tests/perf_bench: Add some miscellaneous performance benchmarks.
misc_aes.py and misc_mandel.py are adapted from sources in this repository. misc_pystone.py is the standard Python pystone test. misc_raytrace.py is written from scratch.
This commit is contained in:
parent
127714c3af
commit
73c269414f
|
@ -0,0 +1,225 @@
|
|||
# Pure Python AES encryption routines.
|
||||
#
|
||||
# AES is integer based and inplace so doesn't use the heap. It is therefore
|
||||
# a good test of raw performance and correctness of the VM/runtime.
|
||||
#
|
||||
# The AES code comes first (code originates from a C version authored by D.P.George)
|
||||
# and then the test harness at the bottom.
|
||||
#
|
||||
# MIT license; Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
|
||||
|
||||
##################################################################
|
||||
# discrete arithmetic routines, mostly from a precomputed table
|
||||
|
||||
# non-linear, invertible, substitution box
|
||||
aes_s_box_table = bytes((
|
||||
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
|
||||
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
|
||||
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
|
||||
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
|
||||
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
|
||||
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
|
||||
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
|
||||
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
|
||||
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
|
||||
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
|
||||
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
|
||||
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
|
||||
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
|
||||
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
|
||||
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
|
||||
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16,
|
||||
))
|
||||
|
||||
# multiplication of polynomials modulo x^8 + x^4 + x^3 + x + 1 = 0x11b
|
||||
def aes_gf8_mul_2(x):
|
||||
if x & 0x80:
|
||||
return (x << 1) ^ 0x11b
|
||||
else:
|
||||
return x << 1
|
||||
|
||||
def aes_gf8_mul_3(x):
|
||||
return x ^ aes_gf8_mul_2(x)
|
||||
|
||||
# non-linear, invertible, substitution box
|
||||
def aes_s_box(a):
|
||||
return aes_s_box_table[a & 0xff]
|
||||
|
||||
# return 0x02^(a-1) in GF(2^8)
|
||||
def aes_r_con(a):
|
||||
ans = 1
|
||||
while a > 1:
|
||||
ans <<= 1;
|
||||
if ans & 0x100:
|
||||
ans ^= 0x11b
|
||||
a -= 1
|
||||
return ans
|
||||
|
||||
##################################################################
|
||||
# basic AES algorithm; see FIPS-197
|
||||
|
||||
# all inputs must be size 16
|
||||
def aes_add_round_key(state, w):
|
||||
for i in range(16):
|
||||
state[i] ^= w[i]
|
||||
|
||||
# combined sub_bytes, shift_rows, mix_columns, add_round_key
|
||||
# all inputs must be size 16
|
||||
def aes_sb_sr_mc_ark(state, w, w_idx, temp):
|
||||
temp_idx = 0
|
||||
for i in range(4):
|
||||
x0 = aes_s_box_table[state[i * 4]]
|
||||
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
|
||||
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
|
||||
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
|
||||
temp[temp_idx] = aes_gf8_mul_2(x0) ^ aes_gf8_mul_3(x1) ^ x2 ^ x3 ^ w[w_idx]
|
||||
temp[temp_idx + 1] = x0 ^ aes_gf8_mul_2(x1) ^ aes_gf8_mul_3(x2) ^ x3 ^ w[w_idx + 1]
|
||||
temp[temp_idx + 2] = x0 ^ x1 ^ aes_gf8_mul_2(x2) ^ aes_gf8_mul_3(x3) ^ w[w_idx + 2]
|
||||
temp[temp_idx + 3] = aes_gf8_mul_3(x0) ^ x1 ^ x2 ^ aes_gf8_mul_2(x3) ^ w[w_idx + 3]
|
||||
w_idx += 4
|
||||
temp_idx += 4
|
||||
for i in range(16):
|
||||
state[i] = temp[i]
|
||||
|
||||
# combined sub_bytes, shift_rows, add_round_key
|
||||
# all inputs must be size 16
|
||||
def aes_sb_sr_ark(state, w, w_idx, temp):
|
||||
temp_idx = 0
|
||||
for i in range(4):
|
||||
x0 = aes_s_box_table[state[i * 4]]
|
||||
x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]]
|
||||
x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]]
|
||||
x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]]
|
||||
temp[temp_idx] = x0 ^ w[w_idx]
|
||||
temp[temp_idx + 1] = x1 ^ w[w_idx + 1]
|
||||
temp[temp_idx + 2] = x2 ^ w[w_idx + 2]
|
||||
temp[temp_idx + 3] = x3 ^ w[w_idx + 3]
|
||||
w_idx += 4
|
||||
temp_idx += 4
|
||||
for i in range(16):
|
||||
state[i] = temp[i]
|
||||
|
||||
# take state as input and change it to the next state in the sequence
|
||||
# state and temp have size 16, w has size 16 * (Nr + 1), Nr >= 1
|
||||
def aes_state(state, w, temp, nr):
|
||||
aes_add_round_key(state, w)
|
||||
w_idx = 16
|
||||
for i in range(nr - 1):
|
||||
aes_sb_sr_mc_ark(state, w, w_idx, temp)
|
||||
w_idx += 16
|
||||
aes_sb_sr_ark(state, w, w_idx, temp)
|
||||
|
||||
# expand 'key' to 'w' for use with aes_state
|
||||
# key has size 4 * Nk, w has size 16 * (Nr + 1), temp has size 16
|
||||
def aes_key_expansion(key, w, temp, nk, nr):
|
||||
for i in range(4 * nk):
|
||||
w[i] = key[i]
|
||||
w_idx = 4 * nk - 4
|
||||
for i in range(nk, 4 * (nr + 1)):
|
||||
t = temp
|
||||
t_idx = 0
|
||||
if i % nk == 0:
|
||||
t[0] = aes_s_box(w[w_idx + 1]) ^ aes_r_con(i // nk)
|
||||
for j in range(1, 4):
|
||||
t[j] = aes_s_box(w[w_idx + (j + 1) % 4])
|
||||
elif nk > 6 and i % nk == 4:
|
||||
for j in range(0, 4):
|
||||
t[j] = aes_s_box(w[w_idx + j])
|
||||
else:
|
||||
t = w
|
||||
t_idx = w_idx
|
||||
w_idx += 4
|
||||
for j in range(4):
|
||||
w[w_idx + j] = w[w_idx + j - 4 * nk] ^ t[t_idx + j]
|
||||
|
||||
##################################################################
|
||||
# simple use of AES algorithm, using output feedback (OFB) mode
|
||||
|
||||
class AES:
|
||||
def __init__(self, keysize):
|
||||
if keysize == 128:
|
||||
self.nk = 4
|
||||
self.nr = 10
|
||||
elif keysize == 192:
|
||||
self.nk = 6
|
||||
self.nr = 12
|
||||
else:
|
||||
assert keysize == 256
|
||||
self.nk = 8
|
||||
self.nr = 14
|
||||
|
||||
self.state = bytearray(16)
|
||||
self.w = bytearray(16 * (self.nr + 1))
|
||||
self.temp = bytearray(16)
|
||||
self.state_pos = 16
|
||||
|
||||
def set_key(self, key):
|
||||
aes_key_expansion(key, self.w, self.temp, self.nk, self.nr)
|
||||
self.state_pos = 16
|
||||
|
||||
def set_iv(self, iv):
|
||||
for i in range(16):
|
||||
self.state[i] = iv[i]
|
||||
self.state_pos = 16;
|
||||
|
||||
def get_some_state(self, n_needed):
|
||||
if self.state_pos >= 16:
|
||||
aes_state(self.state, self.w, self.temp, self.nr)
|
||||
self.state_pos = 0
|
||||
n = 16 - self.state_pos
|
||||
if n > n_needed:
|
||||
n = n_needed
|
||||
return n
|
||||
|
||||
def apply_to(self, data):
|
||||
idx = 0
|
||||
n = len(data)
|
||||
while n > 0:
|
||||
ln = self.get_some_state(n)
|
||||
n -= ln
|
||||
for i in range(ln):
|
||||
data[idx + i] ^= self.state[self.state_pos + i]
|
||||
idx += ln
|
||||
self.state_pos += n
|
||||
|
||||
###########################################################################
|
||||
# Benchmark interface
|
||||
|
||||
bm_params = {
|
||||
(50, 25): (1, 16),
|
||||
(100, 100): (1, 32),
|
||||
(1000, 1000): (4, 256),
|
||||
(5000, 1000): (20, 256),
|
||||
}
|
||||
|
||||
def bm_setup(params):
|
||||
nloop, datalen = params
|
||||
|
||||
aes = AES(256)
|
||||
key = bytearray(256 // 8)
|
||||
iv = bytearray(16)
|
||||
data = bytearray(datalen)
|
||||
# from now on we don't use the heap
|
||||
|
||||
def run():
|
||||
for loop in range(nloop):
|
||||
# encrypt
|
||||
aes.set_key(key)
|
||||
aes.set_iv(iv)
|
||||
for i in range(2):
|
||||
aes.apply_to(data)
|
||||
|
||||
# decrypt
|
||||
aes.set_key(key)
|
||||
aes.set_iv(iv)
|
||||
for i in range(2):
|
||||
aes.apply_to(data)
|
||||
|
||||
# verify
|
||||
for i in range(len(data)):
|
||||
assert data[i] == 0
|
||||
|
||||
def result():
|
||||
return params[0] * params[1], True
|
||||
|
||||
return run, result
|
|
@ -0,0 +1,31 @@
|
|||
# Compute the Mandelbrot set, to test complex numbers
|
||||
|
||||
def mandelbrot(w, h):
|
||||
def in_set(c):
|
||||
z = 0
|
||||
for i in range(32):
|
||||
z = z * z + c
|
||||
if abs(z) > 100:
|
||||
return i
|
||||
return 0
|
||||
|
||||
img = bytearray(w * h)
|
||||
|
||||
xscale = ((w - 1) / 2.4)
|
||||
yscale = ((h - 1) / 3.2)
|
||||
for v in range(h):
|
||||
line = memoryview(img)[v * w:v * w + w]
|
||||
for u in range(w):
|
||||
c = in_set(complex(v / yscale - 2.3, u / xscale - 1.2))
|
||||
line[u] = c
|
||||
|
||||
return img
|
||||
|
||||
bm_params = {
|
||||
(100, 100): (20, 20),
|
||||
(1000, 1000): (80, 80),
|
||||
(5000, 1000): (150, 150),
|
||||
}
|
||||
|
||||
def bm_setup(ps):
|
||||
return lambda: mandelbrot(ps[0], ps[1]), lambda: (ps[0] * ps[1], None)
|
|
@ -0,0 +1,226 @@
|
|||
"""
|
||||
"PYSTONE" Benchmark Program
|
||||
|
||||
Version: Python/1.2 (corresponds to C/1.1 plus 3 Pystone fixes)
|
||||
|
||||
Author: Reinhold P. Weicker, CACM Vol 27, No 10, 10/84 pg. 1013.
|
||||
|
||||
Translated from ADA to C by Rick Richardson.
|
||||
Every method to preserve ADA-likeness has been used,
|
||||
at the expense of C-ness.
|
||||
|
||||
Translated from C to Python by Guido van Rossum.
|
||||
"""
|
||||
|
||||
__version__ = "1.2"
|
||||
|
||||
[Ident1, Ident2, Ident3, Ident4, Ident5] = range(1, 6)
|
||||
|
||||
class Record:
|
||||
|
||||
def __init__(self, PtrComp = None, Discr = 0, EnumComp = 0,
|
||||
IntComp = 0, StringComp = 0):
|
||||
self.PtrComp = PtrComp
|
||||
self.Discr = Discr
|
||||
self.EnumComp = EnumComp
|
||||
self.IntComp = IntComp
|
||||
self.StringComp = StringComp
|
||||
|
||||
def copy(self):
|
||||
return Record(self.PtrComp, self.Discr, self.EnumComp,
|
||||
self.IntComp, self.StringComp)
|
||||
|
||||
TRUE = 1
|
||||
FALSE = 0
|
||||
|
||||
def Setup():
|
||||
global IntGlob
|
||||
global BoolGlob
|
||||
global Char1Glob
|
||||
global Char2Glob
|
||||
global Array1Glob
|
||||
global Array2Glob
|
||||
|
||||
IntGlob = 0
|
||||
BoolGlob = FALSE
|
||||
Char1Glob = '\0'
|
||||
Char2Glob = '\0'
|
||||
Array1Glob = [0]*51
|
||||
Array2Glob = [x[:] for x in [Array1Glob]*51]
|
||||
|
||||
def Proc0(loops):
|
||||
global IntGlob
|
||||
global BoolGlob
|
||||
global Char1Glob
|
||||
global Char2Glob
|
||||
global Array1Glob
|
||||
global Array2Glob
|
||||
global PtrGlb
|
||||
global PtrGlbNext
|
||||
|
||||
PtrGlbNext = Record()
|
||||
PtrGlb = Record()
|
||||
PtrGlb.PtrComp = PtrGlbNext
|
||||
PtrGlb.Discr = Ident1
|
||||
PtrGlb.EnumComp = Ident3
|
||||
PtrGlb.IntComp = 40
|
||||
PtrGlb.StringComp = "DHRYSTONE PROGRAM, SOME STRING"
|
||||
String1Loc = "DHRYSTONE PROGRAM, 1'ST STRING"
|
||||
Array2Glob[8][7] = 10
|
||||
|
||||
for i in range(loops):
|
||||
Proc5()
|
||||
Proc4()
|
||||
IntLoc1 = 2
|
||||
IntLoc2 = 3
|
||||
String2Loc = "DHRYSTONE PROGRAM, 2'ND STRING"
|
||||
EnumLoc = Ident2
|
||||
BoolGlob = not Func2(String1Loc, String2Loc)
|
||||
while IntLoc1 < IntLoc2:
|
||||
IntLoc3 = 5 * IntLoc1 - IntLoc2
|
||||
IntLoc3 = Proc7(IntLoc1, IntLoc2)
|
||||
IntLoc1 = IntLoc1 + 1
|
||||
Proc8(Array1Glob, Array2Glob, IntLoc1, IntLoc3)
|
||||
PtrGlb = Proc1(PtrGlb)
|
||||
CharIndex = 'A'
|
||||
while CharIndex <= Char2Glob:
|
||||
if EnumLoc == Func1(CharIndex, 'C'):
|
||||
EnumLoc = Proc6(Ident1)
|
||||
CharIndex = chr(ord(CharIndex)+1)
|
||||
IntLoc3 = IntLoc2 * IntLoc1
|
||||
IntLoc2 = IntLoc3 // IntLoc1
|
||||
IntLoc2 = 7 * (IntLoc3 - IntLoc2) - IntLoc1
|
||||
IntLoc1 = Proc2(IntLoc1)
|
||||
|
||||
def Proc1(PtrParIn):
|
||||
PtrParIn.PtrComp = NextRecord = PtrGlb.copy()
|
||||
PtrParIn.IntComp = 5
|
||||
NextRecord.IntComp = PtrParIn.IntComp
|
||||
NextRecord.PtrComp = PtrParIn.PtrComp
|
||||
NextRecord.PtrComp = Proc3(NextRecord.PtrComp)
|
||||
if NextRecord.Discr == Ident1:
|
||||
NextRecord.IntComp = 6
|
||||
NextRecord.EnumComp = Proc6(PtrParIn.EnumComp)
|
||||
NextRecord.PtrComp = PtrGlb.PtrComp
|
||||
NextRecord.IntComp = Proc7(NextRecord.IntComp, 10)
|
||||
else:
|
||||
PtrParIn = NextRecord.copy()
|
||||
NextRecord.PtrComp = None
|
||||
return PtrParIn
|
||||
|
||||
def Proc2(IntParIO):
|
||||
IntLoc = IntParIO + 10
|
||||
while 1:
|
||||
if Char1Glob == 'A':
|
||||
IntLoc = IntLoc - 1
|
||||
IntParIO = IntLoc - IntGlob
|
||||
EnumLoc = Ident1
|
||||
if EnumLoc == Ident1:
|
||||
break
|
||||
return IntParIO
|
||||
|
||||
def Proc3(PtrParOut):
|
||||
global IntGlob
|
||||
|
||||
if PtrGlb is not None:
|
||||
PtrParOut = PtrGlb.PtrComp
|
||||
else:
|
||||
IntGlob = 100
|
||||
PtrGlb.IntComp = Proc7(10, IntGlob)
|
||||
return PtrParOut
|
||||
|
||||
def Proc4():
|
||||
global Char2Glob
|
||||
|
||||
BoolLoc = Char1Glob == 'A'
|
||||
BoolLoc = BoolLoc or BoolGlob
|
||||
Char2Glob = 'B'
|
||||
|
||||
def Proc5():
|
||||
global Char1Glob
|
||||
global BoolGlob
|
||||
|
||||
Char1Glob = 'A'
|
||||
BoolGlob = FALSE
|
||||
|
||||
def Proc6(EnumParIn):
|
||||
EnumParOut = EnumParIn
|
||||
if not Func3(EnumParIn):
|
||||
EnumParOut = Ident4
|
||||
if EnumParIn == Ident1:
|
||||
EnumParOut = Ident1
|
||||
elif EnumParIn == Ident2:
|
||||
if IntGlob > 100:
|
||||
EnumParOut = Ident1
|
||||
else:
|
||||
EnumParOut = Ident4
|
||||
elif EnumParIn == Ident3:
|
||||
EnumParOut = Ident2
|
||||
elif EnumParIn == Ident4:
|
||||
pass
|
||||
elif EnumParIn == Ident5:
|
||||
EnumParOut = Ident3
|
||||
return EnumParOut
|
||||
|
||||
def Proc7(IntParI1, IntParI2):
|
||||
IntLoc = IntParI1 + 2
|
||||
IntParOut = IntParI2 + IntLoc
|
||||
return IntParOut
|
||||
|
||||
def Proc8(Array1Par, Array2Par, IntParI1, IntParI2):
|
||||
global IntGlob
|
||||
|
||||
IntLoc = IntParI1 + 5
|
||||
Array1Par[IntLoc] = IntParI2
|
||||
Array1Par[IntLoc+1] = Array1Par[IntLoc]
|
||||
Array1Par[IntLoc+30] = IntLoc
|
||||
for IntIndex in range(IntLoc, IntLoc+2):
|
||||
Array2Par[IntLoc][IntIndex] = IntLoc
|
||||
Array2Par[IntLoc][IntLoc-1] = Array2Par[IntLoc][IntLoc-1] + 1
|
||||
Array2Par[IntLoc+20][IntLoc] = Array1Par[IntLoc]
|
||||
IntGlob = 5
|
||||
|
||||
def Func1(CharPar1, CharPar2):
|
||||
CharLoc1 = CharPar1
|
||||
CharLoc2 = CharLoc1
|
||||
if CharLoc2 != CharPar2:
|
||||
return Ident1
|
||||
else:
|
||||
return Ident2
|
||||
|
||||
def Func2(StrParI1, StrParI2):
|
||||
IntLoc = 1
|
||||
while IntLoc <= 1:
|
||||
if Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]) == Ident1:
|
||||
CharLoc = 'A'
|
||||
IntLoc = IntLoc + 1
|
||||
if CharLoc >= 'W' and CharLoc <= 'Z':
|
||||
IntLoc = 7
|
||||
if CharLoc == 'X':
|
||||
return TRUE
|
||||
else:
|
||||
if StrParI1 > StrParI2:
|
||||
IntLoc = IntLoc + 7
|
||||
return TRUE
|
||||
else:
|
||||
return FALSE
|
||||
|
||||
def Func3(EnumParIn):
|
||||
EnumLoc = EnumParIn
|
||||
if EnumLoc == Ident3: return TRUE
|
||||
return FALSE
|
||||
|
||||
|
||||
###########################################################################
|
||||
# Benchmark interface
|
||||
|
||||
bm_params = {
|
||||
(50, 10): (80,),
|
||||
(100, 10): (300,),
|
||||
(1000, 10): (4000,),
|
||||
(5000, 10): (20000,),
|
||||
}
|
||||
|
||||
def bm_setup(params):
|
||||
Setup()
|
||||
return lambda: Proc0(params[0]), lambda: (params[0], 0)
|
|
@ -0,0 +1,242 @@
|
|||
# A simple ray tracer
|
||||
# MIT license; Copyright (c) 2019 Damien P. George
|
||||
|
||||
INF = 1e30
|
||||
EPS = 1e-6
|
||||
|
||||
class Vec:
|
||||
def __init__(self, x, y, z):
|
||||
self.x, self.y, self.z = x, y, z
|
||||
|
||||
def __neg__(self):
|
||||
return Vec(-self.x, -self.y, -self.z)
|
||||
|
||||
def __add__(self, rhs):
|
||||
return Vec(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
|
||||
|
||||
def __sub__(self, rhs):
|
||||
return Vec(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
|
||||
|
||||
def __mul__(self, rhs):
|
||||
return Vec(self.x * rhs, self.y * rhs, self.z * rhs)
|
||||
|
||||
def length(self):
|
||||
return (self.x ** 2 + self.y ** 2 + self.z ** 2) ** 0.5
|
||||
|
||||
def normalise(self):
|
||||
l = self.length()
|
||||
return Vec(self.x / l, self.y / l, self.z / l)
|
||||
|
||||
def dot(self, rhs):
|
||||
return self.x * rhs.x + self.y * rhs.y + self.z * rhs.z
|
||||
|
||||
RGB = Vec
|
||||
|
||||
class Ray:
|
||||
def __init__(self, p, d):
|
||||
self.p, self.d = p, d
|
||||
|
||||
class View:
|
||||
def __init__(self, width, height, depth, pos, xdir, ydir, zdir):
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.depth = depth
|
||||
self.pos = pos
|
||||
self.xdir = xdir
|
||||
self.ydir = ydir
|
||||
self.zdir = zdir
|
||||
|
||||
def calc_dir(self, dx, dy):
|
||||
return (self.xdir * dx + self.ydir * dy + self.zdir * self.depth).normalise()
|
||||
|
||||
class Light:
|
||||
def __init__(self, pos, colour, casts_shadows):
|
||||
self.pos = pos
|
||||
self.colour = colour
|
||||
self.casts_shadows = casts_shadows
|
||||
|
||||
class Surface:
|
||||
def __init__(self, diffuse, specular, spec_idx, reflect, transp, colour):
|
||||
self.diffuse = diffuse
|
||||
self.specular = specular
|
||||
self.spec_idx = spec_idx
|
||||
self.reflect = reflect
|
||||
self.transp = transp
|
||||
self.colour = colour
|
||||
|
||||
@staticmethod
|
||||
def dull(colour):
|
||||
return Surface(0.7, 0.0, 1, 0.0, 0.0, colour * 0.6)
|
||||
|
||||
@staticmethod
|
||||
def shiny(colour):
|
||||
return Surface(0.2, 0.9, 32, 0.8, 0.0, colour * 0.3)
|
||||
|
||||
@staticmethod
|
||||
def transparent(colour):
|
||||
return Surface(0.2, 0.9, 32, 0.0, 0.8, colour * 0.3)
|
||||
|
||||
class Sphere:
|
||||
def __init__(self, surface, centre, radius):
|
||||
self.surface = surface
|
||||
self.centre = centre
|
||||
self.radsq = radius ** 2
|
||||
|
||||
def intersect(self, ray):
|
||||
v = self.centre - ray.p
|
||||
b = v.dot(ray.d)
|
||||
det = b ** 2 - v.dot(v) + self.radsq
|
||||
if det > 0:
|
||||
det **= 0.5
|
||||
t1 = b - det
|
||||
if t1 > EPS:
|
||||
return t1
|
||||
t2 = b + det
|
||||
if t2 > EPS:
|
||||
return t2
|
||||
return INF
|
||||
|
||||
def surface_at(self, v):
|
||||
return self.surface, (v - self.centre).normalise()
|
||||
|
||||
class Plane:
|
||||
def __init__(self, surface, centre, normal):
|
||||
self.surface = surface
|
||||
self.normal = normal.normalise()
|
||||
self.cdotn = centre.dot(normal)
|
||||
|
||||
def intersect(self, ray):
|
||||
ddotn = ray.d.dot(self.normal)
|
||||
if abs(ddotn) > EPS:
|
||||
t = (self.cdotn - ray.p.dot(self.normal)) / ddotn
|
||||
if t > 0:
|
||||
return t
|
||||
return INF
|
||||
|
||||
def surface_at(self, p):
|
||||
return self.surface, self.normal
|
||||
|
||||
class Scene:
|
||||
def __init__(self, ambient, light, objs):
|
||||
self.ambient = ambient
|
||||
self.light = light
|
||||
self.objs = objs
|
||||
|
||||
def trace_scene(canvas, view, scene, max_depth):
|
||||
for v in range(canvas.height):
|
||||
y = (-v + 0.5 * (canvas.height - 1)) * view.height / canvas.height
|
||||
for u in range(canvas.width):
|
||||
x = (u - 0.5 * (canvas.width - 1)) * view.width / canvas.width
|
||||
ray = Ray(view.pos, view.calc_dir(x, y))
|
||||
c = trace_ray(scene, ray, max_depth)
|
||||
canvas.put_pix(u, v, c)
|
||||
|
||||
def trace_ray(scene, ray, depth):
|
||||
# Find closest intersecting object
|
||||
hit_t = INF
|
||||
hit_obj = None
|
||||
for obj in scene.objs:
|
||||
t = obj.intersect(ray)
|
||||
if t < hit_t:
|
||||
hit_t = t
|
||||
hit_obj = obj
|
||||
|
||||
# Check if any objects hit
|
||||
if hit_obj is None:
|
||||
return RGB(0, 0, 0)
|
||||
|
||||
# Compute location of ray intersection
|
||||
point = ray.p + ray.d * hit_t
|
||||
surf, surf_norm = hit_obj.surface_at(point)
|
||||
if ray.d.dot(surf_norm) > 0:
|
||||
surf_norm = -surf_norm
|
||||
|
||||
# Compute reflected ray
|
||||
reflected = ray.d - surf_norm * (surf_norm.dot(ray.d) * 2)
|
||||
|
||||
# Ambient light
|
||||
col = surf.colour * scene.ambient
|
||||
|
||||
# Diffuse, specular and shadow from light source
|
||||
light_vec = scene.light.pos - point
|
||||
light_dist = light_vec.length()
|
||||
light_vec = light_vec.normalise()
|
||||
ndotl = surf_norm.dot(light_vec)
|
||||
ldotv = light_vec.dot(reflected)
|
||||
if ndotl > 0 or ldotv > 0:
|
||||
light_ray = Ray(point + light_vec * EPS, light_vec)
|
||||
light_col = trace_to_light(scene, light_ray, light_dist)
|
||||
if ndotl > 0:
|
||||
col += light_col * surf.diffuse * ndotl
|
||||
if ldotv > 0:
|
||||
col += light_col * surf.specular * ldotv ** surf.spec_idx
|
||||
|
||||
# Reflections
|
||||
if depth > 0 and surf.reflect > 0:
|
||||
col += trace_ray(scene, Ray(point + reflected * EPS, reflected), depth - 1) * surf.reflect
|
||||
|
||||
# Transparency
|
||||
if depth > 0 and surf.transp > 0:
|
||||
col += trace_ray(scene, Ray(point + ray.d * EPS, ray.d), depth - 1) * surf.transp
|
||||
|
||||
return col
|
||||
|
||||
def trace_to_light(scene, ray, light_dist):
|
||||
col = scene.light.colour
|
||||
for obj in scene.objs:
|
||||
t = obj.intersect(ray)
|
||||
if t < light_dist:
|
||||
col *= obj.surface.transp
|
||||
return col
|
||||
|
||||
class Canvas:
|
||||
def __init__(self, width, height):
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.data = bytearray(3 * width * height)
|
||||
|
||||
def put_pix(self, x, y, c):
|
||||
off = 3 * (y * self.width + x)
|
||||
self.data[off] = min(255, max(0, int(255 * c.x)))
|
||||
self.data[off + 1] = min(255, max(0, int(255 * c.y)))
|
||||
self.data[off + 2] = min(255, max(0, int(255 * c.z)))
|
||||
|
||||
def write_ppm(self, filename):
|
||||
with open(filename, 'wb') as f:
|
||||
f.write(bytes('P6 %d %d 255\n' % (self.width, self.height), 'ascii'))
|
||||
f.write(self.data)
|
||||
|
||||
def main(w, h, d):
|
||||
canvas = Canvas(w, h)
|
||||
view = View(32, 32, 64, Vec(0, 0, 50), Vec(1, 0, 0), Vec(0, 1, 0), Vec(0, 0, -1))
|
||||
scene = Scene(
|
||||
0.5,
|
||||
Light(Vec(0, 8, 0), RGB(1, 1, 1), True),
|
||||
[
|
||||
Plane(Surface.dull(RGB(1, 0, 0)), Vec(-10, 0, 0), Vec(1, 0, 0)),
|
||||
Plane(Surface.dull(RGB(0, 1, 0)), Vec(10, 0, 0), Vec(-1, 0, 0)),
|
||||
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, 0, -10), Vec(0, 0, 1)),
|
||||
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, -10, 0), Vec(0, 1, 0)),
|
||||
Plane(Surface.dull(RGB(1, 1, 1)), Vec(0, 10, 0), Vec(0, -1, 0)),
|
||||
Sphere(Surface.shiny(RGB(1, 1, 1)), Vec(-5, -4, 3), 4),
|
||||
Sphere(Surface.dull(RGB(0, 0, 1)), Vec(4, -5, 0), 4),
|
||||
Sphere(Surface.transparent(RGB(0.2, 0.2, 0.2)), Vec(6, -1, 8), 4),
|
||||
]
|
||||
)
|
||||
trace_scene(canvas, view, scene, d)
|
||||
return canvas
|
||||
|
||||
# For testing
|
||||
#main(256, 256, 4).write_ppm('rt.ppm')
|
||||
|
||||
###########################################################################
|
||||
# Benchmark interface
|
||||
|
||||
bm_params = {
|
||||
(100, 100): (5, 5, 2),
|
||||
(1000, 100): (18, 18, 3),
|
||||
(5000, 100): (40, 40, 3),
|
||||
}
|
||||
|
||||
def bm_setup(params):
|
||||
return lambda: main(*params), lambda: (params[0] * params[1] * params[2], None)
|
Loading…
Reference in New Issue