stmhal: Reorganise code for parsing keyword args in I2C methods.

To make it the same as SPI and UART.
This commit is contained in:
Damien George 2015-06-22 23:46:22 +01:00
parent de8b585ab7
commit 6e1dfb0d1a

View File

@ -286,34 +286,33 @@ STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_ki
/// - `addr` is the 7-bit address (only sensible for a slave) /// - `addr` is the 7-bit address (only sensible for a slave)
/// - `baudrate` is the SCL clock rate (only sensible for a master) /// - `baudrate` is the SCL clock rate (only sensible for a master)
/// - `gencall` is whether to support general call mode /// - `gencall` is whether to support general call mode
STATIC const mp_arg_t pyb_i2c_init_args[] = { STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} }, { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, { MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
{ MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
}; { MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
#define PYB_I2C_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_init_args) };
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args // parse args
mp_arg_val_t vals[PYB_I2C_INIT_NUM_ARGS]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals); mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the I2C configuration values // set the I2C configuration values
I2C_InitTypeDef *init = &self->i2c->Init; I2C_InitTypeDef *init = &self->i2c->Init;
if (vals[0].u_int == PYB_I2C_MASTER) { if (args[0].u_int == PYB_I2C_MASTER) {
// use a special address to indicate we are a master // use a special address to indicate we are a master
init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS; init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
} else { } else {
init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe; init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
} }
init->AddressingMode = I2C_ADDRESSINGMODE_7BIT; init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
init->ClockSpeed = MIN(vals[2].u_int, 400000); init->ClockSpeed = MIN(args[2].u_int, 400000);
init->DualAddressMode = I2C_DUALADDRESS_DISABLED; init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
init->DutyCycle = I2C_DUTYCYCLE_16_9; init->DutyCycle = I2C_DUTYCYCLE_16_9;
init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED; init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
init->NoStretchMode = I2C_NOSTRETCH_DISABLED; init->NoStretchMode = I2C_NOSTRETCH_DISABLED;
init->OwnAddress2 = 0xfe; // unused init->OwnAddress2 = 0xfe; // unused
@ -452,24 +451,22 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);
/// - `timeout` is the timeout in milliseconds to wait for the send /// - `timeout` is the timeout in milliseconds to wait for the send
/// ///
/// Return value: `None`. /// Return value: `None`.
STATIC const mp_arg_t pyb_i2c_send_args[] = { STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
}; { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
#define PYB_I2C_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_send_args) };
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
// parse args // parse args
mp_arg_val_t vals[PYB_I2C_SEND_NUM_ARGS]; pyb_i2c_obj_t *self = pos_args[0];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_args, vals); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from // get the buffer to send from
mp_buffer_info_t bufinfo; mp_buffer_info_t bufinfo;
uint8_t data[1]; uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// if IRQs are enabled then we can use DMA // if IRQs are enabled then we can use DMA
DMA_HandleTypeDef tx_dma; DMA_HandleTypeDef tx_dma;
@ -482,21 +479,21 @@ STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *k
// send the data // send the data
HAL_StatusTypeDef status; HAL_StatusTypeDef status;
if (in_master_mode(self)) { if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) { if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
if (query_irq() == IRQ_STATE_ENABLED) { if (query_irq() == IRQ_STATE_ENABLED) {
dma_deinit(&tx_dma); dma_deinit(&tx_dma);
} }
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required")); nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
} }
mp_uint_t i2c_addr = vals[1].u_int << 1; mp_uint_t i2c_addr = args[1].u_int << 1;
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int); status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
} else { } else {
status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len); status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
} }
} else { } else {
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int); status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
} else { } else {
status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len); status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
} }
@ -505,7 +502,7 @@ STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *k
// if we used DMA, wait for it to finish // if we used DMA, wait for it to finish
if (query_irq() == IRQ_STATE_ENABLED) { if (query_irq() == IRQ_STATE_ENABLED) {
if (status == HAL_OK) { if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, vals[2].u_int); status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
} }
dma_deinit(&tx_dma); dma_deinit(&tx_dma);
} }
@ -529,23 +526,21 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);
/// ///
/// Return value: if `recv` is an integer then a new buffer of the bytes received, /// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`. /// otherwise the same buffer that was passed in to `recv`.
STATIC const mp_arg_t pyb_i2c_recv_args[] = { STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, static const mp_arg_t allowed_args[] = {
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} }, { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, { MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
}; { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
#define PYB_I2C_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_recv_args) };
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
// parse args // parse args
mp_arg_val_t vals[PYB_I2C_RECV_NUM_ARGS]; pyb_i2c_obj_t *self = pos_args[0];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_args, vals); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to receive into // get the buffer to receive into
vstr_t vstr; vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// if IRQs are enabled then we can use DMA // if IRQs are enabled then we can use DMA
DMA_HandleTypeDef rx_dma; DMA_HandleTypeDef rx_dma;
@ -558,18 +553,18 @@ STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *k
// receive the data // receive the data
HAL_StatusTypeDef status; HAL_StatusTypeDef status;
if (in_master_mode(self)) { if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) { if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required")); nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
} }
mp_uint_t i2c_addr = vals[1].u_int << 1; mp_uint_t i2c_addr = args[1].u_int << 1;
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len, vals[2].u_int); status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
} else { } else {
status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len); status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len);
} }
} else { } else {
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t*)vstr.buf, vstr.len, vals[2].u_int); status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
} else { } else {
status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t*)vstr.buf, vstr.len); status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t*)vstr.buf, vstr.len);
} }
@ -578,7 +573,7 @@ STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *k
// if we used DMA, wait for it to finish // if we used DMA, wait for it to finish
if (query_irq() == IRQ_STATE_ENABLED) { if (query_irq() == IRQ_STATE_ENABLED) {
if (status == HAL_OK) { if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, vals[2].u_int); status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
} }
dma_deinit(&rx_dma); dma_deinit(&rx_dma);
} }
@ -608,42 +603,40 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
/// ///
/// Returns the read data. /// Returns the read data.
/// This is only valid in master mode. /// This is only valid in master mode.
STATIC const mp_arg_t pyb_i2c_mem_read_args[] = { STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
{ MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
}; };
#define PYB_I2C_MEM_READ_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_mem_read_args)
STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0]; // parse args
pyb_i2c_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
if (!in_master_mode(self)) { if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master")); nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
} }
// parse args
mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
// get the buffer to read into // get the buffer to read into
vstr_t vstr; vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// get the addresses // get the addresses
mp_uint_t i2c_addr = vals[1].u_int << 1; mp_uint_t i2c_addr = args[1].u_int << 1;
mp_uint_t mem_addr = vals[2].u_int; mp_uint_t mem_addr = args[2].u_int;
// determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
if (vals[4].u_int != 8) { if (args[4].u_int != 8) {
mem_addr_size = I2C_MEMADD_SIZE_16BIT; mem_addr_size = I2C_MEMADD_SIZE_16BIT;
} }
HAL_StatusTypeDef status; HAL_StatusTypeDef status;
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len, vals[3].u_int); status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len, args[3].u_int);
} else { } else {
DMA_HandleTypeDef rx_dma; DMA_HandleTypeDef rx_dma;
dma_init(&rx_dma, self->rx_dma_stream, self->rx_dma_channel, DMA_PERIPH_TO_MEMORY, self->i2c); dma_init(&rx_dma, self->rx_dma_stream, self->rx_dma_channel, DMA_PERIPH_TO_MEMORY, self->i2c);
@ -651,7 +644,7 @@ STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *args, mp_map_
self->i2c->hdmarx = &rx_dma; self->i2c->hdmarx = &rx_dma;
status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len); status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len);
if (status == HAL_OK) { if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, vals[3].u_int); status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
} }
dma_deinit(&rx_dma); dma_deinit(&rx_dma);
} }
@ -681,34 +674,33 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
/// ///
/// Returns `None`. /// Returns `None`.
/// This is only valid in master mode. /// This is only valid in master mode.
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0]; // parse args (same as mem_read)
pyb_i2c_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
if (!in_master_mode(self)) { if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master")); nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
} }
// parse args (same as mem_read)
mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
// get the buffer to write from // get the buffer to write from
mp_buffer_info_t bufinfo; mp_buffer_info_t bufinfo;
uint8_t data[1]; uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// get the addresses // get the addresses
mp_uint_t i2c_addr = vals[1].u_int << 1; mp_uint_t i2c_addr = args[1].u_int << 1;
mp_uint_t mem_addr = vals[2].u_int; mp_uint_t mem_addr = args[2].u_int;
// determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT; mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
if (vals[4].u_int != 8) { if (args[4].u_int != 8) {
mem_addr_size = I2C_MEMADD_SIZE_16BIT; mem_addr_size = I2C_MEMADD_SIZE_16BIT;
} }
HAL_StatusTypeDef status; HAL_StatusTypeDef status;
if (query_irq() == IRQ_STATE_DISABLED) { if (query_irq() == IRQ_STATE_DISABLED) {
status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int); status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
} else { } else {
DMA_HandleTypeDef tx_dma; DMA_HandleTypeDef tx_dma;
dma_init(&tx_dma, self->tx_dma_stream, self->tx_dma_channel, DMA_MEMORY_TO_PERIPH, self->i2c); dma_init(&tx_dma, self->tx_dma_stream, self->tx_dma_channel, DMA_MEMORY_TO_PERIPH, self->i2c);
@ -716,7 +708,7 @@ STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map
self->i2c->hdmarx = NULL; self->i2c->hdmarx = NULL;
status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len); status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
if (status == HAL_OK) { if (status == HAL_OK) {
status = i2c_wait_dma_finished(self->i2c, vals[3].u_int); status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
} }
dma_deinit(&tx_dma); dma_deinit(&tx_dma);
} }