rp2: Make atomic sections suspend the other core (if active).

When a flash write/erase is in progress, we need to ensure that the
other core cannot be using XIP.

This also implements MICROPY_BEGIN_ATOMIC_SECTION as a full mutex, which
is necessary as it's used to syncronise access to things like the scheduler
queue.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This commit is contained in:
Jim Mussared 2022-06-30 11:42:20 +10:00 committed by Damien George
parent daff597753
commit 662dc8602b
2 changed files with 46 additions and 3 deletions

View File

@ -30,6 +30,7 @@
#include "hardware/spi.h" #include "hardware/spi.h"
#include "hardware/sync.h" #include "hardware/sync.h"
#include "pico/binary_info.h" #include "pico/binary_info.h"
#include "pico/multicore.h"
#include "mpconfigboard.h" #include "mpconfigboard.h"
#if MICROPY_HW_USB_MSC #if MICROPY_HW_USB_MSC
#include "hardware/flash.h" #include "hardware/flash.h"
@ -225,9 +226,11 @@ extern const struct _mod_network_nic_type_t mod_network_nic_type_wiznet5k;
// Miscellaneous settings // Miscellaneous settings
// TODO need to look and see if these could/should be spinlock/mutex // Entering a critical section.
#define MICROPY_BEGIN_ATOMIC_SECTION() save_and_disable_interrupts() extern uint32_t mp_thread_begin_atomic_section(void);
#define MICROPY_END_ATOMIC_SECTION(state) restore_interrupts(state) extern void mp_thread_end_atomic_section(uint32_t);
#define MICROPY_BEGIN_ATOMIC_SECTION() mp_thread_begin_atomic_section()
#define MICROPY_END_ATOMIC_SECTION(state) mp_thread_end_atomic_section(state)
// Prevent the "lwIP task" from running when unsafe to do so. // Prevent the "lwIP task" from running when unsafe to do so.
#define MICROPY_PY_LWIP_ENTER lwip_lock_acquire(); #define MICROPY_PY_LWIP_ENTER lwip_lock_acquire();

View File

@ -36,16 +36,52 @@ extern uint8_t __StackTop, __StackBottom;
void *core_state[2]; void *core_state[2];
// This will be non-NULL while Python code is execting.
STATIC void *(*core1_entry)(void *) = NULL; STATIC void *(*core1_entry)(void *) = NULL;
STATIC void *core1_arg = NULL; STATIC void *core1_arg = NULL;
STATIC uint32_t *core1_stack = NULL; STATIC uint32_t *core1_stack = NULL;
STATIC size_t core1_stack_num_words = 0; STATIC size_t core1_stack_num_words = 0;
// Thread mutex.
STATIC mp_thread_mutex_t atomic_mutex;
uint32_t mp_thread_begin_atomic_section(void) {
if (core1_entry) {
// When both cores are executing, we also need to provide
// full mutual exclusion.
mp_thread_mutex_lock(&atomic_mutex, 1);
// In case this atomic section is for flash access, then
// suspend the other core.
multicore_lockout_start_blocking();
}
return save_and_disable_interrupts();
}
void mp_thread_end_atomic_section(uint32_t state) {
restore_interrupts(state);
if (core1_entry) {
multicore_lockout_end_blocking();
mp_thread_mutex_unlock(&atomic_mutex);
}
}
// Initialise threading support.
void mp_thread_init(void) { void mp_thread_init(void) {
assert(get_core_num() == 0);
mp_thread_mutex_init(&atomic_mutex);
// Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core1.
multicore_lockout_victim_init();
mp_thread_set_state(&mp_state_ctx.thread); mp_thread_set_state(&mp_state_ctx.thread);
core1_entry = NULL; core1_entry = NULL;
} }
// Shutdown threading support -- stops the second thread.
void mp_thread_deinit(void) { void mp_thread_deinit(void) {
assert(get_core_num() == 0); assert(get_core_num() == 0);
// Must ensure that core1 is not currently holding the GC lock, otherwise // Must ensure that core1 is not currently holding the GC lock, otherwise
@ -69,9 +105,13 @@ void mp_thread_gc_others(void) {
} }
STATIC void core1_entry_wrapper(void) { STATIC void core1_entry_wrapper(void) {
// Allow MICROPY_BEGIN_ATOMIC_SECTION to be invoked from core0.
multicore_lockout_victim_init();
if (core1_entry) { if (core1_entry) {
core1_entry(core1_arg); core1_entry(core1_arg);
} }
core1_entry = NULL; core1_entry = NULL;
// returning from here will loop the core forever (WFI) // returning from here will loop the core forever (WFI)
} }