stm32/mboot: Use flash routines from main stm32 code rather than custom.

The flash functions in ports/stm32/flash.c are almost identical to those in
ports/stm32/mboot/main.c, so remove the duplicated code in mboot and use
instead the main stm32 code.  This also allows supporting other MCU series.

Signed-off-by: Damien George <damien@micropython.org>
This commit is contained in:
Damien George 2020-06-18 17:27:52 +10:00
parent 736daebfc8
commit a8778c8dc8
3 changed files with 25 additions and 145 deletions

View File

@ -99,9 +99,10 @@ SRC_C = \
drivers/bus/softspi.c \
drivers/bus/softqspi.c \
drivers/memory/spiflash.c \
ports/stm32/flash.c \
ports/stm32/flashbdev.c \
ports/stm32/i2cslave.c \
ports/stm32/qspi.c \
ports/stm32/flashbdev.c \
ports/stm32/spibdev.c \
ports/stm32/usbd_conf.c \
$(wildcard $(BOARD_DIR)/*.c)

View File

@ -31,6 +31,7 @@
#include "extmod/crypto-algorithms/sha256.c"
#include "usbd_core.h"
#include "storage.h"
#include "flash.h"
#include "i2cslave.h"
#include "mboot.h"
#include "dfu.h"
@ -500,115 +501,26 @@ static int usrbtn_state(void) {
#define MBOOT_SPIFLASH2_LAYOUT ""
#endif
typedef struct {
uint32_t base_address;
uint32_t sector_size;
uint32_t sector_count;
} flash_layout_t;
#if defined(STM32F7)
// FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to
// FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7
#define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR
#endif
#if defined(STM32F4) \
|| defined(STM32F722xx) \
|| defined(STM32F723xx) \
|| defined(STM32F732xx) \
|| defined(STM32F733xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*016Kg,01*064Kg,07*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x04000, 4 },
{ 0x08010000, 0x10000, 1 },
{ 0x08020000, 0x20000, 3 },
#if defined(FLASH_SECTOR_8)
{ 0x08080000, 0x20000, 4 },
#endif
#if defined(FLASH_SECTOR_12)
{ 0x08100000, 0x04000, 4 },
{ 0x08110000, 0x10000, 1 },
{ 0x08120000, 0x20000, 7 },
#endif
};
#elif defined(STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/04*032Kg,01*128Kg,07*256Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
// This is for dual-bank mode disabled
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x08000, 4 },
{ 0x08020000, 0x20000, 1 },
{ 0x08040000, 0x40000, 7 },
};
#elif defined(STM32H743xx)
#define FLASH_LAYOUT_STR "@Internal Flash /0x08000000/16*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x20000, 16 },
};
#endif
static inline bool flash_is_valid_addr(uint32_t addr) {
uint8_t last = MP_ARRAY_SIZE(flash_layout) - 1;
uint32_t end_of_flash = flash_layout[last].base_address +
flash_layout[last].sector_count * flash_layout[last].sector_size;
return flash_layout[0].base_address <= addr && addr < end_of_flash;
}
static uint32_t flash_get_sector_index(uint32_t addr, uint32_t *sector_size) {
if (addr >= flash_layout[0].base_address) {
uint32_t sector_index = 0;
for (int i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) {
for (int j = 0; j < flash_layout[i].sector_count; ++j) {
uint32_t sector_start_next = flash_layout[i].base_address
+ (j + 1) * flash_layout[i].sector_size;
if (addr < sector_start_next) {
*sector_size = flash_layout[i].sector_size;
return sector_index;
}
++sector_index;
}
}
}
return 0;
}
#if defined(STM32H7)
// get the bank of a given flash address
static uint32_t get_bank(uint32_t addr) {
if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) {
// no bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_1;
} else {
return FLASH_BANK_2;
}
} else {
// bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_2;
} else {
return FLASH_BANK_1;
}
}
}
#endif
static int flash_mass_erase(void) {
static int mboot_flash_mass_erase(void) {
// TODO
return -1;
}
static int flash_page_erase(uint32_t addr, uint32_t *next_addr) {
static int mboot_flash_page_erase(uint32_t addr, uint32_t *next_addr) {
uint32_t sector_size = 0;
uint32_t sector = flash_get_sector_index(addr, &sector_size);
uint32_t sector = flash_get_sector_info(addr, NULL, &sector_size);
if (sector == 0) {
// Don't allow to erase the sector with this bootloader in it
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
@ -618,30 +530,10 @@ static int flash_page_erase(uint32_t addr, uint32_t *next_addr) {
*next_addr = addr + sector_size;
HAL_FLASH_Unlock();
// Clear pending flags (if any)
#if defined(STM32H7)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2);
#else
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
#endif
// erase the sector(s)
FLASH_EraseInitTypeDef EraseInitStruct;
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
#if defined(STM32H7)
EraseInitStruct.Banks = get_bank(addr);
#endif
EraseInitStruct.Sector = sector;
EraseInitStruct.NbSectors = 1;
uint32_t SectorError = 0;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) {
// error occurred during sector erase
return -1;
// Erase the flash page.
int ret = flash_erase(addr, sector_size / sizeof(uint32_t));
if (ret != 0) {
return ret;
}
// Check the erase set bits to 1, at least for the first 256 bytes
@ -654,8 +546,9 @@ static int flash_page_erase(uint32_t addr, uint32_t *next_addr) {
return 0;
}
static int flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
if (addr >= flash_layout[0].base_address && addr < flash_layout[0].base_address + flash_layout[0].sector_size) {
static int mboot_flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
uint32_t sector = flash_get_sector_info(addr, NULL, NULL);
if (sector == 0) {
// Don't allow to write the sector with this bootloader in it
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = MBOOT_ERROR_STR_OVERWRITE_BOOTLOADER_IDX;
@ -664,31 +557,12 @@ static int flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
const uint32_t *src = (const uint32_t*)src8;
size_t num_word32 = (len + 3) / 4;
HAL_FLASH_Unlock();
#if defined(STM32H7)
// program the flash 256 bits at a time
for (int i = 0; i < num_word32 / 8; ++i) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, addr, (uint64_t)(uint32_t)src) != HAL_OK) {
return - 1;
// Write the data to flash.
int ret = flash_write(addr, src, num_word32);
if (ret != 0) {
return ret;
}
addr += 32;
src += 8;
}
#else
// program the flash word by word
for (size_t i = 0; i < num_word32; i++) {
if (HAL_FLASH_Program(TYPEPROGRAM_WORD, addr, *src) != HAL_OK) {
return -1;
}
addr += 4;
src += 1;
}
#endif
// TODO verify data
@ -700,7 +574,7 @@ static int flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
static int do_mass_erase(void) {
// TODO
return flash_mass_erase();
return mboot_flash_mass_erase();
}
#if defined(MBOOT_SPIFLASH_ADDR) || defined(MBOOT_SPIFLASH2_ADDR)
@ -735,7 +609,7 @@ int do_page_erase(uint32_t addr, uint32_t *next_addr) {
} else
#endif
{
ret = flash_page_erase(addr, next_addr);
ret = mboot_flash_page_erase(addr, next_addr);
}
led0_state((ret == 0) ? LED0_STATE_SLOW_FLASH : LED0_STATE_SLOW_INVERTED_FLASH);
@ -775,7 +649,7 @@ int do_write(uint32_t addr, const uint8_t *src8, size_t len) {
} else
#endif
if (flash_is_valid_addr(addr)) {
ret = flash_write(addr, src8, len);
ret = mboot_flash_write(addr, src8, len);
} else {
dfu_context.status = DFU_STATUS_ERROR_ADDRESS;
dfu_context.error = MBOOT_ERROR_STR_INVALID_ADDRESS_IDX;

View File

@ -28,6 +28,11 @@
#include "genhdr/pins.h"
// For simplicity just convert all HAL errors to one errno.
static inline int mp_hal_status_to_neg_errno(HAL_StatusTypeDef status) {
return status == HAL_OK ? 0 : -1;
}
#define mp_hal_delay_us_fast(us) mp_hal_delay_us(us)
#define MP_HAL_PIN_MODE_INPUT (0)