diff --git a/docs/library/pyb.ADC.rst b/docs/library/pyb.ADC.rst index 42f491eec8..30957c4c1a 100644 --- a/docs/library/pyb.ADC.rst +++ b/docs/library/pyb.ADC.rst @@ -18,6 +18,7 @@ class ADC -- analog to digital conversion val = adc.read_core_vbat() # read MCU VBAT val = adc.read_core_vref() # read MCU VREF + Constructors ------------ @@ -77,6 +78,65 @@ Methods The ADCAll Object ----------------- -Instantiating this changes all ADC pins to analog inputs. It is possible to read the -MCU temperature, VREF and VBAT without using ADCAll. The raw data can be accessed on -ADC channels 16, 17 and 18 respectively. However appropriate scaling will need to be applied. +.. only:: port_pyboard + + Instantiating this changes all ADC pins to analog inputs. The raw MCU temperature, + VREF and VBAT data can be accessed on ADC channels 16, 17 and 18 respectively. + Appropriate scaling will need to be applied. The temperature sensor on the chip + has poor absolute accuracy and is suitable only for detecting temperature changes. + + The ``ADCAll`` ``read_core_vbat()`` and ``read_core_vref()`` methods read + the backup battery voltage and the (1.21V nominal) reference voltage using the + 3.3V supply as a reference. Assuming the ``ADCAll`` object has been Instantiated with + ``adc = pyb.ADCAll(12)`` the 3.3V supply voltage may be calculated: + + ``v33 = 3.3 * 1.21 / adc.read_core_vref()`` + + If the 3.3V supply is correct the value of ``adc.read_core_vbat()`` will be + valid. If the supply voltage can drop below 3.3V, for example in in battery + powered systems with a discharging battery, the regulator will fail to preserve + the 3.3V supply resulting in an incorrect reading. To produce a value which will + remain valid under these circumstances use the following: + + ``vback = adc.read_core_vbat() * 1.21 / adc.read_core_vref()`` + + It is possible to access these values without incurring the side effects of ``ADCAll``:: + + def adcread(chan): # 16 temp 17 vbat 18 vref + assert chan >= 16 and chan <= 18, 'Invalid ADC channel' + start = pyb.millis() + timeout = 100 + stm.mem32[stm.RCC + stm.RCC_APB2ENR] |= 0x100 # enable ADC1 clock.0x4100 + stm.mem32[stm.ADC1 + stm.ADC_CR2] = 1 # Turn on ADC + stm.mem32[stm.ADC1 + stm.ADC_CR1] = 0 # 12 bit + if chan == 17: + stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x200000 # 15 cycles + stm.mem32[stm.ADC + 4] = 1 << 23 + elif chan == 18: + stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x1000000 + stm.mem32[stm.ADC + 4] = 0xc00000 + else: + stm.mem32[stm.ADC1 + stm.ADC_SMPR1] = 0x40000 + stm.mem32[stm.ADC + 4] = 1 << 23 + stm.mem32[stm.ADC1 + stm.ADC_SQR3] = chan + stm.mem32[stm.ADC1 + stm.ADC_CR2] = 1 | (1 << 30) | (1 << 10) # start conversion + while not stm.mem32[stm.ADC1 + stm.ADC_SR] & 2: # wait for EOC + if pyb.elapsed_millis(start) > timeout: + raise OSError('ADC timout') + data = stm.mem32[stm.ADC1 + stm.ADC_DR] # clear down EOC + stm.mem32[stm.ADC1 + stm.ADC_CR2] = 0 # Turn off ADC + return data + + def v33(): + return 4096 * 1.21 / adcread(17) + + def vbat(): + return 1.21 * 2 * adcread(18) / adcread(17) # 2:1 divider on Vbat channel + + def vref(): + return 3.3 * adcread(17) / 4096 + + def temperature(): + return 25 + 400 * (3.3 * adcread(16) / 4096 - 0.76) + + \ No newline at end of file