PWM Base functionality testing for F405

This commit is contained in:
Hierophect 2019-10-24 12:43:34 -04:00
parent 1d8a75fa3f
commit 64337775f8
4 changed files with 68 additions and 12 deletions

View File

@ -121,7 +121,7 @@ LIBS += -lm
endif
# TinyUSB defines
CFLAGS += -DHSE_VALUE=8000000 -DCFG_TUSB_MCU=OPT_MCU_STM32F4 -DCFG_TUD_CDC_RX_BUFSIZE=1024 -DCFG_TUD_CDC_TX_BUFSIZE=1024 -DCFG_TUD_MSC_BUFSIZE=4096 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_MIDI_TX_BUFSIZE=128
CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_STM32F4 -DCFG_TUD_CDC_RX_BUFSIZE=1024 -DCFG_TUD_CDC_TX_BUFSIZE=1024 -DCFG_TUD_MSC_BUFSIZE=4096 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_MIDI_TX_BUFSIZE=128
######################################

View File

@ -61,7 +61,7 @@
/* #define HAL_SD_MODULE_ENABLED */
/* #define HAL_MMC_MODULE_ENABLED */
#define HAL_SPI_MODULE_ENABLED
/* #define HAL_TIM_MODULE_ENABLED */
#define HAL_TIM_MODULE_ENABLED
#define HAL_UART_MODULE_ENABLED
/* #define HAL_USART_MODULE_ENABLED */
/* #define HAL_IRDA_MODULE_ENABLED */

View File

@ -4,6 +4,8 @@
* The MIT License (MIT)
*
* Copyright (c) 2018 Dan Halbert for Adafruit Industries
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
* Utilizes code from Micropython, Copyright (c) 2013-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -29,6 +31,32 @@
#include "common-hal/pulseio/PWMOut.h"
#include "shared-bindings/pulseio/PWMOut.h"
#include "supervisor/shared/translate.h"
#include "stm32f4xx_hal.h"
#define PWM_MAX_FREQ 1000000
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock. See DM00031020 Rev 4, page 115.
static uint32_t timer_get_source_freq(uint32_t tim_id) {
uint32_t source, clk_div;
if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
// TIM{1,8,9,10,11} are on APB2
source = HAL_RCC_GetPCLK2Freq();
clk_div = RCC->CFGR & RCC_CFGR_PPRE2;
} else {
// TIM{2,3,4,5,6,7,12,13,14} are on APB1
source = HAL_RCC_GetPCLK1Freq();
clk_div = RCC->CFGR & RCC_CFGR_PPRE1;
}
if (clk_div != 0) {
// APB prescaler for this timer is > 1
source *= 2;
}
return source;
}
void pwmout_reset(void) {
}
@ -44,29 +72,56 @@ pwmout_result_t common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
//Using PB08: Tim4 Ch3 for testing
int tim_num = 10;
int tim_chan = TIM_CHANNEL_1;
__HAL_RCC_TIM4_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = pin_mask(pin->number);
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = 3;//2; //2 is timer 4
HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct);
//__HAL_RCC_TIM4_CLK_ENABLE();
__HAL_RCC_TIM10_CLK_ENABLE();
uint32_t source_freq = timer_get_source_freq(tim_num);
uint32_t period = PWM_MAX_FREQ/frequency;
mp_printf(&mp_plat_print, "SysCoreClock: %d\n", SystemCoreClock);
mp_printf(&mp_plat_print, "Source Freq: %d\n", source_freq);
mp_printf(&mp_plat_print, "Timer Freq: %d\n", source_freq/(source_freq / PWM_MAX_FREQ));
mp_printf(&mp_plat_print, "Actual Freq: %d\n", (source_freq/(source_freq / PWM_MAX_FREQ))/period);
mp_printf(&mp_plat_print, "Period: %d\n", (PWM_MAX_FREQ/frequency));
TIM_HandleTypeDef tim = {0};
tim.Instance = TIM4;
tim.Init.Period = LED_PWM_TIM_PERIOD - 1;
tim.Init.Prescaler = timer_get_source_freq(pwm_cfg->tim_id) / 1000000 - 1; // TIM runs at 1MHz
tim.Instance = TIM10;
tim.Init.Period = period - 1;
tim.Init.Prescaler = (source_freq / PWM_MAX_FREQ) - 1; // TIM runs at 16MHz
tim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim.Init.CounterMode = TIM_COUNTERMODE_UP;
tim.Init.RepetitionCounter = 0;
HAL_TIM_PWM_Init(&tim);
if(HAL_TIM_PWM_Init(&tim) == HAL_OK) {
mp_printf(&mp_plat_print, "Tim Init Success\n");
}
// PWM configuration
TIM_OC_InitTypeDef oc_init;
oc_init.OCMode = TIM_OCMODE_PWM1;
oc_init.Pulse = 0; // off
oc_init.OCPolarity = MICROPY_HW_LED_INVERTED ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
oc_init.Pulse = (period*duty)/100 - 1;
oc_init.OCPolarity = TIM_OCPOLARITY_LOW;
oc_init.OCFastMode = TIM_OCFAST_DISABLE;
oc_init.OCNPolarity = TIM_OCNPOLARITY_HIGH; // needed for TIM1 and TIM8
oc_init.OCNPolarity = TIM_OCNPOLARITY_LOW; // needed for TIM1 and TIM8
oc_init.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8
oc_init.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8
HAL_TIM_PWM_ConfigChannel(&tim, &oc_init, pwm_cfg->tim_channel);
HAL_TIM_PWM_Start(&tim, pwm_cfg->tim_channel);
if(HAL_TIM_PWM_ConfigChannel(&tim, &oc_init, tim_chan) == HAL_OK) {
mp_printf(&mp_plat_print, "Channel Config Success\n");
}
if(HAL_TIM_PWM_Start(&tim, tim_chan) == HAL_OK) {
mp_printf(&mp_plat_print, "Start Success\n");
}
return PWMOUT_OK;
}

View File

@ -20,6 +20,7 @@ CIRCUITPY_DIGITALIO = 1
CIRCUITPY_ANALOGIO = 1
CIRCUITPY_MICROCONTROLLER = 1
CIRCUITPY_BUSIO = 1
CIRCUITPY_PULSEIO = 1
CIRCUITPY_OS = 1
CIRCUITPY_STORAGE = 1
CIRCUITPY_RANDOM = 1