Full UART support for RPI

This adds PL011 UART support which is more plentiful.

It also:
* Fixes PI4 build by including .dtb files on the SD card.
* Enables the activity LED as the status LED on PI4 and CM4 I/O.
* Adds that LED as board.LED.

Fixes #5650 and progress on #5629
This commit is contained in:
Scott Shawcroft 2021-12-03 13:15:24 -08:00
parent 121b22b0c5
commit 92a4261ad5
No known key found for this signature in database
GPG Key ID: 0DFD512649C052DA
12 changed files with 269 additions and 55 deletions

1
main.c
View File

@ -56,6 +56,7 @@
#include "supervisor/shared/safe_mode.h" #include "supervisor/shared/safe_mode.h"
#include "supervisor/shared/stack.h" #include "supervisor/shared/stack.h"
#include "supervisor/shared/status_leds.h" #include "supervisor/shared/status_leds.h"
#include "supervisor/shared/tick.h"
#include "supervisor/shared/traceback.h" #include "supervisor/shared/traceback.h"
#include "supervisor/shared/translate.h" #include "supervisor/shared/translate.h"
#include "supervisor/shared/workflow.h" #include "supervisor/shared/workflow.h"

View File

@ -166,7 +166,7 @@ $(BUILD)/firmware.disk.img.zip: $(BUILD)/kernel8.img
$(Q)parted -s $(BUILD)/circuitpython-disk.img mkpart primary fat32 0% 100% $(Q)parted -s $(BUILD)/circuitpython-disk.img mkpart primary fat32 0% 100%
$(Q)mkfs.fat -F 32 -n BOOT --offset=2048 $(BUILD)/circuitpython-disk.img $(Q)mkfs.fat -F 32 -n BOOT --offset=2048 $(BUILD)/circuitpython-disk.img
$(Q)mcopy -i $(BUILD)/circuitpython-disk.img@@1M config.txt firmware/bootcode.bin firmware/fixup* firmware/start* :: $(Q)mcopy -i $(BUILD)/circuitpython-disk.img@@1M config.txt firmware/bootcode.bin firmware/fixup* firmware/start* firmware/*.dtb ::
$(Q)mcopy -i $(BUILD)/circuitpython-disk.img@@1M $(BUILD)/kernel8.img :: $(Q)mcopy -i $(BUILD)/circuitpython-disk.img@@1M $(BUILD)/kernel8.img ::
$(Q)zip $@ $(BUILD)/circuitpython-disk.img $(Q)zip $@ $(BUILD)/circuitpython-disk.img
$(Q)rm $(BUILD)/circuitpython-disk.img $(Q)rm $(BUILD)/circuitpython-disk.img

View File

@ -2,3 +2,5 @@
#define DEFAULT_I2C_BUS_SCL (&pin_GPIO3) #define DEFAULT_I2C_BUS_SCL (&pin_GPIO3)
#define DEFAULT_I2C_BUS_SDA (&pin_GPIO2) #define DEFAULT_I2C_BUS_SDA (&pin_GPIO2)
#define MICROPY_HW_LED_STATUS (&pin_GPIO42)

View File

@ -57,6 +57,8 @@ STATIC const mp_rom_map_elem_t board_global_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_D26), MP_ROM_PTR(&pin_GPIO26) }, { MP_ROM_QSTR(MP_QSTR_D26), MP_ROM_PTR(&pin_GPIO26) },
{ MP_ROM_QSTR(MP_QSTR_D27), MP_ROM_PTR(&pin_GPIO27) }, { MP_ROM_QSTR(MP_QSTR_D27), MP_ROM_PTR(&pin_GPIO27) },
{ MP_ROM_QSTR(MP_QSTR_LED), MP_ROM_PTR(&pin_GPIO42) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) }, { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) },
{ MP_ROM_QSTR(MP_QSTR_DISPLAY), MP_ROM_PTR(&displays[0].display)}, { MP_ROM_QSTR(MP_QSTR_DISPLAY), MP_ROM_PTR(&displays[0].display)},
}; };

View File

@ -2,3 +2,5 @@
#define DEFAULT_I2C_BUS_SCL (&pin_GPIO3) #define DEFAULT_I2C_BUS_SCL (&pin_GPIO3)
#define DEFAULT_I2C_BUS_SDA (&pin_GPIO2) #define DEFAULT_I2C_BUS_SDA (&pin_GPIO2)
#define MICROPY_HW_LED_STATUS (&pin_GPIO42)

View File

@ -3,4 +3,4 @@ USB_PID = 0xF001
USB_PRODUCT = "Raspberry Pi 4B" USB_PRODUCT = "Raspberry Pi 4B"
USB_MANUFACTURER = "Raspberry Pi" USB_MANUFACTURER = "Raspberry Pi"
CHIP_VARIANT = bcm2711 CHIP_VARIANT = "bcm2711"

View File

@ -57,6 +57,8 @@ STATIC const mp_rom_map_elem_t board_global_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_D26), MP_ROM_PTR(&pin_GPIO26) }, { MP_ROM_QSTR(MP_QSTR_D26), MP_ROM_PTR(&pin_GPIO26) },
{ MP_ROM_QSTR(MP_QSTR_D27), MP_ROM_PTR(&pin_GPIO27) }, { MP_ROM_QSTR(MP_QSTR_D27), MP_ROM_PTR(&pin_GPIO27) },
{ MP_ROM_QSTR(MP_QSTR_LED), MP_ROM_PTR(&pin_GPIO42) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) }, { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) },
{ MP_ROM_QSTR(MP_QSTR_DISPLAY), MP_ROM_PTR(&displays[0].display)}, { MP_ROM_QSTR(MP_QSTR_DISPLAY), MP_ROM_PTR(&displays[0].display)},
}; };

View File

@ -72,7 +72,8 @@ void common_hal_busio_i2c_construct(busio_i2c_obj_t *self,
uint8_t sda_alt = 0; uint8_t sda_alt = 0;
for (scl_alt = 0; scl_alt < 6; scl_alt++) { for (scl_alt = 0; scl_alt < 6; scl_alt++) {
if (scl->functions[scl_alt].type != PIN_FUNCTION_I2C || if (scl->functions[scl_alt].type != PIN_FUNCTION_I2C ||
i2c_in_use[scl->functions[scl_alt].index]) { i2c_in_use[scl->functions[scl_alt].index] ||
scl->functions[scl_alt].function != I2C_FUNCTION_SCL) {
continue; continue;
} }
for (sda_alt = 0; sda_alt < 6; sda_alt++) { for (sda_alt = 0; sda_alt < 6; sda_alt++) {

View File

@ -41,7 +41,14 @@
#define NO_PIN 0xff #define NO_PIN 0xff
#define UART_INST(uart) (((uart) ? uart1 : uart0)) // UART1 is a different peripheral than the rest so it is hardcoded below.
#if BCM_VERSION == 2711
#define NUM_UART (6)
STATIC ARM_UART_PL011_Type *uart[NUM_UART] = {UART0, NULL, UART2, UART3, UART4, UART5};
#else
#define NUM_UART (2)
STATIC ARM_UART_PL011_Type *uart[NUM_UART] = {UART0, NULL};
#endif
typedef enum { typedef enum {
STATUS_FREE = 0, STATUS_FREE = 0,
@ -49,29 +56,62 @@ typedef enum {
STATUS_NEVER_RESET STATUS_NEVER_RESET
} uart_status_t; } uart_status_t;
// The Broadcom chips have two different types of UARTs. UART1 is the "mini-UART" static uart_status_t uart_status[NUM_UART];
// that is most available so we've implemented it first. The ARM PL011 UART static busio_uart_obj_t *active_uart[NUM_UART];
// support will be added later. We set NUM_UARTS to 2 here so that we can match
// the indexing even though UART0 isn't supported yet. We currently use this
// UART for debugging so we don't support user use of UART yet.
#define NUM_UARTS 2
static uart_status_t uart_status[NUM_UARTS];
void reset_uart(void) { void reset_uart(void) {
for (uint8_t num = 0; num < NUM_UARTS; num++) { bool any_pl011_active = false;
for (uint8_t num = 0; num < NUM_UART; num++) {
if (uart_status[num] == STATUS_BUSY) { if (uart_status[num] == STATUS_BUSY) {
if (num == 1) {
UART1->IER_b.DATA_READY = false;
UART1->CNTL = 0;
COMPLETE_MEMORY_READS;
AUX->ENABLES_b.UART_1 = false;
} else {
ARM_UART_PL011_Type *pl011 = uart[num];
pl011->CR = 0;
}
active_uart[num] = NULL;
uart_status[num] = STATUS_FREE; uart_status[num] = STATUS_FREE;
} else {
any_pl011_active = any_pl011_active || (num != 1 && uart_status[num] == STATUS_NEVER_RESET);
}
}
if (!any_pl011_active) {
BP_DisableIRQ(UART_IRQn);
}
COMPLETE_MEMORY_READS;
if (AUX->ENABLES == 0) {
BP_DisableIRQ(AUX_IRQn);
}
}
STATIC void fetch_all_from_fifo(busio_uart_obj_t *self) {
if (self->uart_id == 1) {
while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&self->ringbuf) > 0) {
int c = UART1->IO_b.DATA;
if (self->sigint_enabled && c == mp_interrupt_char) {
mp_sched_keyboard_interrupt();
continue;
}
ringbuf_put(&self->ringbuf, c);
}
} else {
ARM_UART_PL011_Type *pl011 = uart[self->uart_id];
while (!pl011->FR_b.RXFE && ringbuf_num_empty(&self->ringbuf) > 0) {
int c = pl011->DR_b.DATA;
if (self->sigint_enabled && c == mp_interrupt_char) {
mp_sched_keyboard_interrupt();
continue;
}
ringbuf_put(&self->ringbuf, c);
} }
} }
} }
static busio_uart_obj_t *active_uarts[NUM_UARTS];
void UART1_IRQHandler(void) { void UART1_IRQHandler(void) {
while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&active_uarts[1]->ringbuf) > 0) { fetch_all_from_fifo(active_uart[1]);
ringbuf_put(&active_uarts[1]->ringbuf, (uint8_t)UART1->IO_b.DATA);
}
// We couldn't read all pending data (overrun) so clear the FIFO so that the interrupt // We couldn't read all pending data (overrun) so clear the FIFO so that the interrupt
// can finish. // can finish.
if (UART1->STAT_b.DATA_READY) { if (UART1->STAT_b.DATA_READY) {
@ -79,6 +119,33 @@ void UART1_IRQHandler(void) {
} }
} }
void pl011_IRQHandler(uint8_t index) {
fetch_all_from_fifo(active_uart[index]);
// Clear the interrupt in case we weren't able to clear it by emptying the
// FIFO. (This won't clear the FIFO.)
ARM_UART_PL011_Type *pl011 = uart[index];
pl011->ICR = UART0_ICR_RXIC_Msk;
}
void UART0_IRQHandler(void) {
pl011_IRQHandler(0);
}
#if BCM_VERSION == 2711
void UART2_IRQHandler(void) {
pl011_IRQHandler(2);
}
void UART3_IRQHandler(void) {
pl011_IRQHandler(3);
}
void UART4_IRQHandler(void) {
pl011_IRQHandler(4);
}
void UART5_IRQHandler(void) {
pl011_IRQHandler(5);
}
#endif
void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) { void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) {
uart_status[self->uart_id] = STATUS_NEVER_RESET; uart_status[self->uart_id] = STATUS_NEVER_RESET;
} }
@ -103,14 +170,43 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
mp_raise_NotImplementedError(translate("RS485 Not yet supported on this device")); mp_raise_NotImplementedError(translate("RS485 Not yet supported on this device"));
} }
if (tx == &pin_GPIO14) { size_t instance_index = NUM_UART;
if (rx == &pin_GPIO15) { BP_Function_Enum tx_alt = 0;
self->uart_id = 1; BP_Function_Enum rx_alt = 0;
BP_Function_Enum rts_alt = 0;
BP_Function_Enum cts_alt = 0;
for (size_t i = 0; i < NUM_UART; i++) {
if (uart_status[i] != STATUS_FREE) {
continue;
} }
if (tx != NULL) {
if (!pin_find_alt(tx, PIN_FUNCTION_UART, i, UART_FUNCTION_TXD, &tx_alt)) {
continue;
}
if (rts != NULL && !pin_find_alt(rts, PIN_FUNCTION_UART, i, UART_FUNCTION_RTS, &rts_alt)) {
continue;
}
}
if (rx != NULL) {
if (!pin_find_alt(rx, PIN_FUNCTION_UART, i, UART_FUNCTION_RXD, &rx_alt)) {
continue;
}
if (cts != NULL && !pin_find_alt(cts, PIN_FUNCTION_UART, i, UART_FUNCTION_CTS, &cts_alt)) {
continue;
}
}
instance_index = i;
break;
}
if (instance_index == NUM_UART) {
mp_raise_ValueError(translate("Invalid pins"));
} }
self->rx_pin = rx; self->rx_pin = rx;
self->tx_pin = tx; self->tx_pin = tx;
self->rts_pin = rts;
self->cts_pin = cts;
self->sigint_enabled = sigint_enabled;
if (rx != NULL) { if (rx != NULL) {
if (receiver_buffer != NULL) { if (receiver_buffer != NULL) {
@ -129,8 +225,11 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
} }
} }
active_uart[self->uart_id] = self;
ARM_UART_PL011_Type *pl011 = uart[self->uart_id];
if (self->uart_id == 1) { if (self->uart_id == 1) {
active_uarts[1] = self;
AUX->ENABLES_b.UART_1 = true; AUX->ENABLES_b.UART_1 = true;
UART1->IER = 0; UART1->IER = 0;
@ -145,22 +244,80 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
// Clear interrupts // Clear interrupts
UART1->IIR = 0xff; UART1->IIR = 0xff;
uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_CORE); common_hal_busio_uart_set_baudrate(self, baudrate);
UART1->BAUD = ((source_clock / (baudrate * 8)) - 1);
if (tx != NULL) { if (tx != NULL) {
UART1->CNTL |= UART1_CNTL_TX_ENABLE_Msk; UART1->CNTL |= UART1_CNTL_TX_ENABLE_Msk;
gpio_set_pull(14, BP_PULL_NONE);
gpio_set_function(14, GPIO_GPFSEL1_FSEL14_TXD1);
} }
if (rx != NULL) { if (rx != NULL) {
UART1->CNTL |= UART1_CNTL_RX_ENABLE_Msk; UART1->CNTL |= UART1_CNTL_RX_ENABLE_Msk;
gpio_set_pull(15, BP_PULL_NONE);
gpio_set_function(15, GPIO_GPFSEL1_FSEL15_RXD1);
} }
} else {
// Ensure the UART is disabled as we configure it.
pl011->CR_b.UARTEN = false;
pl011->IMSC = 0;
pl011->ICR = 0x3ff;
common_hal_busio_uart_set_baudrate(self, baudrate);
uint32_t line_control = UART0_LCR_H_FEN_Msk;
line_control |= (bits - 5) << UART0_LCR_H_WLEN_Pos;
if (stop == 2) {
line_control |= UART0_LCR_H_STP2_Msk;
}
if (parity != BUSIO_UART_PARITY_NONE) {
line_control |= UART0_LCR_H_PEN_Msk;
}
if (parity == BUSIO_UART_PARITY_EVEN) {
line_control |= UART0_LCR_H_EPS_Msk;
}
pl011->LCR_H = line_control;
uint32_t control = UART0_CR_UARTEN_Msk;
if (tx != NULL) {
control |= UART0_CR_TXE_Msk;
}
if (rx != NULL) {
control |= UART0_CR_RXE_Msk;
}
if (cts != NULL) {
control |= UART0_CR_CTSEN_Msk;
}
if (rts != NULL) {
control |= UART0_CR_RTSEN_Msk;
}
pl011->CR = control;
}
// Setup the pins after waiting for UART stuff
COMPLETE_MEMORY_READS;
if (tx != NULL) {
gpio_set_pull(tx->number, BP_PULL_NONE);
gpio_set_function(tx->number, tx_alt);
}
if (rx != NULL) {
gpio_set_pull(rx->number, BP_PULL_NONE);
gpio_set_function(rx->number, rx_alt);
}
if (rts != NULL) {
gpio_set_pull(rts->number, BP_PULL_NONE);
gpio_set_function(rts->number, rts_alt);
}
if (cts != NULL) {
gpio_set_pull(cts->number, BP_PULL_NONE);
gpio_set_function(cts->number, cts_alt);
}
// Turn on interrupts
COMPLETE_MEMORY_READS;
if (self->uart_id == 1) {
UART1->IER_b.DATA_READY = true; UART1->IER_b.DATA_READY = true;
// Never disable this in case the SPIs are used. They can each be // Never disable this in case the SPIs are used. They can each be
// disabled at the peripheral itself. // disabled at the peripheral itself.
BP_EnableIRQ(AUX_IRQn); BP_EnableIRQ(AUX_IRQn);
} else {
pl011->IMSC_b.RXIM = true;
// Never disable this in case the other PL011 UARTs are used.
BP_EnableIRQ(UART_IRQn);
} }
} }
@ -176,8 +333,11 @@ void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
UART1->IER_b.DATA_READY = false; UART1->IER_b.DATA_READY = false;
UART1->CNTL = 0; UART1->CNTL = 0;
AUX->ENABLES_b.UART_1 = false; AUX->ENABLES_b.UART_1 = false;
active_uarts[1] = NULL; } else {
ARM_UART_PL011_Type *pl011 = uart[self->uart_id];
pl011->CR = 0;
} }
active_uart[self->uart_id] = NULL;
ringbuf_free(&self->ringbuf); ringbuf_free(&self->ringbuf);
uart_status[self->uart_id] = STATUS_FREE; uart_status[self->uart_id] = STATUS_FREE;
common_hal_reset_pin(self->tx_pin); common_hal_reset_pin(self->tx_pin);
@ -196,20 +356,46 @@ size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data,
mp_raise_ValueError(translate("No TX pin")); mp_raise_ValueError(translate("No TX pin"));
} }
if (self->uart_id == 1) { COMPLETE_MEMORY_READS;
COMPLETE_MEMORY_READS; ARM_UART_PL011_Type *pl011 = uart[self->uart_id];
for (size_t i = 0; i < len; i++) { for (size_t i = 0; i < len; i++) {
if (self->uart_id == 1) {
// Wait for the FIFO to have space. // Wait for the FIFO to have space.
while (!UART1->STAT_b.TX_READY) { while (!UART1->STAT_b.TX_READY) {
RUN_BACKGROUND_TASKS; RUN_BACKGROUND_TASKS;
} }
UART1->IO = data[i]; UART1->IO = data[i];
} else {
while (pl011->FR_b.TXFF) {
RUN_BACKGROUND_TASKS;
}
pl011->DR_b.DATA = data[i];
} }
COMPLETE_MEMORY_READS;
return len;
} }
// Wait for the data to be shifted out
if (self->uart_id == 1) {
while (!UART1->STAT_b.TX_DONE) {
RUN_BACKGROUND_TASKS;
}
} else {
while (pl011->FR_b.BUSY) {
RUN_BACKGROUND_TASKS;
}
}
COMPLETE_MEMORY_READS;
return len;
}
return 0; STATIC void disable_interrupt(busio_uart_obj_t *self) {
if (self->uart_id == 1) {
UART1->IER_b.DATA_READY = false;
}
}
STATIC void enable_interrupt(busio_uart_obj_t *self) {
if (self->uart_id == 1) {
UART1->IER_b.DATA_READY = true;
}
} }
// Read characters. // Read characters.
@ -225,9 +411,7 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
COMPLETE_MEMORY_READS; COMPLETE_MEMORY_READS;
// Prevent conflict with uart irq. // Prevent conflict with uart irq.
if (self->uart_id == 1) { disable_interrupt(self);
UART1->IER_b.DATA_READY = false;
}
// Copy as much received data as available, up to len bytes. // Copy as much received data as available, up to len bytes.
size_t total_read = ringbuf_get_n(&self->ringbuf, data, len); size_t total_read = ringbuf_get_n(&self->ringbuf, data, len);
@ -238,14 +422,11 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
uint64_t start_ticks = supervisor_ticks_ms64(); uint64_t start_ticks = supervisor_ticks_ms64();
// Busy-wait until timeout or until we've read enough chars. // Busy-wait until timeout or until we've read enough chars.
while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) { while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) {
if (UART1->STAT_b.DATA_READY) { fetch_all_from_fifo(self);
// Read and advance. size_t additional_read = ringbuf_get_n(&self->ringbuf, data + total_read, len);
data[total_read] = UART1->IO_b.DATA; len -= additional_read;
total_read += additional_read;
// Adjust the counters. if (additional_read > 0) {
len--;
total_read++;
// Reset the timeout on every character read. // Reset the timeout on every character read.
start_ticks = supervisor_ticks_ms64(); start_ticks = supervisor_ticks_ms64();
} }
@ -260,14 +441,10 @@ size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t
// Now that we've emptied the ringbuf some, fill it up with anything in the // Now that we've emptied the ringbuf some, fill it up with anything in the
// FIFO. This ensures that we'll empty the FIFO as much as possible and // FIFO. This ensures that we'll empty the FIFO as much as possible and
// reset the interrupt when we catch up. // reset the interrupt when we catch up.
while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&self->ringbuf) > 0) { fetch_all_from_fifo(self);
ringbuf_put(&self->ringbuf, (uint8_t)UART1->IO_b.DATA);
}
// Re-enable irq. // Re-enable irq.
if (self->uart_id == 1) { enable_interrupt(self);
UART1->IER_b.DATA_READY = true;
}
COMPLETE_MEMORY_READS; COMPLETE_MEMORY_READS;
if (total_read == 0) { if (total_read == 0) {
@ -283,6 +460,31 @@ uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
} }
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
if (self->uart_id == 1) {
uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_CORE);
UART1->BAUD = ((source_clock / (baudrate * 8)) - 1);
} else {
ARM_UART_PL011_Type *pl011 = uart[self->uart_id];
bool reenable = false;
if (pl011->CR_b.UARTEN) {
pl011->CR_b.UARTEN = false;
reenable = true;
}
uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_UART);
uint32_t divisor = 16 * baudrate;
pl011->IBRD = source_clock / divisor;
// The fractional divisor is 64ths.
uint32_t remainder = source_clock % divisor;
uint32_t per_tick = (divisor / 64) + 1;
uint32_t adjust = 0;
if (remainder % per_tick > 0) {
adjust = 1;
}
pl011->FBRD = remainder / per_tick + adjust;
if (reenable) {
pl011->CR_b.UARTEN = true;
}
}
self->baudrate = baudrate; self->baudrate = baudrate;
} }
@ -295,6 +497,7 @@ void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeou
} }
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
fetch_all_from_fifo(self);
return ringbuf_num_filled(&self->ringbuf); return ringbuf_num_filled(&self->ringbuf);
} }
@ -309,5 +512,5 @@ bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
if (self->uart_id == 1) { if (self->uart_id == 1) {
return UART1->STAT_b.TX_READY; return UART1->STAT_b.TX_READY;
} }
return false; return !uart[self->uart_id]->FR_b.TXFF;
} }

View File

@ -39,6 +39,7 @@ typedef struct {
uint8_t uart_id; uint8_t uart_id;
uint32_t baudrate; uint32_t baudrate;
uint32_t timeout_ms; uint32_t timeout_ms;
bool sigint_enabled;
ringbuf_t ringbuf; ringbuf_t ringbuf;
} busio_uart_obj_t; } busio_uart_obj_t;

@ -1 +1 @@
Subproject commit 6a5207946edcd45813d1dd1572ca8bd8101b68b6 Subproject commit bf96d0eda5952595d717fedb797aeb168483e9fa

@ -1 +1 @@
Subproject commit 2e7b56bbe941311e54fba66f0b32336bfea4388d Subproject commit a0666ce987ae96a58e587a04b9f89c7c5707dd13