drivers/lsm9ds1: Add LSM9DS1 IMU driver.

This commit is contained in:
iabdalkader 2022-07-05 22:14:10 +02:00 committed by Damien George
parent fc6d989f8c
commit 6c07e9eb27

189
drivers/lsm9ds1/lsm9ds1.py Normal file
View File

@ -0,0 +1,189 @@
"""
The MIT License (MIT)
Copyright (c) 2013, 2014 Damien P. George
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
LSM9DS1 - 9DOF inertial sensor of STMicro driver for MicroPython.
The sensor contains an accelerometer / gyroscope / magnetometer
Uses the internal FIFO to store up to 16 gyro/accel data, use the iter_accel_gyro generator to access it.
Example usage:
import time
from lsm9ds1 import LSM9DS1
from machine import Pin, I2C
lsm = LSM9DS1(I2C(1, scl=Pin(15), sda=Pin(14)))
while (True):
#for g,a in lsm.iter_accel_gyro(): print(g,a) # using fifo
print('Accelerometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.accel()))
print('Magnetometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.magnet()))
print('Gyroscope: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.gyro()))
print("")
time.sleep_ms(100)
"""
import array
_WHO_AM_I = const(0xF)
_CTRL_REG1_G = const(0x10)
_INT_GEN_SRC_G = const(0x14)
_OUT_TEMP = const(0x15)
_OUT_G = const(0x18)
_CTRL_REG4_G = const(0x1E)
_STATUS_REG = const(0x27)
_OUT_XL = const(0x28)
_FIFO_CTRL_REG = const(0x2E)
_FIFO_SRC = const(0x2F)
_OFFSET_REG_X_M = const(0x05)
_CTRL_REG1_M = const(0x20)
_OUT_M = const(0x28)
_SCALE_GYRO = const(((245, 0), (500, 1), (2000, 3)))
_SCALE_ACCEL = const(((2, 0), (4, 2), (8, 3), (16, 1)))
class LSM9DS1:
def __init__(self, i2c, address_gyro=0x6B, address_magnet=0x1E):
self.i2c = i2c
self.address_gyro = address_gyro
self.address_magnet = address_magnet
# check id's of accelerometer/gyro and magnetometer
if (self.magent_id() != b"=") or (self.gyro_id() != b"h"):
raise OSError(
"Invalid LSM9DS1 device, using address {}/{}".format(address_gyro, address_magnet)
)
# allocate scratch buffer for efficient conversions and memread op's
self.scratch = array.array("B", [0, 0, 0, 0, 0, 0])
self.scratch_int = array.array("h", [0, 0, 0])
self.init_gyro_accel()
self.init_magnetometer()
def init_gyro_accel(self, sample_rate=6, scale_gyro=0, scale_accel=0):
"""Initalizes Gyro and Accelerator.
sample rate: 0-6 (off, 14.9Hz, 59.5Hz, 119Hz, 238Hz, 476Hz, 952Hz)
scale_gyro: 0-2 (245dps, 500dps, 2000dps )
scale_accel: 0-3 (+/-2g, +/-4g, +/-8g, +-16g)
"""
assert sample_rate <= 6, "invalid sampling rate: %d" % sample_rate
assert scale_gyro <= 2, "invalid gyro scaling: %d" % scale_gyro
assert scale_accel <= 3, "invalid accelerometer scaling: %d" % scale_accel
i2c = self.i2c
addr = self.address_gyro
mv = memoryview(self.scratch)
# angular control registers 1-3 / Orientation
mv[0] = ((sample_rate & 0x07) << 5) | ((_SCALE_GYRO[scale_gyro][1] & 0x3) << 3)
mv[1:4] = b"\x00\x00\x00"
i2c.writeto_mem(addr, _CTRL_REG1_G, mv[:5])
# ctrl4 - enable x,y,z, outputs, no irq latching, no 4D
# ctrl5 - enable all axes, no decimation
# ctrl6 - set scaling and sample rate of accel
# ctrl7,8 - leave at default values
# ctrl9 - FIFO enabled
mv[0] = mv[1] = 0x38
mv[2] = ((sample_rate & 7) << 5) | ((_SCALE_ACCEL[scale_accel][1] & 0x3) << 3)
mv[3] = 0x00
mv[4] = 0x4
mv[5] = 0x2
i2c.writeto_mem(addr, _CTRL_REG4_G, mv[:6])
# fifo: use continous mode (overwrite old data if overflow)
i2c.writeto_mem(addr, _FIFO_CTRL_REG, b"\x00")
i2c.writeto_mem(addr, _FIFO_CTRL_REG, b"\xc0")
self.scale_gyro = 32768 / _SCALE_GYRO[scale_gyro][0]
self.scale_accel = 32768 / _SCALE_ACCEL[scale_accel][0]
def init_magnetometer(self, sample_rate=7, scale_magnet=0):
"""
sample rates = 0-7 (0.625, 1.25, 2.5, 5, 10, 20, 40, 80Hz)
scaling = 0-3 (+/-4, +/-8, +/-12, +/-16 Gauss)
"""
assert sample_rate < 8, "invalid sample rate: %d (0-7)" % sample_rate
assert scale_magnet < 4, "invalid scaling: %d (0-3)" % scale_magnet
i2c = self.i2c
addr = self.address_magnet
mv = memoryview(self.scratch)
mv[0] = 0x40 | (sample_rate << 2) # ctrl1: high performance mode
mv[1] = scale_magnet << 5 # ctrl2: scale, normal mode, no reset
mv[2] = 0x00 # ctrl3: continous conversion, no low power, I2C
mv[3] = 0x08 # ctrl4: high performance z-axis
mv[4] = 0x00 # ctr5: no fast read, no block update
i2c.writeto_mem(addr, _CTRL_REG1_M, mv[:5])
self.scale_factor_magnet = 32768 / ((scale_magnet + 1) * 4)
def calibrate_magnet(self, offset):
"""
offset is a magnet vecor that will be substracted by the magnetometer
for each measurement. It is written to the magnetometer's offset register
"""
offset = [int(i * self.scale_factor_magnet) for i in offset]
mv = memoryview(self.scratch)
mv[0] = offset[0] & 0xFF
mv[1] = offset[0] >> 8
mv[2] = offset[1] & 0xFF
mv[3] = offset[1] >> 8
mv[4] = offset[2] & 0xFF
mv[5] = offset[2] >> 8
self.i2c.writeto_mem(self.address_magnet, _OFFSET_REG_X_M, mv[:6])
def gyro_id(self):
return self.i2c.readfrom_mem(self.address_gyro, _WHO_AM_I, 1)
def magent_id(self):
return self.i2c.readfrom_mem(self.address_magnet, _WHO_AM_I, 1)
def magnet(self):
"""Returns magnetometer vector in gauss.
raw_values: if True, the non-scaled adc values are returned
"""
mv = memoryview(self.scratch_int)
f = self.scale_factor_magnet
self.i2c.readfrom_mem_into(self.address_magnet, _OUT_M | 0x80, mv)
return (mv[0] / f, mv[1] / f, mv[2] / f)
def gyro(self):
"""Returns gyroscope vector in degrees/sec."""
mv = memoryview(self.scratch_int)
f = self.scale_gyro
self.i2c.readfrom_mem_into(self.address_gyro, _OUT_G | 0x80, mv)
return (mv[0] / f, mv[1] / f, mv[2] / f)
def accel(self):
"""Returns acceleration vector in gravity units (9.81m/s^2)."""
mv = memoryview(self.scratch_int)
f = self.scale_accel
self.i2c.readfrom_mem_into(self.address_gyro, _OUT_XL | 0x80, mv)
return (mv[0] / f, mv[1] / f, mv[2] / f)
def iter_accel_gyro(self):
"""A generator that returns tuples of (gyro,accelerometer) data from the fifo."""
while True:
fifo_state = int.from_bytes(
self.i2c.readfrom_mem(self.address_gyro, _FIFO_SRC, 1), "big"
)
if fifo_state & 0x3F:
# print("Available samples=%d" % (fifo_state & 0x1f))
yield self.gyro(), self.accel()
else:
break