esp8266: Add PWM support.

PWM implementation uses a timer and interrupts (FRC1), taken from
Espressif's/NodeMCU's implementation and adapted for our use.

8 channels are supported, on pins 0, 2, 4, 5, 12, 13, 14, 15.

Usage:

    import machine
    pwm0 = machine.PWM(machine.Pin(0))
    pwm0.freq(1000)
    pwm0.duty(500)

Frequency is shared (ie the same) for all channels.  Frequency is
between 1 and 1000.  Duty is between 0 and 1023.
This commit is contained in:
Damien George 2016-03-02 13:37:27 +00:00 committed by Paul Sokolovsky
parent 82b95f625e
commit 632d8efa05
8 changed files with 628 additions and 0 deletions

View File

@ -57,8 +57,10 @@ SRC_C = \
gccollect.c \
lexerstr32.c \
uart.c \
esppwm.c \
modpyb.c \
modpybpin.c \
modpybpwm.c \
modpybrtc.c \
modpybadc.c \
modpybi2c.c \

View File

@ -131,6 +131,7 @@ SECTIONS
*gchelper.o(.literal* .text*)
*modpyb.o(.literal*, .text*)
*modpybpin.o(.literal*, .text*)
*modpybpwm.o(.literal*, .text*)
*modpybrtc.o(.literal*, .text*)
*modpybadc.o(.literal*, .text*)
*modpybspi.o(.literal*, .text*)

427
esp8266/esppwm.c Normal file
View File

@ -0,0 +1,427 @@
/******************************************************************************
* Copyright 2013-2014 Espressif Systems (Wuxi)
*
* FileName: pwm.c
*
* Description: pwm driver
*
* Modification history:
* 2014/5/1, v1.0 create this file.
* 2016/3/2: Modifications by dpgeorge to suit MicroPython
*******************************************************************************/
#include <stdio.h>
#include <string.h>
#include "etshal.h"
#include "os_type.h"
#include "gpio.h"
#include "esppwm.h"
#include "py/mpprint.h"
#define PWM_DBG(...)
//#define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__)
#define ICACHE_RAM_ATTR // __attribute__((section(".text")))
#define PWM_CHANNEL 8
#define PWM_DEPTH 1023
#define PWM_FREQ_MAX 1000
#define PWM_1S 1000000
struct pwm_single_param {
uint16_t gpio_set;
uint16_t gpio_clear;
uint32_t h_time;
};
struct pwm_param {
uint32_t period;
uint16_t freq;
uint16_t duty[PWM_CHANNEL];
};
STATIC const uint8_t pin_num[PWM_CHANNEL] = {0, 2, 4, 5, 12, 13, 14, 15};
STATIC struct pwm_single_param pwm_single_toggle[2][PWM_CHANNEL + 1];
STATIC struct pwm_single_param *pwm_single;
STATIC struct pwm_param pwm;
STATIC int8_t pwm_out_io_num[PWM_CHANNEL] = {-1, -1, -1, -1, -1, -1, -1, -1};
STATIC uint8_t pwm_channel_toggle[2];
STATIC uint8_t *pwm_channel;
STATIC uint8_t pwm_toggle = 1;
STATIC uint8_t pwm_timer_down = 1;
STATIC uint8_t pwm_current_channel = 0;
STATIC uint16_t pwm_gpio = 0;
STATIC uint8_t pwm_channel_num = 0;
//XXX: 0xffffffff/(80000000/16)=35A
#define US_TO_RTC_TIMER_TICKS(t) \
((t) ? \
(((t) > 0x35A) ? \
(((t)>>2) * ((APB_CLK_FREQ>>4)/250000) + ((t)&0x3) * ((APB_CLK_FREQ>>4)/1000000)) : \
(((t) *(APB_CLK_FREQ>>4)) / 1000000)) : \
0)
//FRC1
#define FRC1_ENABLE_TIMER BIT7
typedef enum {
DIVDED_BY_1 = 0,
DIVDED_BY_16 = 4,
DIVDED_BY_256 = 8,
} TIMER_PREDIVED_MODE;
typedef enum {
TM_LEVEL_INT = 1,
TM_EDGE_INT = 0,
} TIMER_INT_MODE;
STATIC void ICACHE_FLASH_ATTR
pwm_insert_sort(struct pwm_single_param pwm[], uint8 n)
{
uint8 i;
for (i = 1; i < n; i++) {
if (pwm[i].h_time < pwm[i - 1].h_time) {
int8 j = i - 1;
struct pwm_single_param tmp;
memcpy(&tmp, &pwm[i], sizeof(struct pwm_single_param));
memcpy(&pwm[i], &pwm[i - 1], sizeof(struct pwm_single_param));
while (tmp.h_time < pwm[j].h_time) {
memcpy(&pwm[j + 1], &pwm[j], sizeof(struct pwm_single_param));
j--;
if (j < 0) {
break;
}
}
memcpy(&pwm[j + 1], &tmp, sizeof(struct pwm_single_param));
}
}
}
STATIC volatile uint8 critical = 0;
#define LOCK_PWM(c) do { \
while( (c)==1 ); \
(c) = 1; \
} while (0)
#define UNLOCK_PWM(c) do { \
(c) = 0; \
} while (0)
void ICACHE_FLASH_ATTR
pwm_start(void)
{
uint8 i, j;
PWM_DBG("--Function pwm_start() is called\n");
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]);
LOCK_PWM(critical); // enter critical
struct pwm_single_param *local_single = pwm_single_toggle[pwm_toggle ^ 0x01];
uint8 *local_channel = &pwm_channel_toggle[pwm_toggle ^ 0x01];
// step 1: init PWM_CHANNEL+1 channels param
for (i = 0; i < pwm_channel_num; i++) {
uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH;
local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us);
PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time);
local_single[i].gpio_set = 0;
local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]];
}
local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period);
local_single[pwm_channel_num].gpio_set = pwm_gpio;
local_single[pwm_channel_num].gpio_clear = 0;
PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time);
// step 2: sort, small to big
pwm_insert_sort(local_single, pwm_channel_num + 1);
*local_channel = pwm_channel_num + 1;
PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
// step 3: combine same duty channels
for (i = pwm_channel_num; i > 0; i--) {
if (local_single[i].h_time == local_single[i - 1].h_time) {
local_single[i - 1].gpio_set |= local_single[i].gpio_set;
local_single[i - 1].gpio_clear |= local_single[i].gpio_clear;
for (j = i + 1; j < *local_channel; j++) {
memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param));
}
(*local_channel)--;
}
}
PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
// step 4: cacl delt time
for (i = *local_channel - 1; i > 0; i--) {
local_single[i].h_time -= local_single[i - 1].h_time;
}
// step 5: last channel needs to clean
local_single[*local_channel-1].gpio_clear = 0;
// step 6: if first channel duty is 0, remove it
if (local_single[0].h_time == 0) {
local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear;
local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear;
for (i = 1; i < *local_channel; i++) {
memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param));
}
(*local_channel)--;
}
// if timer is down, need to set gpio and start timer
if (pwm_timer_down == 1) {
pwm_channel = local_channel;
pwm_single = local_single;
// start
gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0);
// yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start...
if (*local_channel != 1) {
pwm_timer_down = 0;
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, local_single[0].h_time);
}
}
if (pwm_toggle == 1) {
pwm_toggle = 0;
} else {
pwm_toggle = 1;
}
UNLOCK_PWM(critical); // leave critical
PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time);
}
/******************************************************************************
* FunctionName : pwm_set_duty
* Description : set each channel's duty params
* Parameters : uint8 duty : 0 ~ PWM_DEPTH
* uint8 channel : channel index
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_set_duty(uint16 duty, uint8 channel)
{
uint8 i;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i] == channel){
channel = i;
break;
}
}
if(i==pwm_channel_num) // non found
return;
LOCK_PWM(critical); // enter critical
if (duty < 1) {
pwm.duty[channel] = 0;
} else if (duty >= PWM_DEPTH) {
pwm.duty[channel] = PWM_DEPTH;
} else {
pwm.duty[channel] = duty;
}
UNLOCK_PWM(critical); // leave critical
}
/******************************************************************************
* FunctionName : pwm_set_freq
* Description : set pwm frequency
* Parameters : uint16 freq : 100hz typically
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_set_freq(uint16 freq, uint8 channel)
{
LOCK_PWM(critical); // enter critical
if (freq > PWM_FREQ_MAX) {
pwm.freq = PWM_FREQ_MAX;
} else if (freq < 1) {
pwm.freq = 1;
} else {
pwm.freq = freq;
}
pwm.period = PWM_1S / pwm.freq;
UNLOCK_PWM(critical); // leave critical
}
/******************************************************************************
* FunctionName : pwm_get_duty
* Description : get duty of each channel
* Parameters : uint8 channel : channel index
* Returns : NONE
*******************************************************************************/
uint16 ICACHE_FLASH_ATTR
pwm_get_duty(uint8 channel)
{
uint8 i;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i] == channel){
channel = i;
break;
}
}
if(i==pwm_channel_num) // non found
return 0;
return pwm.duty[channel];
}
/******************************************************************************
* FunctionName : pwm_get_freq
* Description : get pwm frequency
* Parameters : NONE
* Returns : uint16 : pwm frequency
*******************************************************************************/
uint16 ICACHE_FLASH_ATTR
pwm_get_freq(uint8 channel)
{
return pwm.freq;
}
/******************************************************************************
* FunctionName : pwm_period_timer
* Description : pwm period timer function, output high level,
* start each channel's high level timer
* Parameters : NONE
* Returns : NONE
*******************************************************************************/
STATIC void ICACHE_RAM_ATTR
pwm_tim1_intr_handler(void)
{
uint8 local_toggle = pwm_toggle; // pwm_toggle may change outside
RTC_CLR_REG_MASK(FRC1_INT_ADDRESS, FRC1_INT_CLR_MASK);
if (pwm_current_channel >= (*pwm_channel - 1)) { // *pwm_channel may change outside
pwm_single = pwm_single_toggle[local_toggle];
pwm_channel = &pwm_channel_toggle[local_toggle];
gpio_output_set(pwm_single[*pwm_channel - 1].gpio_set,
pwm_single[*pwm_channel - 1].gpio_clear,
pwm_gpio,
0);
pwm_current_channel = 0;
if (*pwm_channel != 1) {
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
} else {
pwm_timer_down = 1;
}
} else {
gpio_output_set(pwm_single[pwm_current_channel].gpio_set,
pwm_single[pwm_current_channel].gpio_clear,
pwm_gpio, 0);
pwm_current_channel++;
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time);
}
}
/******************************************************************************
* FunctionName : pwm_init
* Description : pwm gpio, params and timer initialization
* Parameters : uint16 freq : pwm freq param
* uint16 *duty : each channel's duty
* Returns : NONE
*******************************************************************************/
void ICACHE_FLASH_ATTR
pwm_init(void)
{
uint8 i;
RTC_REG_WRITE(FRC1_CTRL_ADDRESS, //FRC2_AUTO_RELOAD|
DIVDED_BY_16
| FRC1_ENABLE_TIMER
| TM_EDGE_INT);
RTC_REG_WRITE(FRC1_LOAD_ADDRESS, 0);
for (i = 0; i < PWM_CHANNEL; i++) {
pwm_gpio = 0;
pwm.duty[i] = 0;
}
pwm_set_freq(500, 0);
pwm_start();
ETS_FRC_TIMER1_INTR_ATTACH(pwm_tim1_intr_handler, NULL);
TM1_EDGE_INT_ENABLE();
ETS_FRC1_INTR_ENABLE();
}
int ICACHE_FLASH_ATTR
pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func){
PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel);
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
int channel = -1;
for (int i = 0; i < PWM_CHANNEL; ++i) {
if (pin_num[i] == pin_id) {
channel = i;
break;
}
}
if (channel == -1) {
return -1;
}
uint8 i;
for(i=0;i<PWM_CHANNEL;i++){
if(pwm_out_io_num[i]==channel) // already exist
return channel;
if(pwm_out_io_num[i] == -1){ // empty exist
LOCK_PWM(critical); // enter critical
pwm_out_io_num[i] = channel;
pwm.duty[i] = 0;
pwm_gpio |= (1 << pin_num[channel]);
PIN_FUNC_SELECT(pin_mux, pin_func);
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel])), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel]))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
pwm_channel_num++;
UNLOCK_PWM(critical); // leave critical
return channel;
}
}
return -1;
}
bool ICACHE_FLASH_ATTR
pwm_delete(uint8 channel){
PWM_DBG("--Function pwm_delete() is called. channel:%d\n", channel);
PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num);
PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]);
PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]);
uint8 i,j;
for(i=0;i<pwm_channel_num;i++){
if(pwm_out_io_num[i]==channel){ // exist
LOCK_PWM(critical); // enter critical
pwm_out_io_num[i] = -1;
pwm_gpio &= ~(1 << pin_num[channel]); //clear the bit
for(j=i;j<pwm_channel_num-1;j++){
pwm_out_io_num[j] = pwm_out_io_num[j+1];
pwm.duty[j] = pwm.duty[j+1];
}
pwm_out_io_num[pwm_channel_num-1] = -1;
pwm.duty[pwm_channel_num-1] = 0;
pwm_channel_num--;
UNLOCK_PWM(critical); // leave critical
return true;
}
}
// non found
return true;
}

17
esp8266/esppwm.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef __ESPPWM_H__
#define __ESPPWM_H__
#include <stdbool.h>
#include <stdint.h>
void pwm_init(void);
void pwm_start(void);
void pwm_set_duty(uint16_t duty, uint8_t channel);
uint16_t pwm_get_duty(uint8_t channel);
void pwm_set_freq(uint16_t freq, uint8_t channel);
uint16_t pwm_get_freq(uint8_t channel);
int pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func);
bool pwm_delete(uint8_t channel);
#endif

View File

@ -142,6 +142,7 @@ STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&esp_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pyb_pin_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pyb_pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&pyb_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&pyb_spi_type) },
};

View File

@ -1,4 +1,5 @@
extern const mp_obj_type_t pyb_pin_type;
extern const mp_obj_type_t pyb_pwm_type;
extern const mp_obj_type_t pyb_adc_type;
extern const mp_obj_type_t pyb_rtc_type;
extern const mp_obj_type_t pyb_i2c_type;

172
esp8266/modpybpwm.c Normal file
View File

@ -0,0 +1,172 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include "esppwm.h"
#include "py/nlr.h"
#include "py/runtime.h"
#include "modpyb.h"
typedef struct _pyb_pwm_obj_t {
mp_obj_base_t base;
pyb_pin_obj_t *pin;
uint8_t active;
uint8_t channel;
} pyb_pwm_obj_t;
STATIC bool pwm_inited = false;
/******************************************************************************/
// MicroPython bindings for PWM
STATIC void pyb_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PWM(%u", self->pin->pin_id);
if (self->active) {
mp_printf(print, ", freq=%u, duty=%u",
pwm_get_freq(self->channel), pwm_get_duty(self->channel));
}
mp_printf(print, ")");
}
STATIC void pyb_pwm_init_helper(pyb_pwm_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty, MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int channel = pwm_add(self->pin->phys_port, self->pin->periph, self->pin->func);
if (channel == -1) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"PWM not supported on pin %d", self->pin->phys_port));
}
self->channel = channel;
self->active = 1;
if (args[ARG_freq].u_int != -1) {
pwm_set_freq(args[ARG_freq].u_int, self->channel);
}
if (args[ARG_duty].u_int != -1) {
pwm_set_duty(args[ARG_duty].u_int, self->channel);
}
pwm_start();
}
STATIC mp_obj_t pyb_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
pyb_pin_obj_t *pin = mp_obj_get_pin_obj(args[0]);
// create PWM object from the given pin
pyb_pwm_obj_t *self = m_new_obj(pyb_pwm_obj_t);
self->base.type = &pyb_pwm_type;
self->pin = pin;
self->active = 0;
self->channel = -1;
// start the PWM subsystem if it's not already running
if (!pwm_inited) {
pwm_init();
pwm_inited = true;
}
// start the PWM running for this channel
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_pwm_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_pwm_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_pwm_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_pwm_init_obj, 1, pyb_pwm_init);
STATIC mp_obj_t pyb_pwm_deinit(mp_obj_t self_in) {
pyb_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
pwm_delete(self->channel);
self->active = 0;
pwm_start();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_pwm_deinit_obj, pyb_pwm_deinit);
STATIC mp_obj_t pyb_pwm_freq(size_t n_args, const mp_obj_t *args) {
//pyb_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
// get
return MP_OBJ_NEW_SMALL_INT(pwm_get_freq(0));
} else {
// set
pwm_set_freq(mp_obj_get_int(args[1]), 0);
pwm_start();
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_pwm_freq_obj, 1, 2, pyb_pwm_freq);
STATIC mp_obj_t pyb_pwm_duty(size_t n_args, const mp_obj_t *args) {
pyb_pwm_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (!self->active) {
pwm_add(self->pin->phys_port, self->pin->periph, self->pin->func);
self->active = 1;
}
if (n_args == 1) {
// get
return MP_OBJ_NEW_SMALL_INT(pwm_get_duty(self->channel));
} else {
// set
pwm_set_duty(mp_obj_get_int(args[1]), self->channel);
pwm_start();
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_pwm_duty_obj, 1, 2, pyb_pwm_duty);
STATIC const mp_rom_map_elem_t pyb_pwm_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_pwm_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_pwm_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_pwm_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty), MP_ROM_PTR(&pyb_pwm_duty_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_pwm_locals_dict, pyb_pwm_locals_dict_table);
const mp_obj_type_t pyb_pwm_type = {
{ &mp_type_type },
.name = MP_QSTR_PWM,
.print = pyb_pwm_print,
.make_new = pyb_pwm_make_new,
.locals_dict = (mp_obj_dict_t*)&pyb_pwm_locals_dict,
};

View File

@ -133,6 +133,13 @@ Q(PULL_NONE)
Q(PULL_UP)
Q(PULL_DOWN)
// PWM class
Q(PWM)
Q(init)
Q(deinit)
Q(freq)
Q(duty)
// RTC
Q(RTC)
Q(datetime)