Merge pull request #3398 from jepler/better-dictionary-compression

compression: Implement @ciscorn's dictionary approach
This commit is contained in:
Scott Shawcroft 2020-09-16 11:10:22 -07:00 committed by GitHub
commit 750bc1e04a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 189 additions and 100 deletions

View File

@ -12,10 +12,14 @@ from __future__ import print_function
import re
import sys
from math import log
import collections
import gettext
import os.path
sys.stdout.reconfigure(encoding='utf-8')
sys.stderr.reconfigure(errors='backslashreplace')
py = os.path.dirname(sys.argv[0])
top = os.path.dirname(py)
@ -100,77 +104,173 @@ def translate(translation_file, i18ns):
translations.append((original, translation))
return translations
def frequent_ngrams(corpus, sz, n):
return collections.Counter(corpus[i:i+sz] for i in range(len(corpus)-sz)).most_common(n)
class TextSplitter:
def __init__(self, words):
words.sort(key=lambda x: len(x), reverse=True)
self.words = set(words)
self.pat = re.compile("|".join(re.escape(w) for w in words) + "|.", flags=re.DOTALL)
def encode_ngrams(translation, ngrams):
if len(ngrams) > 32:
start = 0xe000
def iter_words(self, text):
s = []
words = self.words
for m in self.pat.finditer(text):
t = m.group(0)
if t in words:
if s:
yield (False, "".join(s))
s = []
yield (True, t)
else:
start = 0x80
for i, g in enumerate(ngrams):
translation = translation.replace(g, chr(start + i))
return translation
s.append(t)
if s:
yield (False, "".join(s))
def decode_ngrams(compressed, ngrams):
if len(ngrams) > 32:
start, end = 0xe000, 0xf8ff
else:
start, end = 0x80, 0x9f
return "".join(ngrams[ord(c) - start] if (start <= ord(c) <= end) else c for c in compressed)
def iter(self, text):
for m in self.pat.finditer(text):
yield m.group(0)
def iter_substrings(s, minlen, maxlen):
len_s = len(s)
maxlen = min(len_s, maxlen)
for n in range(minlen, maxlen + 1):
for begin in range(0, len_s - n + 1):
yield s[begin : begin + n]
def compute_huffman_coding(translations, compression_filename):
texts = [t[1] for t in translations]
words = []
start_unused = 0x80
end_unused = 0xff
max_ord = 0
for text in texts:
for c in text:
ord_c = ord(c)
max_ord = max(ord_c, max_ord)
if 0x80 <= ord_c < 0xff:
end_unused = min(ord_c, end_unused)
max_words = end_unused - 0x80
values_type = "uint16_t" if max_ord > 255 else "uint8_t"
max_words_len = 160 if max_ord > 255 else 255
sum_len = 0
while True:
# Until the dictionary is filled to capacity, use a heuristic to find
# the best "word" (2- to 9-gram) to add to it.
#
# The TextSplitter allows us to avoid considering parts of the text
# that are already covered by a previously chosen word, for example
# if "the" is in words then not only will "the" not be considered
# again, neither will "there" or "wither", since they have "the"
# as substrings.
extractor = TextSplitter(words)
counter = collections.Counter()
for t in texts:
for (found, word) in extractor.iter_words(t):
if not found:
for substr in iter_substrings(word, minlen=2, maxlen=9):
counter[substr] += 1
# Score the candidates we found. This is an empirical formula only,
# chosen for its effectiveness.
scores = sorted(
(
(s, (len(s) - 1) ** log(max(occ - 2, 1)), occ)
for (s, occ) in counter.items()
),
key=lambda x: x[1],
reverse=True,
)
# Do we have a "word" that occurred 5 times and got a score of at least
# 5? Horray. Pick the one with the highest score.
word = None
for (s, score, occ) in scores:
if occ < 5:
continue
if score < 5:
break
word = s
break
# If we can successfully add it to the dictionary, do so. Otherwise,
# we've filled the dictionary to capacity and are done.
if not word:
break
if sum_len + len(word) - 2 > max_words_len:
break
if len(words) == max_words:
break
words.append(word)
sum_len += len(word) - 2
extractor = TextSplitter(words)
counter = collections.Counter()
for t in texts:
for atom in extractor.iter(t):
counter[atom] += 1
cb = huffman.codebook(counter.items())
word_start = start_unused
word_end = word_start + len(words) - 1
print("// # words", len(words))
print("// words", words)
def compute_huffman_coding(translations, qstrs, compression_filename):
all_strings = [x[1] for x in translations]
all_strings_concat = "".join(all_strings)
ngrams = [i[0] for i in frequent_ngrams(all_strings_concat, 2, 32)]
all_strings_concat = encode_ngrams(all_strings_concat, ngrams)
counts = collections.Counter(all_strings_concat)
cb = huffman.codebook(counts.items())
values = []
length_count = {}
renumbered = 0
last_l = None
last_length = None
canonical = {}
for ch, code in sorted(cb.items(), key=lambda x: (len(x[1]), x[0])):
values.append(ch)
l = len(code)
if l not in length_count:
length_count[l] = 0
length_count[l] += 1
if last_l:
renumbered <<= (l - last_l)
canonical[ch] = '{0:0{width}b}'.format(renumbered, width=l)
s = C_ESCAPES.get(ch, ch)
print("//", ord(ch), s, counts[ch], canonical[ch], renumbered)
for atom, code in sorted(cb.items(), key=lambda x: (len(x[1]), x[0])):
values.append(atom)
length = len(code)
if length not in length_count:
length_count[length] = 0
length_count[length] += 1
if last_length:
renumbered <<= (length - last_length)
canonical[atom] = '{0:0{width}b}'.format(renumbered, width=length)
# print(f"atom={repr(atom)} code={code}", file=sys.stderr)
if len(atom) > 1:
o = words.index(atom) + 0x80
s = "".join(C_ESCAPES.get(ch1, ch1) for ch1 in atom)
else:
s = C_ESCAPES.get(atom, atom)
o = ord(atom)
print("//", o, s, counter[atom], canonical[atom], renumbered)
renumbered += 1
last_l = l
last_length = length
lengths = bytearray()
print("// length count", length_count)
print("// bigrams", ngrams)
for i in range(1, max(length_count) + 2):
lengths.append(length_count.get(i, 0))
print("// values", values, "lengths", len(lengths), lengths)
ngramdata = [ord(ni) for i in ngrams for ni in i]
print("// estimated total memory size", len(lengths) + 2*len(values) + 2 * len(ngramdata) + sum((len(cb[u]) + 7)//8 for u in all_strings_concat))
print("//", values, lengths)
values_type = "uint16_t" if max(ord(u) for u in values) > 255 else "uint8_t"
max_translation_encoded_length = max(len(translation.encode("utf-8")) for original,translation in translations)
values = [(atom if len(atom) == 1 else chr(0x80 + words.index(atom))) for atom in values]
print("//", values, lengths)
max_translation_encoded_length = max(
len(translation.encode("utf-8")) for (original, translation) in translations)
wends = list(len(w) - 2 for w in words)
for i in range(1, len(wends)):
wends[i] += wends[i - 1]
with open(compression_filename, "w") as f:
f.write("const uint8_t lengths[] = {{ {} }};\n".format(", ".join(map(str, lengths))))
f.write("const {} values[] = {{ {} }};\n".format(values_type, ", ".join(str(ord(u)) for u in values)))
f.write("#define compress_max_length_bits ({})\n".format(max_translation_encoded_length.bit_length()))
f.write("const {} bigrams[] = {{ {} }};\n".format(values_type, ", ".join(str(u) for u in ngramdata)))
if len(ngrams) > 32:
bigram_start = 0xe000
else:
bigram_start = 0x80
bigram_end = bigram_start + len(ngrams) - 1 # End is inclusive
f.write("#define bigram_start {}\n".format(bigram_start))
f.write("#define bigram_end {}\n".format(bigram_end))
return values, lengths, ngrams
f.write("const {} words[] = {{ {} }};\n".format(values_type, ", ".join(str(ord(c)) for w in words for c in w)))
f.write("const uint8_t wends[] = {{ {} }};\n".format(", ".join(str(p) for p in wends)))
f.write("#define word_start {}\n".format(word_start))
f.write("#define word_end {}\n".format(word_end))
return (values, lengths, words, canonical, extractor)
def decompress(encoding_table, encoded, encoded_length_bits):
values, lengths, ngrams = encoding_table
(values, lengths, words, _, _) = encoding_table
dec = []
this_byte = 0
this_bit = 7
@ -218,7 +318,8 @@ def decompress(encoding_table, encoded, encoded_length_bits):
searched_length += lengths[bit_length]
v = values[searched_length + bits - max_code]
v = decode_ngrams(v, ngrams)
if v >= chr(0x80) and v < chr(0x80 + len(words)):
v = words[ord(v) - 0x80]
i += len(v.encode('utf-8'))
dec.append(v)
return ''.join(dec)
@ -226,66 +327,32 @@ def decompress(encoding_table, encoded, encoded_length_bits):
def compress(encoding_table, decompressed, encoded_length_bits, len_translation_encoded):
if not isinstance(decompressed, str):
raise TypeError()
values, lengths, ngrams = encoding_table
decompressed = encode_ngrams(decompressed, ngrams)
(_, _, _, canonical, extractor) = encoding_table
enc = bytearray(len(decompressed) * 3)
#print(decompressed)
#print(lengths)
current_bit = 7
current_byte = 0
code = len_translation_encoded
bits = encoded_length_bits + 1
for i in range(bits - 1, 0, -1):
if len_translation_encoded & (1 << (i - 1)):
enc[current_byte] |= 1 << current_bit
if current_bit == 0:
current_bit = 7
#print("packed {0:0{width}b}".format(enc[current_byte], width=8))
current_byte += 1
else:
current_bit -= 1
for c in decompressed:
#print()
#print("char", c, values.index(c))
start = 0
end = lengths[0]
bits = 1
compressed = None
code = 0
while compressed is None:
s = start
e = end
#print("{0:0{width}b}".format(code, width=bits))
# Binary search!
while e > s:
midpoint = (s + e) // 2
#print(s, e, midpoint)
if values[midpoint] == c:
compressed = code + (midpoint - start)
#print("found {0:0{width}b}".format(compressed, width=bits))
break
elif c < values[midpoint]:
e = midpoint
else:
s = midpoint + 1
code += end - start
code <<= 1
start = end
end += lengths[bits]
bits += 1
#print("next bit", bits)
for i in range(bits - 1, 0, -1):
if compressed & (1 << (i - 1)):
for atom in extractor.iter(decompressed):
for b in canonical[atom]:
if b == "1":
enc[current_byte] |= 1 << current_bit
if current_bit == 0:
current_bit = 7
#print("packed {0:0{width}b}".format(enc[current_byte], width=8))
current_byte += 1
else:
current_bit -= 1
if current_bit != 7:
current_byte += 1
return enc[:current_byte]
@ -452,7 +519,7 @@ if __name__ == "__main__":
if args.translation:
i18ns = sorted(i18ns)
translations = translate(args.translation, i18ns)
encoding_table = compute_huffman_coding(translations, qstrs, args.compression_filename)
encoding_table = compute_huffman_coding(translations, args.compression_filename)
print_qstr_data(encoding_table, qcfgs, qstrs, translations)
else:
print_qstr_enums(qstrs)

View File

@ -47,13 +47,22 @@ STATIC int put_utf8(char *buf, int u) {
if(u <= 0x7f) {
*buf = u;
return 1;
} else if(bigram_start <= u && u <= bigram_end) {
int n = (u - 0x80) * 2;
// (note that at present, entries in the bigrams table are
// guaranteed not to represent bigrams themselves, so this adds
} else if(word_start <= u && u <= word_end) {
uint n = (u - word_start);
size_t pos = 0;
if (n > 0) {
pos = wends[n - 1] + (n * 2);
}
int ret = 0;
// note that at present, entries in the words table are
// guaranteed not to represent words themselves, so this adds
// at most 1 level of recursive call
int ret = put_utf8(buf, bigrams[n]);
return ret + put_utf8(buf + ret, bigrams[n+1]);
for(; pos < wends[n] + (n + 1) * 2; pos++) {
int len = put_utf8(buf, words[pos]);
buf += len;
ret += len;
}
return ret;
} else if(u <= 0x07ff) {
*buf++ = 0b11000000 | (u >> 6);
*buf = 0b10000000 | (u & 0b00111111);

View File

@ -43,6 +43,19 @@
// (building the huffman encoding on UTF-16 code points gave better
// compression than building it on UTF-8 bytes)
//
// - code points starting at 128 (word_start) and potentially extending
// to 255 (word_end) (but never interfering with the target
// language's used code points) stand for dictionary entries in a
// dictionary with size up to 256 code points. The dictionary entries
// are computed with a heuristic based on frequent substrings of 2 to
// 9 code points. These are called "words" but are not, grammatically
// speaking, words. They're just spans of code points that frequently
// occur together.
//
// - dictionary entries are non-overlapping, and the _ending_ index of each
// entry is stored in an array. Since the index given is the ending
// index, the array is called "wends".
//
// The "data" / "tail" construct is so that the struct's last member is a
// "flexible array". However, the _only_ member is not permitted to be
// a flexible member, so we have to declare the first byte as a separte