py/gc: Implement GC running by allocation threshold.

Currently, MicroPython runs GC when it could not allocate a block of memory,
which happens when heap is exhausted. However, that policy can't work well
with "inifinity" heaps, e.g. backed by a virtual memory - there will be a
lot of swap thrashing long before VM will be exhausted. Instead, in such
cases "allocation threshold" policy is used: a GC is run after some number of
allocations have been made. Details vary, for example, number or total amount
of allocations can be used, threshold may be self-adjusting based on GC
outcome, etc.

This change implements a simple variant of such policy for MicroPython. Amount
of allocated memory so far is used for threshold, to make it useful to typical
finite-size, and small, heaps as used with MicroPython ports. And such GC policy
is indeed useful for such types of heaps too, as it allows to better control
fragmentation. For example, if a threshold is set to half size of heap, then
for an application which usually makes big number of small allocations, that
will (try to) keep half of heap memory in a nice defragmented state for an
occasional large allocation.

For an application which doesn't exhibit such behavior, there won't be any
visible effects, except for GC running more frequently, which however may
affect performance. To address this, the GC threshold is configurable, and
by default is off so far. It's configured with gc.threshold(amount_in_bytes)
call (can be queries without an argument).
This commit is contained in:
Paul Sokolovsky 2016-07-21 00:37:30 +03:00
parent 04c27e5eaa
commit 93e353e384
4 changed files with 55 additions and 0 deletions

22
py/gc.c
View File

@ -152,6 +152,12 @@ void gc_init(void *start, void *end) {
// allow auto collection // allow auto collection
MP_STATE_MEM(gc_auto_collect_enabled) = 1; MP_STATE_MEM(gc_auto_collect_enabled) = 1;
#if MICROPY_GC_ALLOC_THRESHOLD
// by default, maxuint for gc threshold, effectively turning gc-by-threshold off
MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
MP_STATE_MEM(gc_alloc_amount) = 0;
#endif
#if MICROPY_PY_THREAD #if MICROPY_PY_THREAD
mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex)); mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
#endif #endif
@ -294,6 +300,9 @@ STATIC void gc_sweep(void) {
void gc_collect_start(void) { void gc_collect_start(void) {
GC_ENTER(); GC_ENTER();
MP_STATE_MEM(gc_lock_depth)++; MP_STATE_MEM(gc_lock_depth)++;
#if MICROPY_GC_ALLOC_THRESHOLD
MP_STATE_MEM(gc_alloc_amount) = 0;
#endif
MP_STATE_MEM(gc_stack_overflow) = 0; MP_STATE_MEM(gc_stack_overflow) = 0;
MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack); MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack);
// Trace root pointers. This relies on the root pointers being organised // Trace root pointers. This relies on the root pointers being organised
@ -405,6 +414,15 @@ void *gc_alloc(size_t n_bytes, bool has_finaliser) {
size_t start_block; size_t start_block;
size_t n_free = 0; size_t n_free = 0;
int collected = !MP_STATE_MEM(gc_auto_collect_enabled); int collected = !MP_STATE_MEM(gc_auto_collect_enabled);
#if MICROPY_GC_ALLOC_THRESHOLD
if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
GC_EXIT();
gc_collect();
GC_ENTER();
}
#endif
for (;;) { for (;;) {
// look for a run of n_blocks available blocks // look for a run of n_blocks available blocks
@ -456,6 +474,10 @@ found:
void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK); void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
DEBUG_printf("gc_alloc(%p)\n", ret_ptr); DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
#if MICROPY_GC_ALLOC_THRESHOLD
MP_STATE_MEM(gc_alloc_amount) += n_blocks;
#endif
GC_EXIT(); GC_EXIT();
// zero out the additional bytes of the newly allocated blocks // zero out the additional bytes of the newly allocated blocks

View File

@ -83,6 +83,25 @@ STATIC mp_obj_t gc_mem_alloc(void) {
} }
MP_DEFINE_CONST_FUN_OBJ_0(gc_mem_alloc_obj, gc_mem_alloc); MP_DEFINE_CONST_FUN_OBJ_0(gc_mem_alloc_obj, gc_mem_alloc);
#if MICROPY_GC_ALLOC_THRESHOLD
STATIC mp_obj_t gc_threshold(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
if (MP_STATE_MEM(gc_alloc_threshold) == (size_t)-1) {
return MP_OBJ_NEW_SMALL_INT(-1);
}
return mp_obj_new_int(MP_STATE_MEM(gc_alloc_threshold) * MICROPY_BYTES_PER_GC_BLOCK);
}
mp_int_t val = mp_obj_get_int(args[0]);
if (val < 0) {
MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
} else {
MP_STATE_MEM(gc_alloc_threshold) = val / MICROPY_BYTES_PER_GC_BLOCK;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(gc_threshold_obj, 0, 1, gc_threshold);
#endif
STATIC const mp_rom_map_elem_t mp_module_gc_globals_table[] = { STATIC const mp_rom_map_elem_t mp_module_gc_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_gc) }, { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_gc) },
{ MP_ROM_QSTR(MP_QSTR_collect), MP_ROM_PTR(&gc_collect_obj) }, { MP_ROM_QSTR(MP_QSTR_collect), MP_ROM_PTR(&gc_collect_obj) },
@ -91,6 +110,9 @@ STATIC const mp_rom_map_elem_t mp_module_gc_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_isenabled), MP_ROM_PTR(&gc_isenabled_obj) }, { MP_ROM_QSTR(MP_QSTR_isenabled), MP_ROM_PTR(&gc_isenabled_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_free), MP_ROM_PTR(&gc_mem_free_obj) }, { MP_ROM_QSTR(MP_QSTR_mem_free), MP_ROM_PTR(&gc_mem_free_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem_alloc), MP_ROM_PTR(&gc_mem_alloc_obj) }, { MP_ROM_QSTR(MP_QSTR_mem_alloc), MP_ROM_PTR(&gc_mem_alloc_obj) },
#if MICROPY_GC_ALLOC_THRESHOLD
{ MP_ROM_QSTR(MP_QSTR_threshold), MP_ROM_PTR(&gc_threshold_obj) },
#endif
}; };
STATIC MP_DEFINE_CONST_DICT(mp_module_gc_globals, mp_module_gc_globals_table); STATIC MP_DEFINE_CONST_DICT(mp_module_gc_globals, mp_module_gc_globals_table);

View File

@ -107,6 +107,12 @@
#define MICROPY_ALLOC_GC_STACK_SIZE (64) #define MICROPY_ALLOC_GC_STACK_SIZE (64)
#endif #endif
// Support automatic GC when reaching allocation threshold,
// configurable by gc.threshold().
#ifndef MICROPY_GC_ALLOC_THRESHOLD
#define MICROPY_GC_ALLOC_THRESHOLD (1)
#endif
// Number of bytes to allocate initially when creating new chunks to store // Number of bytes to allocate initially when creating new chunks to store
// interned string data. Smaller numbers lead to more chunks being needed // interned string data. Smaller numbers lead to more chunks being needed
// and more wastage at the end of the chunk. Larger numbers lead to wasted // and more wastage at the end of the chunk. Larger numbers lead to wasted

View File

@ -76,6 +76,11 @@ typedef struct _mp_state_mem_t {
// you can still allocate/free memory and also explicitly call gc_collect. // you can still allocate/free memory and also explicitly call gc_collect.
uint16_t gc_auto_collect_enabled; uint16_t gc_auto_collect_enabled;
#if MICROPY_GC_ALLOC_THRESHOLD
size_t gc_alloc_amount;
size_t gc_alloc_threshold;
#endif
size_t gc_last_free_atb_index; size_t gc_last_free_atb_index;
#if MICROPY_PY_GC_COLLECT_RETVAL #if MICROPY_PY_GC_COLLECT_RETVAL