stmhal: Add more math functions.
Taken straight from musl and newlib. License seems compatible with MIT.
This commit is contained in:
parent
efc22e376f
commit
89831d0289
|
@ -70,6 +70,7 @@ SRC_C = \
|
|||
usb.c \
|
||||
printf.c \
|
||||
math.c \
|
||||
mathsincos.c \
|
||||
malloc0.c \
|
||||
gccollect.c \
|
||||
pybstdio.c \
|
||||
|
|
|
@ -70,16 +70,11 @@ float tanhf(float x) { return sinhf(x) / coshf(x); }
|
|||
float acoshf(float x) { return 0.0; }
|
||||
float asinhf(float x) { return 0.0; }
|
||||
float atanhf(float x) { return 0.0; }
|
||||
float cosf(float x) { return 0.0; }
|
||||
float sinf(float x) { return 0.0; }
|
||||
float tanf(float x) { return 0.0; }
|
||||
float acosf(float x) { return 0.0; }
|
||||
float asinf(float x) { return 0.0; }
|
||||
float atanf(float x) { return 0.0; }
|
||||
float atan2f(float x, float y) { return 0.0; }
|
||||
float ceilf(float x) { return 0.0; }
|
||||
float floorf(float x) { return 0.0; }
|
||||
float truncf(float x) { return 0.0; }
|
||||
float fmodf(float x, float y) { return 0.0; }
|
||||
float tgammaf(float x) { return 0.0; }
|
||||
float lgammaf(float x) { return 0.0; }
|
||||
|
@ -820,3 +815,79 @@ float sinhf(float x)
|
|||
t = 2*h*__expo2f(absx);
|
||||
return t;
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
/*****************************************************************************/
|
||||
// ceilf, floorf and truncf from musl-0.9.15
|
||||
/*****************************************************************************/
|
||||
/*****************************************************************************/
|
||||
|
||||
float ceilf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = (int)(u.i >> 23 & 0xff) - 0x7f;
|
||||
uint32_t m;
|
||||
|
||||
if (e >= 23)
|
||||
return x;
|
||||
if (e >= 0) {
|
||||
m = 0x007fffff >> e;
|
||||
if ((u.i & m) == 0)
|
||||
return x;
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31 == 0)
|
||||
u.i += m;
|
||||
u.i &= ~m;
|
||||
} else {
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31)
|
||||
u.f = -0.0;
|
||||
else if (u.i << 1)
|
||||
u.f = 1.0;
|
||||
}
|
||||
return u.f;
|
||||
}
|
||||
|
||||
float floorf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = (int)(u.i >> 23 & 0xff) - 0x7f;
|
||||
uint32_t m;
|
||||
|
||||
if (e >= 23)
|
||||
return x;
|
||||
if (e >= 0) {
|
||||
m = 0x007fffff >> e;
|
||||
if ((u.i & m) == 0)
|
||||
return x;
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31)
|
||||
u.i += m;
|
||||
u.i &= ~m;
|
||||
} else {
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31 == 0)
|
||||
u.i = 0;
|
||||
else if (u.i << 1)
|
||||
u.f = -1.0;
|
||||
}
|
||||
return u.f;
|
||||
}
|
||||
|
||||
float truncf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = (int)(u.i >> 23 & 0xff) - 0x7f + 9;
|
||||
uint32_t m;
|
||||
|
||||
if (e >= 23 + 9)
|
||||
return x;
|
||||
if (e < 9)
|
||||
e = 1;
|
||||
m = -1U >> e;
|
||||
if ((u.i & m) == 0)
|
||||
return x;
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
u.i &= ~m;
|
||||
return u.f;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,601 @@
|
|||
// These math functions are taken from newlib 2.1.0, the newlib/libm directory.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
|
||||
/* @(#)fdlibm.h 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
|
||||
|
||||
/* A union which permits us to convert between a float and a 32 bit
|
||||
int. */
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
__uint32_t word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
|
||||
|
||||
/* kf_rem_pio2.c -- float version of k_rem_pio2.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* In the float version, the input parameter x contains 8 bit
|
||||
integers, not 24 bit integers. 113 bit precision is not supported. */
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int init_jk[] = {4,7,9}; /* initial value for jk */
|
||||
#else
|
||||
static int init_jk[] = {4,7,9};
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const float PIo2[] = {
|
||||
#else
|
||||
static float PIo2[] = {
|
||||
#endif
|
||||
1.5703125000e+00, /* 0x3fc90000 */
|
||||
4.5776367188e-04, /* 0x39f00000 */
|
||||
2.5987625122e-05, /* 0x37da0000 */
|
||||
7.5437128544e-08, /* 0x33a20000 */
|
||||
6.0026650317e-11, /* 0x2e840000 */
|
||||
7.3896444519e-13, /* 0x2b500000 */
|
||||
5.3845816694e-15, /* 0x27c20000 */
|
||||
5.6378512969e-18, /* 0x22d00000 */
|
||||
8.3009228831e-20, /* 0x1fc40000 */
|
||||
3.2756352257e-22, /* 0x1bc60000 */
|
||||
6.3331015649e-25, /* 0x17440000 */
|
||||
};
|
||||
|
||||
static const float
|
||||
zero = 0.0000000000e+00, /* 0x00000000 */
|
||||
one = 1.0000000000e+00, /* 0x3f800000 */
|
||||
two8 = 2.5600000000e+02, /* 0x43800000 */
|
||||
twon8 = 3.9062500000e-03; /* 0x3b800000 */
|
||||
|
||||
int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const __int32_t *ipio2)
|
||||
{
|
||||
__int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
float z,fw,f[20],fq[20],q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx-1;
|
||||
jv = (e0-3)/8; if(jv<0) jv=0;
|
||||
q0 = e0-8*(jv+1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv-jx; m = jx+jk;
|
||||
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for (i=0;i<=jk;i++) {
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
|
||||
fw = (float)((__int32_t)(twon8* z));
|
||||
iq[i] = (__int32_t)(z-two8*fw);
|
||||
z = q[j-1]+fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbnf(z,(int)q0); /* actual value of z */
|
||||
z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */
|
||||
n = (__int32_t) z;
|
||||
z -= (float)n;
|
||||
ih = 0;
|
||||
if(q0>0) { /* need iq[jz-1] to determine n */
|
||||
i = (iq[jz-1]>>(8-q0)); n += i;
|
||||
iq[jz-1] -= i<<(8-q0);
|
||||
ih = iq[jz-1]>>(7-q0);
|
||||
}
|
||||
else if(q0==0) ih = iq[jz-1]>>8;
|
||||
else if(z>=(float)0.5) ih=2;
|
||||
|
||||
if(ih>0) { /* q > 0.5 */
|
||||
n += 1; carry = 0;
|
||||
for(i=0;i<jz ;i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if(carry==0) {
|
||||
if(j!=0) {
|
||||
carry = 1; iq[i] = 0x100- j;
|
||||
}
|
||||
} else iq[i] = 0xff - j;
|
||||
}
|
||||
if(q0>0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7f; break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3f; break;
|
||||
}
|
||||
}
|
||||
if(ih==2) {
|
||||
z = one - z;
|
||||
if(carry!=0) z -= scalbnf(one,(int)q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if(z==zero) {
|
||||
j = 0;
|
||||
for (i=jz-1;i>=jk;i--) j |= iq[i];
|
||||
if(j==0) { /* need recomputation */
|
||||
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
|
||||
|
||||
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx+i] = (float) ipio2[jv+i];
|
||||
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if(z==(float)0.0) {
|
||||
jz -= 1; q0 -= 8;
|
||||
while(iq[jz]==0) { jz--; q0-=8;}
|
||||
} else { /* break z into 8-bit if necessary */
|
||||
z = scalbnf(z,-(int)q0);
|
||||
if(z>=two8) {
|
||||
fw = (float)((__int32_t)(twon8*z));
|
||||
iq[jz] = (__int32_t)(z-two8*fw);
|
||||
jz += 1; q0 += 8;
|
||||
iq[jz] = (__int32_t) fw;
|
||||
} else iq[jz] = (__int32_t) z ;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbnf(one,(int)q0);
|
||||
for(i=jz;i>=0;i--) {
|
||||
q[i] = fw*(float)iq[i]; fw*=twon8;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i=jz;i>=0;i--) {
|
||||
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
|
||||
fq[jz-i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1;i<=jz;i++) fw += fq[i];
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz;i>0;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz;i>1;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
if(ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n&7;
|
||||
}
|
||||
|
||||
|
||||
/* ef_rem_pio2.c -- float version of e_rem_pio2.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __ieee754_rem_pio2f(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2f()
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
static const __int32_t two_over_pi[] = {
|
||||
0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
|
||||
0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
|
||||
0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
|
||||
0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
|
||||
0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
|
||||
0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
|
||||
0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
|
||||
0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
|
||||
0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
|
||||
0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
|
||||
0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
|
||||
0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
|
||||
0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
|
||||
0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
|
||||
0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
|
||||
0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
|
||||
0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
|
||||
0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
|
||||
0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
|
||||
0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
|
||||
0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
|
||||
0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
|
||||
};
|
||||
|
||||
/* This array is like the one in e_rem_pio2.c, but the numbers are
|
||||
single precision and the last 8 bits are forced to 0. */
|
||||
static const __int32_t npio2_hw[] = {
|
||||
0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
|
||||
0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
|
||||
0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
|
||||
0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
|
||||
0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
|
||||
0x4242c700, 0x42490f00
|
||||
};
|
||||
|
||||
/*
|
||||
* invpio2: 24 bits of 2/pi
|
||||
* pio2_1: first 17 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 17 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 17 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
static const float
|
||||
half = 5.0000000000e-01, /* 0x3f000000 */
|
||||
invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
|
||||
pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
|
||||
pio2_1t = 1.0804334124e-05, /* 0x37354443 */
|
||||
pio2_2 = 1.0804273188e-05, /* 0x37354400 */
|
||||
pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
|
||||
pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
|
||||
pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
|
||||
|
||||
__int32_t __ieee754_rem_pio2f(float x, float *y)
|
||||
{
|
||||
float z,w,t,r,fn;
|
||||
float tx[3];
|
||||
__int32_t i,j,n,ix,hx;
|
||||
int e0,nx;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff;
|
||||
if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
|
||||
{y[0] = x; y[1] = 0; return 0;}
|
||||
if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
|
||||
if(hx>0) {
|
||||
z = x - pio2_1;
|
||||
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
|
||||
y[0] = z - pio2_1t;
|
||||
y[1] = (z-y[0])-pio2_1t;
|
||||
} else { /* near pi/2, use 24+24+24 bit pi */
|
||||
z -= pio2_2;
|
||||
y[0] = z - pio2_2t;
|
||||
y[1] = (z-y[0])-pio2_2t;
|
||||
}
|
||||
return 1;
|
||||
} else { /* negative x */
|
||||
z = x + pio2_1;
|
||||
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
|
||||
y[0] = z + pio2_1t;
|
||||
y[1] = (z-y[0])+pio2_1t;
|
||||
} else { /* near pi/2, use 24+24+24 bit pi */
|
||||
z += pio2_2;
|
||||
y[0] = z + pio2_2t;
|
||||
y[1] = (z-y[0])+pio2_2t;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
|
||||
t = fabsf(x);
|
||||
n = (__int32_t) (t*invpio2+half);
|
||||
fn = (float)n;
|
||||
r = t-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 40 bit */
|
||||
if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
|
||||
y[0] = r-w; /* quick check no cancellation */
|
||||
} else {
|
||||
__uint32_t high;
|
||||
j = ix>>23;
|
||||
y[0] = r-w;
|
||||
GET_FLOAT_WORD(high,y[0]);
|
||||
i = j-((high>>23)&0xff);
|
||||
if(i>8) { /* 2nd iteration needed, good to 57 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
GET_FLOAT_WORD(high,y[0]);
|
||||
i = j-((high>>23)&0xff);
|
||||
if(i>25) { /* 3rd iteration need, 74 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
else return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(!FLT_UWORD_IS_FINITE(ix)) {
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-7) */
|
||||
e0 = (int)((ix>>23)-134); /* e0 = ilogb(z)-7; */
|
||||
SET_FLOAT_WORD(z, ix - ((__int32_t)e0<<23));
|
||||
for(i=0;i<2;i++) {
|
||||
tx[i] = (float)((__int32_t)(z));
|
||||
z = (z-tx[i])*two8;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/* kf_sin.c -- float version of k_sin.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
|
||||
static const float
|
||||
S1 = -1.6666667163e-01, /* 0xbe2aaaab */
|
||||
S2 = 8.3333337680e-03, /* 0x3c088889 */
|
||||
S3 = -1.9841270114e-04, /* 0xb9500d01 */
|
||||
S4 = 2.7557314297e-06, /* 0x3638ef1b */
|
||||
S5 = -2.5050759689e-08, /* 0xb2d72f34 */
|
||||
S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */
|
||||
|
||||
float __kernel_sinf(float x, float y, int iy) /* iy=0 if y is zero */
|
||||
{
|
||||
float z,r,v;
|
||||
__int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* high word of x */
|
||||
if(ix<0x32000000) /* |x| < 2**-27 */
|
||||
{if((int)x==0) return x;} /* generate inexact */
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* kf_cos.c -- float version of k_cos.c
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
|
||||
static const float
|
||||
C1 = 4.1666667908e-02, /* 0x3d2aaaab */
|
||||
C2 = -1.3888889225e-03, /* 0xbab60b61 */
|
||||
C3 = 2.4801587642e-05, /* 0x37d00d01 */
|
||||
C4 = -2.7557314297e-07, /* 0xb493f27c */
|
||||
C5 = 2.0875723372e-09, /* 0x310f74f6 */
|
||||
C6 = -1.1359647598e-11; /* 0xad47d74e */
|
||||
|
||||
float __kernel_cosf(float x, float y)
|
||||
{
|
||||
float a,hz,z,r,qx;
|
||||
__int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* ix = |x|'s high word*/
|
||||
if(ix<0x32000000) { /* if x < 2**27 */
|
||||
if(((int)x)==0) return one; /* generate inexact */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
||||
if(ix < 0x3e99999a) /* if |x| < 0.3 */
|
||||
return one - ((float)0.5*z - (z*r - x*y));
|
||||
else {
|
||||
if(ix > 0x3f480000) { /* x > 0.78125 */
|
||||
qx = (float)0.28125;
|
||||
} else {
|
||||
SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
|
||||
}
|
||||
hz = (float)0.5*z-qx;
|
||||
a = one-qx;
|
||||
return a - (hz - (z*r-x*y));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* sf_sin.c -- float version of s_sin.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
|
||||
float sinf(float x)
|
||||
{
|
||||
float y[2],z=0.0;
|
||||
__int32_t n,ix;
|
||||
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0);
|
||||
|
||||
/* sin(Inf or NaN) is NaN */
|
||||
else if (!FLT_UWORD_IS_FINITE(ix)) return x-x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __ieee754_rem_pio2f(x,y);
|
||||
switch(n&3) {
|
||||
case 0: return __kernel_sinf(y[0],y[1],1);
|
||||
case 1: return __kernel_cosf(y[0],y[1]);
|
||||
case 2: return -__kernel_sinf(y[0],y[1],1);
|
||||
default:
|
||||
return -__kernel_cosf(y[0],y[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* sf_cos.c -- float version of s_cos.c.
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
|
||||
float cosf(float x)
|
||||
{
|
||||
float y[2],z=0.0;
|
||||
__int32_t n,ix;
|
||||
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3f490fd8) return __kernel_cosf(x,z);
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
else if (!FLT_UWORD_IS_FINITE(ix)) return x-x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __ieee754_rem_pio2f(x,y);
|
||||
switch(n&3) {
|
||||
case 0: return __kernel_cosf(y[0],y[1]);
|
||||
case 1: return -__kernel_sinf(y[0],y[1],1);
|
||||
case 2: return -__kernel_cosf(y[0],y[1]);
|
||||
default:
|
||||
return __kernel_sinf(y[0],y[1],1);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue