@ -1668,7 +1669,7 @@ def merge_mpy(compiled_modules, output_file):
compiled_modules.insert(0, compiled_modules.pop(main_cm_idx))
header = bytearray(4)
header[0] = ord("M")
header[0] = ord("C")
header[1] = config.MPY_VERSION
header[2] = config.native_arch << 2
header[3] = config.mp_small_int_bits

View File

@ -47,9 +47,10 @@ MP_NATIVE_ARCH_ARMV7EMDP = 8
MP_NATIVE_ARCH_XTENSA = 9
MP_NATIVE_ARCH_XTENSAWIN = 10
MP_PERSISTENT_OBJ_STR = 5
MP_SCOPE_FLAG_VIPERRELOC = 0x10
MP_SCOPE_FLAG_VIPERRODATA = 0x20
MP_SCOPE_FLAG_VIPERBSS = 0x40
# Circuitpython: this does not match upstream because we added MP_SCOPE_FLAG_ASYNC
MP_SCOPE_FLAG_VIPERRELOC = 0x20
MP_SCOPE_FLAG_VIPERRODATA = 0x40
MP_SCOPE_FLAG_VIPERBSS = 0x80
MP_SMALL_INT_BITS = 31
# ELF constants
@ -768,7 +769,8 @@ def link_objects(env, native_qstr_vals_len, native_qstr_objs_len):
# Resolve unknown symbols
mp_fun_table_sec = Section(".external.mp_fun_table", b"", 0)
fun_table = {
key: 67 + idx
# Circuitpython: this does not match upstream because we added an item in _mp_fnu_table_t
key: 68 + idx
for idx, key in enumerate(
[
"mp_type_type",
@ -917,7 +919,7 @@ def build_mpy(env, entry_offset, fmpy, native_qstr_vals, native_qstr_objs):
out.open(fmpy)
# MPY: header
out.write_bytes(bytearray([ord("M"), MPY_VERSION, env.arch.mpy_feature, MP_SMALL_INT_BITS]))
out.write_bytes(bytearray([ord("C"), MPY_VERSION, env.arch.mpy_feature, MP_SMALL_INT_BITS]))
# MPY: n_qstr
out.write_uint(1 + len(native_qstr_vals))

View File

@ -748,7 +748,7 @@ def main():
for filename in args.files:
with open(filename, "rb") as f:
pyfile = f.read()
if filename.endswith(".mpy") and pyfile[0] == ord("M"):
if filename.endswith(".mpy") and pyfile[0] == ord("C"):
pyb.exec_("_injected_buf=" + repr(pyfile))
pyfile = _injected_import_hook_code
execbuffer(pyfile)