nrf5/uart: Refactoring UART module and HAL driver

Facilitating for adding second HW uart. Moving pyb_uart into
machine_uart. Adding return error codes from hal_uart functions,
if the hardware detects an error.
This commit is contained in:
Glenn Ruben Bakke 2017-03-10 22:21:19 +01:00
parent f8d1ea80ae
commit 611b829138
9 changed files with 300 additions and 418 deletions

View File

@ -33,14 +33,6 @@
#ifdef HAL_UART_MODULE_ENABLED
#ifdef NRF51
#define UART_BASE ((NRF_UART_Type *) NRF_UART0_BASE)
#define UART_IRQ_NUM UART0_IRQn
#else
#define UART_BASE ((NRF_UART_Type *) NRF_UART0_BASE)
#define UART_IRQ_NUM UARTE0_UART0_IRQn
#endif
uint32_t hal_uart_baudrate_lookup[] = {
UART_BAUDRATE_BAUDRATE_Baud1200, ///< 1200 baud.
UART_BAUDRATE_BAUDRATE_Baud2400, ///< 2400 baud.
@ -60,80 +52,95 @@ uint32_t hal_uart_baudrate_lookup[] = {
UART_BAUDRATE_BAUDRATE_Baud1M, ///< 1000000 baud.
};
void hal_uart_char_write(uint8_t ch) {
UART_BASE->TXD = (uint8_t)ch;
while (UART_BASE->EVENTS_TXDRDY != 1) {
hal_uart_error_t hal_uart_char_write(NRF_UART_Type * p_instance, uint8_t ch) {
p_instance->ERRORSRC = 0;
p_instance->TXD = (uint8_t)ch;
while (p_instance->EVENTS_TXDRDY != 1) {
// Blocking wait.
}
// Clear the TX flag.
UART_BASE->EVENTS_TXDRDY = 0;
p_instance->EVENTS_TXDRDY = 0;
return p_instance->ERRORSRC;
}
uint8_t hal_uart_char_read(void) {
while (UART_BASE->EVENTS_RXDRDY != 1) {
hal_uart_error_t hal_uart_char_read(NRF_UART_Type * p_instance, uint8_t * ch) {
p_instance->ERRORSRC = 0;
while (p_instance->EVENTS_RXDRDY != 1) {
// Wait for RXD data.
}
UART_BASE->EVENTS_RXDRDY = 0;
return (uint8_t)UART_BASE->RXD;
p_instance->EVENTS_RXDRDY = 0;
*ch = p_instance->RXD;
return p_instance->ERRORSRC;
}
void hal_uart_buffer_write(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
hal_uart_error_t hal_uart_buffer_write(NRF_UART_Type * p_instance, uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
int i = 0;
hal_uart_error_t err = 0;
uint8_t ch = p_buffer[i++];
while (i < num_of_bytes) {
hal_uart_char_write(ch);
err = hal_uart_char_write(p_instance, ch);
if (err) {
return err;
}
ch = p_buffer[i++];
}
cb();
return err;
}
void hal_uart_buffer_read(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
hal_uart_error_t hal_uart_buffer_read(NRF_UART_Type * p_instance, uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
int i = 0;
hal_uart_error_t err = 0;
while (i < num_of_bytes) {
uint8_t ch = hal_uart_char_read();
p_buffer[i] = ch;
hal_uart_error_t err = hal_uart_char_read(p_instance, &p_buffer[i]);
if (err) {
return err;
}
i++;
}
cb();
return err;
}
void hal_uart_init(hal_uart_init_t const * p_uart_init) {
void hal_uart_init(NRF_UART_Type * p_instance, hal_uart_init_t const * p_uart_init) {
hal_gpio_cfg_pin(p_uart_init->tx_pin->port, p_uart_init->tx_pin->pin, HAL_GPIO_MODE_OUTPUT, HAL_GPIO_PULL_DISABLED);
hal_gpio_cfg_pin(p_uart_init->tx_pin->port, p_uart_init->rx_pin->pin, HAL_GPIO_MODE_INPUT, HAL_GPIO_PULL_DISABLED);
hal_gpio_pin_clear(p_uart_init->tx_pin->port, p_uart_init->tx_pin->pin);
UART_BASE->PSELTXD = p_uart_init->tx_pin->pin;
UART_BASE->PSELRXD = p_uart_init->rx_pin->pin;
p_instance->PSELTXD = p_uart_init->tx_pin->pin;
p_instance->PSELRXD = p_uart_init->rx_pin->pin;
#if NRF52840_XXAA
UART_BASE->PSELTXD |= (p_uart_init->tx_pin->port << UARTE_PSEL_TXD_PORT_Pos);
UART_BASE->PSELRXD |= (p_uart_init->rx_pin->port << UARTE_PSEL_RXD_PORT_Pos);
p_instance->PSELTXD |= (p_uart_init->tx_pin->port << UARTE_PSEL_TXD_PORT_Pos);
p_instance->PSELRXD |= (p_uart_init->rx_pin->port << UARTE_PSEL_RXD_PORT_Pos);
#endif
if (p_uart_init->flow_control) {
hal_gpio_cfg_pin(p_uart_init->rts_pin->port, p_uart_init->rts_pin->pin, HAL_GPIO_MODE_OUTPUT, HAL_GPIO_PULL_DISABLED);
hal_gpio_cfg_pin(p_uart_init->cts_pin->port, p_uart_init->cts_pin->pin, HAL_GPIO_MODE_INPUT, HAL_GPIO_PULL_DISABLED);
UART_BASE->PSELCTS = p_uart_init->cts_pin->pin;
UART_BASE->PSELRTS = p_uart_init->rts_pin->pin;
p_instance->PSELCTS = p_uart_init->cts_pin->pin;
p_instance->PSELRTS = p_uart_init->rts_pin->pin;
#if NRF52840_XXAA
UART_BASE->PSELCTS |= (p_uart_init->cts_pin->port << UARTE_PSEL_CTS_PORT_Pos);
UART_BASE->PSELRTS |= (p_uart_init->rts_pin->port << UARTE_PSEL_RTS_PORT_Pos);
p_instance->PSELCTS |= (p_uart_init->cts_pin->port << UARTE_PSEL_CTS_PORT_Pos);
p_instance->PSELRTS |= (p_uart_init->rts_pin->port << UARTE_PSEL_RTS_PORT_Pos);
#endif
UART_BASE->CONFIG = (UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos);
p_instance->CONFIG = (UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos);
}
UART_BASE->BAUDRATE = (hal_uart_baudrate_lookup[p_uart_init->baud_rate]);
UART_BASE->ENABLE = (UART_ENABLE_ENABLE_Enabled << UART_ENABLE_ENABLE_Pos);
UART_BASE->EVENTS_TXDRDY = 0;
UART_BASE->EVENTS_RXDRDY = 0;
UART_BASE->TASKS_STARTTX = 1;
UART_BASE->TASKS_STARTRX = 1;
p_instance->BAUDRATE = (hal_uart_baudrate_lookup[p_uart_init->baud_rate]);
p_instance->ENABLE = (UART_ENABLE_ENABLE_Enabled << UART_ENABLE_ENABLE_Pos);
p_instance->EVENTS_TXDRDY = 0;
p_instance->EVENTS_RXDRDY = 0;
p_instance->TASKS_STARTTX = 1;
p_instance->TASKS_STARTRX = 1;
}
#endif // HAL_UART_MODULE_ENABLED

View File

@ -33,42 +33,49 @@
#include "nrf.h"
#if NRF51
#define UART_HWCONTROL_NONE ((uint32_t)UART_CONFIG_HWFC_Disabled << UART_CONFIG_HWFC_Pos)
#define UART_HWCONTROL_RTS_CTS ((uint32_t)(UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos)
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
#define UART_HWCONTROL_NONE ((uint32_t)UART_CONFIG_HWFC_Disabled << UART_CONFIG_HWFC_Pos)
#define UART_HWCONTROL_RTS_CTS ((uint32_t)(UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos)
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
(((CONTROL) == UART_HWCONTROL_NONE) || \
((CONTROL) == UART_HWCONTROL_RTS_CTS))
#define UART_BASE_POINTERS (const uint32_t[]){NRF_UART0_BASE}
#define UART_IRQ_VALUES (const uint32_t[]){UART0_IRQn}
#elif NRF52
#define UART_HWCONTROL_NONE ((uint32_t)UARTE_CONFIG_HWFC_Disabled << UARTE_CONFIG_HWFC_Pos)
#define UART_HWCONTROL_RTS_CTS ((uint32_t)(UARTE_CONFIG_HWFC_Enabled << UARTE_CONFIG_HWFC_Pos)
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
#define UART_HWCONTROL_NONE ((uint32_t)UARTE_CONFIG_HWFC_Disabled << UARTE_CONFIG_HWFC_Pos)
#define UART_HWCONTROL_RTS_CTS ((uint32_t)(UARTE_CONFIG_HWFC_Enabled << UARTE_CONFIG_HWFC_Pos)
#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
(((CONTROL) == UART_HWCONTROL_NONE) || \
((CONTROL) == UART_HWCONTROL_RTS_CTS))
#ifdef HAL_UART_MODULE_ENABLED
#define UART_BASE_POINTERS (const uint32_t[]){NRF_UART0_BASE}
#define UART_IRQ_VALUES (const uint32_t[]){UARTE0_UART0_IRQn}
#else // HAL_UARTE_MODULE_ENABLED
#ifdef NRF52832_XXAA
#define UART_BASE_POINTERS (const uint32_t[]){NRF_UARTE0_BASE}
#define UART_IRQ_VALUES (const uint32_t[]){UARTE0_UART0_IRQn}
#elif NRF52840_XXAA
#define UART_BASE_POINTERS (const uint32_t[]){NRF_UARTE0_BASE, \
NRF_UARTE1_BASE}
#define UART_IRQ_VALUES (const uint32_t[]){UARTE0_UART0_IRQn, \
UARTE1_IRQn}
#endif // HAL_UARTE_MODULE_ENABLED
#endif
#else
#error "Device not supported."
#endif
typedef enum {
HAL_UART_STATE_RESET = 0x00, /*!< Peripheral is not yet Initialized */
HAL_UART_STATE_READY = 0x01, /*!< Peripheral Initialized and ready for use */
HAL_UART_STATE_BUSY = 0x02, /*!< an internal process is ongoing */
HAL_UART_STATE_BUSY_TX = 0x12, /*!< Data Transmission process is ongoing */
HAL_UART_STATE_BUSY_RX = 0x22, /*!< Data Reception process is ongoing */
HAL_UART_STATE_BUSY_TX_RX = 0x32, /*!< Data Transmission and Reception process is ongoing */
HAL_UART_STATE_TIMEOUT = 0x03, /*!< Timeout state */
HAL_UART_STATE_ERROR = 0x04 /*!< Error */
} HAL_UART_StateTypeDef;
#define UART_BASE(x) ((NRF_UART_Type *)UART_BASE_POINTERS[x])
#define UART_IRQ_NUM(x) (UART_IRQ_VALUES[x])
typedef enum
{
HAL_UART_ERROR_NONE = 0x00, /*!< No error */
HAL_UART_ERROR_ORE = 0x01, /*!< Overrun error. A start bit is received while the previous data still lies in RXD. (Previous data is lost.) */
HAL_UART_ERROR_PE = 0x02, /*!< Parity error. A character with bad parity is received, if HW parity check is enabled. */
HAL_UART_ERROR_FE = 0x04, /*!< Frame error. A valid stop bit is not detected on the serial data input after all bits in a character have been received. */
HAL_UART_ERROR_BE = 0x08, /*!< Break error. The serial data input is '0' for longer than the length of a data frame. (The data frame length is 10 bits without parity bit, and 11 bits with parity bit.). */
} HAL_UART_ErrorTypeDef;
HAL_UART_ERROR_NONE = 0x00, /*!< No error */
HAL_UART_ERROR_ORE = 0x01, /*!< Overrun error. A start bit is received while the previous data still lies in RXD. (Previous data is lost.) */
HAL_UART_ERROR_PE = 0x02, /*!< Parity error. A character with bad parity is received, if HW parity check is enabled. */
HAL_UART_ERROR_FE = 0x04, /*!< Frame error. A valid stop bit is not detected on the serial data input after all bits in a character have been received. */
HAL_UART_ERROR_BE = 0x08, /*!< Break error. The serial data input is '0' for longer than the length of a data frame. (The data frame length is 10 bits without parity bit, and 11 bits with parity bit.). */
} hal_uart_error_t;
typedef enum {
HAL_UART_BAUD_1K2 = 0, /**< 1200 baud */
@ -89,47 +96,30 @@ typedef enum {
} hal_uart_baudrate_t;
typedef struct {
uint32_t baud_rate;
uint32_t flow_control;
} UART_InitTypeDef;
uint8_t id; /* UART instance id */
const pin_obj_t * rx_pin; /* RX pin. */
const pin_obj_t * tx_pin; /* TX pin. */
const pin_obj_t * rts_pin; /* RTS pin, only used if flow control is enabled. */
const pin_obj_t * cts_pin; /* CTS pin, only used if flow control is enabled. */
bool flow_control; /* Flow control setting, if flow control is used, the system will use low power UART mode, based on CTS signal. */
bool use_parity; /* Even parity if TRUE, no parity if FALSE. */
uint32_t baud_rate; /* Baud rate configuration. */
uint32_t irq_priority; /* UARTE IRQ priority. */
uint32_t irq_num;
} hal_uart_init_t;
typedef struct
{
NRF_UART_Type *instance; /* UART registers base address */
UART_InitTypeDef init; /* UART communication parameters */
uint8_t *p_tx_buff; /* Pointer to UART Tx transfer Buffer */
uint16_t tx_xfer_size; /* UART Tx Transfer size */
uint16_t tx_xfer_count; /* UART Tx Transfer Counter */
uint8_t *p_rx_buff; /* Pointer to UART Rx transfer Buffer */
uint16_t rx_xfer_size; /* UART Rx Transfer size */
uint16_t rx_xfer_count; /* UART Rx Transfer Counter */
__IO HAL_UART_StateTypeDef state; /* UART communication state */
__IO HAL_UART_ErrorTypeDef error_code; /* UART Error code */
NRF_UART_Type * p_instance; /* UART registers base address */
hal_uart_init_t init; /* UART communication parameters */
} UART_HandleTypeDef;
typedef struct {
const pin_obj_t * rx_pin; /**< RX pin. */
const pin_obj_t * tx_pin; /**< TX pin. */
const pin_obj_t * rts_pin; /**< RTS pin, only used if flow control is enabled. */
const pin_obj_t * cts_pin; /**< CTS pin, only used if flow control is enabled. */
bool flow_control; /**< Flow control setting, if flow control is used, the system will use low power UART mode, based on CTS signal. */
bool use_parity; /**< Even parity if TRUE, no parity if FALSE. */
uint32_t baud_rate; /**< Baud rate configuration. */
uint32_t irq_priority; /**< UARTE IRQ priority. */
} hal_uart_init_t;
typedef void (*uart_complete_cb)(void);
void hal_uart_init(hal_uart_init_t const * p_uart_init);
void hal_uart_init(NRF_UART_Type * p_instance, hal_uart_init_t const * p_uart_init);
void hal_uart_char_write(uint8_t ch);
hal_uart_error_t hal_uart_char_write(NRF_UART_Type * p_instance, uint8_t ch);
uint8_t hal_uart_char_read(void);
hal_uart_error_t hal_uart_char_read(NRF_UART_Type * p_instance, uint8_t * ch);
void hal_uart_buffer_write(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb);
void hal_uart_buffer_read(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb);
#endif // UART_H__
#endif // HAL_UART_H__

View File

@ -29,26 +29,22 @@
#include "mphalport.h"
#include "hal_uart.h"
#include "hal_irq.h"
#ifdef HAL_UARTE_MODULE_ENABLED
#include "nrf.h"
#if NRF52
#define UARTE_BASE ((NRF_UARTE_Type *) NRF_UARTE0_BASE)
#define UART_IRQ_NUM UARTE0_UART0_IRQn
#else
#ifndef NRF52
#error "Device not supported."
#endif
#define UART_BASE(x) ((NRF_UART_Type *)UART_BASE_POINTERS[x])
#define UART_IRQ_NUM(x) (UART_IRQ_VALUES[x])
#define TX_BUF_SIZE 1
#define RX_BUF_SIZE 1
static uart_complete_cb dma_read_cb = NULL;
static uart_complete_cb dma_write_cb = NULL;
static const uint32_t hal_uart_baudrate_lookup[] = {
UARTE_BAUDRATE_BAUDRATE_Baud1200, ///< 1200 baud.
UARTE_BAUDRATE_BAUDRATE_Baud2400, ///< 2400 baud.
@ -68,26 +64,19 @@ static const uint32_t hal_uart_baudrate_lookup[] = {
UARTE_BAUDRATE_BAUDRATE_Baud1M, ///< 1000000 baud.
};
__STATIC_INLINE void hal_uart_irq_clear(void) {
NVIC_ClearPendingIRQ(UART_IRQ_NUM);
void nrf_sendchar(NRF_UART_Type * p_instance, int ch) {
hal_uart_char_write(p_instance, ch);
}
__STATIC_INLINE void hal_uart_irq_enable(uint8_t priority) {
NVIC_SetPriority(UART_IRQ_NUM, priority);
hal_uart_irq_clear();
NVIC_EnableIRQ(UART_IRQ_NUM);
}
void hal_uart_init(NRF_UART_Type * p_instance, hal_uart_init_t const * p_uart_init) {
void nrf_sendchar(int ch) {
hal_uart_char_write(ch);
}
NRF_UARTE_Type * uarte_instance = (NRF_UARTE_Type *)p_instance;
void hal_uart_init(hal_uart_init_t const * p_uart_init) {
hal_gpio_cfg_pin(p_uart_init->tx_pin->port, p_uart_init->tx_pin->pin, HAL_GPIO_MODE_OUTPUT, HAL_GPIO_PULL_DISABLED);
hal_gpio_pin_set(p_uart_init->tx_pin->port, p_uart_init->tx_pin->pin);
hal_gpio_cfg_pin(p_uart_init->tx_pin->port, p_uart_init->rx_pin->pin, HAL_GPIO_MODE_INPUT, HAL_GPIO_PULL_DISABLED);
UARTE_BASE->BAUDRATE = (hal_uart_baudrate_lookup[p_uart_init->baud_rate]);
uarte_instance->BAUDRATE = (hal_uart_baudrate_lookup[p_uart_init->baud_rate]);
uint32_t hwfc = (p_uart_init->flow_control)
? (UARTE_CONFIG_HWFC_Enabled << UARTE_CONFIG_HWFC_Pos)
@ -97,14 +86,14 @@ void hal_uart_init(hal_uart_init_t const * p_uart_init) {
? (UARTE_CONFIG_PARITY_Included << UARTE_CONFIG_PARITY_Pos)
: (UARTE_CONFIG_PARITY_Excluded << UARTE_CONFIG_PARITY_Pos);
UARTE_BASE->CONFIG = (uint32_t)hwfc | (uint32_t)parity;
uarte_instance->CONFIG = (uint32_t)hwfc | (uint32_t)parity;
UARTE_BASE->PSEL.RXD = p_uart_init->rx_pin->pin;
UARTE_BASE->PSEL.TXD = p_uart_init->tx_pin->pin;
uarte_instance->PSEL.RXD = p_uart_init->rx_pin->pin;
uarte_instance->PSEL.TXD = p_uart_init->tx_pin->pin;
#if NRF52840_XXAA
UARTE_BASE->PSEL.RXD |= (p_uart_init->rx_pin->port << UARTE_PSEL_RXD_PORT_Pos);
UARTE_BASE->PSEL.TXD |= (p_uart_init->tx_pin->port << UARTE_PSEL_TXD_PORT_Pos);
uarte_instance->PSEL.RXD |= (p_uart_init->rx_pin->port << UARTE_PSEL_RXD_PORT_Pos);
uarte_instance->PSEL.TXD |= (p_uart_init->tx_pin->port << UARTE_PSEL_TXD_PORT_Pos);
#endif
if (hwfc) {
@ -112,132 +101,80 @@ void hal_uart_init(hal_uart_init_t const * p_uart_init) {
hal_gpio_cfg_pin(p_uart_init->rts_pin->port, p_uart_init->rts_pin->pin, HAL_GPIO_MODE_OUTPUT, HAL_GPIO_PULL_DISABLED);
hal_gpio_pin_set(p_uart_init->rts_pin->port, p_uart_init->rts_pin->pin);
UARTE_BASE->PSEL.RTS = p_uart_init->rts_pin->pin;
UARTE_BASE->PSEL.CTS = p_uart_init->cts_pin->pin;
uarte_instance->PSEL.RTS = p_uart_init->rts_pin->pin;
uarte_instance->PSEL.CTS = p_uart_init->cts_pin->pin;
#if NRF52840_XXAA
UARTE_BASE->PSEL.RTS |= (p_uart_init->rx_pin->port << UARTE_PSEL_RTS_PORT_Pos);
UARTE_BASE->PSEL.CTS |= (p_uart_init->rx_pin->port << UARTE_PSEL_CTS_PORT_Pos);
uarte_instance->PSEL.RTS |= (p_uart_init->rx_pin->port << UARTE_PSEL_RTS_PORT_Pos);
uarte_instance->PSEL.CTS |= (p_uart_init->rx_pin->port << UARTE_PSEL_CTS_PORT_Pos);
#endif
}
hal_uart_irq_enable(p_uart_init->irq_priority);
hal_irq_priority(p_uart_init->irq_num, p_uart_init->irq_priority);
hal_irq_enable(p_uart_init->irq_num);
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
uarte_instance->INTENSET = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
uarte_instance->INTENSET = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
UARTE_BASE->ENABLE = (UARTE_ENABLE_ENABLE_Enabled << UARTE_ENABLE_ENABLE_Pos);
uarte_instance->ENABLE = (UARTE_ENABLE_ENABLE_Enabled << UARTE_ENABLE_ENABLE_Pos);
UARTE_BASE->EVENTS_ENDTX = 0;
UARTE_BASE->EVENTS_ENDRX = 0;
uarte_instance->EVENTS_ENDTX = 0;
uarte_instance->EVENTS_ENDRX = 0;
}
void hal_uart_char_write(uint8_t ch) {
hal_uart_error_t hal_uart_char_write(NRF_UART_Type * p_instance, uint8_t ch) {
NRF_UARTE_Type * uarte_instance = (NRF_UARTE_Type *)p_instance;
uarte_instance->ERRORSRC = 0;
static volatile uint8_t m_tx_buf[TX_BUF_SIZE];
(void)m_tx_buf;
UARTE_BASE->INTENCLR = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
uarte_instance->INTENCLR = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
m_tx_buf[0] = ch;
UARTE_BASE->TXD.PTR = (uint32_t)((uint8_t *)m_tx_buf);
UARTE_BASE->TXD.MAXCNT = (uint32_t)sizeof(m_tx_buf);
uarte_instance->TXD.PTR = (uint32_t)((uint8_t *)m_tx_buf);
uarte_instance->TXD.MAXCNT = (uint32_t)sizeof(m_tx_buf);
UARTE_BASE->TASKS_STARTTX = 1;
uarte_instance->TASKS_STARTTX = 1;
while((0 == UARTE_BASE->EVENTS_ENDTX));
while((0 == uarte_instance->EVENTS_ENDTX));
UARTE_BASE->EVENTS_ENDTX = 0;
UARTE_BASE->TASKS_STOPTX = 1;
uarte_instance->EVENTS_ENDTX = 0;
uarte_instance->TASKS_STOPTX = 1;
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
uarte_instance->INTENSET = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
return uarte_instance->ERRORSRC;
}
uint8_t hal_uart_char_read(void) {
hal_uart_error_t hal_uart_char_read(NRF_UART_Type * p_instance, uint8_t * ch) {
NRF_UARTE_Type * uarte_instance = (NRF_UARTE_Type *)p_instance;
uarte_instance->ERRORSRC = 0;
static volatile uint8_t m_rx_buf[RX_BUF_SIZE];
UARTE_BASE->INTENCLR = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
uarte_instance->INTENCLR = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
UARTE_BASE->RXD.PTR = (uint32_t)((uint8_t *)m_rx_buf);
UARTE_BASE->RXD.MAXCNT = (uint32_t)sizeof(m_rx_buf);
uarte_instance->RXD.PTR = (uint32_t)((uint8_t *)m_rx_buf);
uarte_instance->RXD.MAXCNT = (uint32_t)sizeof(m_rx_buf);
UARTE_BASE->TASKS_STARTRX = 1;
uarte_instance->TASKS_STARTRX = 1;
while ((0 == UARTE_BASE->EVENTS_ENDRX));
while ((0 == uarte_instance->EVENTS_ENDRX));
UARTE_BASE->EVENTS_ENDRX = 0;
UARTE_BASE->TASKS_STOPRX = 1;
uarte_instance->EVENTS_ENDRX = 0;
uarte_instance->TASKS_STOPRX = 1;
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
uarte_instance->INTENSET = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
*ch = (uint8_t)m_rx_buf[0];
return (uint8_t)m_rx_buf[0];
}
void hal_uart_buffer_write(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
dma_write_cb = cb;
UARTE_BASE->TXD.PTR = (uint32_t)p_buffer;
UARTE_BASE->TXD.MAXCNT = num_of_bytes;
UARTE_BASE->TASKS_STARTTX = 1;
while((0 == UARTE_BASE->EVENTS_ENDTX));
UARTE_BASE->EVENTS_ENDTX = 0;
UARTE_BASE->TASKS_STOPTX = 1;
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDTX_Set << UARTE_INTENSET_ENDTX_Pos);
}
void hal_uart_buffer_read(uint8_t * p_buffer, uint32_t num_of_bytes, uart_complete_cb cb) {
dma_read_cb = cb;
UARTE_BASE->RXD.PTR = (uint32_t)(p_buffer);
UARTE_BASE->RXD.MAXCNT = num_of_bytes;
UARTE_BASE->TASKS_STARTRX = 1;
while ((0 == UARTE_BASE->EVENTS_ENDRX));
UARTE_BASE->EVENTS_ENDRX = 0;
UARTE_BASE->TASKS_STOPRX = 1;
UARTE_BASE->INTENSET = (UARTE_INTENSET_ENDRX_Set << UARTE_INTENSET_ENDRX_Pos);
}
static void dma_read_complete(void) {
UARTE_BASE->TASKS_STOPRX = 1;
if (dma_read_cb != NULL) {
uart_complete_cb temp_cb = dma_read_cb;
dma_read_cb = NULL;
temp_cb();
}
}
static void dma_write_complete(void) {
UARTE_BASE->TASKS_STOPTX = 1;
if (dma_write_cb != NULL) {
uart_complete_cb temp_cb = dma_write_cb;
dma_write_cb = NULL;
temp_cb();
}
}
void UARTE0_UART0_IRQHandler(void) {
if ((UARTE_BASE->EVENTS_ENDRX)
&& (UARTE_BASE->INTEN & UARTE_INTENSET_ENDRX_Msk)) {
UARTE_BASE->EVENTS_ENDRX = 0;
dma_read_complete();
} else if ((UARTE_BASE->EVENTS_ENDTX)
&& (UARTE_BASE->INTEN & UARTE_INTENSET_ENDTX_Msk)) {
UARTE_BASE->EVENTS_ENDTX = 0;
dma_write_complete();
}
return uarte_instance->ERRORSRC;
}
#endif // HAL_UARTE_MODULE_ENABLED

View File

@ -135,10 +135,10 @@ int main(int argc, char **argv) {
#if (MICROPY_PY_BLE_NUS == 0)
{
mp_obj_t args[2] = {
MP_OBJ_NEW_SMALL_INT(PYB_UART_1),
MP_OBJ_NEW_SMALL_INT(0),
MP_OBJ_NEW_SMALL_INT(115200),
};
MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
MP_STATE_PORT(pyb_stdio_uart) = machine_hard_uart_type.make_new((mp_obj_t)&machine_hard_uart_type, MP_ARRAY_SIZE(args), 0, args);
}
#endif

View File

@ -46,86 +46,86 @@
#define CHAR_WIDTH_8BIT (0)
#define CHAR_WIDTH_9BIT (1)
struct _pyb_uart_obj_t {
typedef struct _machine_hard_uart_obj_t {
mp_obj_base_t base;
UART_HandleTypeDef uart;
IRQn_Type irqn;
pyb_uart_t uart_id : 8;
bool is_enabled : 1;
UART_HandleTypeDef * uart;
byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
uint16_t timeout; // timeout waiting for first char
uint16_t timeout_char; // timeout waiting between chars
uint16_t read_buf_len; // len in chars; buf can hold len-1 chars
volatile uint16_t read_buf_head; // indexes first empty slot
uint16_t read_buf_tail; // indexes first full slot (not full if equals head)
byte *read_buf; // byte or uint16_t, depending on char size
} machine_hard_uart_obj_t;
UART_HandleTypeDef UARTHandle0 = {.p_instance = NULL, .init.id = 0};
#if NRF52840_XXAA
UART_HandleTypeDef UARTHandle1 = {.p_instance = NULL, .init.id = 1};
#endif
STATIC machine_hard_uart_obj_t machine_hard_uart_obj[] = {
{{&machine_hard_uart_type}, &UARTHandle0},
#if NRF52840_XXAA
{{&machine_hard_uart_type}, &UARTHandle1},
#endif
};
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
void uart_init0(void) {
// reset the UART handles
memset(&UARTHandle0, 0, sizeof(UART_HandleTypeDef));
UARTHandle0.p_instance = UART_BASE(0);
#if NRF52840_XXAA
memset(&UARTHandle1, 0, sizeof(UART_HandleTypeDef));
UARTHandle0.p_instance = UART_BASE(1);
#endif
#if 0
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL;
}
#endif
}
// unregister all interrupt sources
void uart_deinit(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i];
if (uart_obj != NULL) {
pyb_uart_deinit(uart_obj);
}
STATIC int uart_find(mp_obj_t id) {
// given an integer id
int uart_id = mp_obj_get_int(id);
if (uart_id >= 0 && uart_id <= MP_ARRAY_SIZE(machine_hard_uart_obj)
&& machine_hard_uart_obj[uart_id].uart != NULL) {
return uart_id;
}
}
/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);
//// assumes Init parameters have been set up correctly
STATIC bool uart_init2(pyb_uart_obj_t * uart_obj) {
uart_obj->is_enabled = true;
return true;
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"UART(%d) does not exist", uart_id));
}
void uart_irq_handler(mp_uint_t uart_id) {
}
bool uart_rx_any(pyb_uart_obj_t *uart_obj) {
// TODO: uart will block for now.
return true;
bool uart_rx_any(machine_hard_uart_obj_t *uart_obj) {
// TODO: uart will block for now.
return true;
}
#if 0
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
return false;
STATIC bool uart_rx_wait(machine_hard_uart_obj_t * self, uint32_t timeout) {
return false;
}
#endif
int uart_rx_char(machine_hard_uart_obj_t * self) {
uint8_t ch;
hal_uart_char_read(self->uart->p_instance, &ch);
return (int)ch;
}
int uart_rx_char(pyb_uart_obj_t *self) {
return (int)hal_uart_char_read();
}
STATIC void uart_tx_char(pyb_uart_obj_t * self, int c) {
hal_uart_char_write((char)c);
STATIC hal_uart_error_t uart_tx_char(machine_hard_uart_obj_t * self, int c) {
return hal_uart_char_write(self->uart->p_instance, (char)c);
}
void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
void uart_tx_strn(machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
uart_tx_char(uart_obj, *str);
}
}
void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
void uart_tx_strn_cooked(machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(uart_obj, '\r');
@ -140,10 +140,12 @@ void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
///
/// - `id`is bus id.
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
@ -151,41 +153,40 @@ STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_k
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
STATIC mp_obj_t machine_hard_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the UART configuration values
memset(&self->uart, 0, sizeof(self->uart));
UART_InitTypeDef * init = &self->uart.init;
// get static peripheral object
int uart_id = uart_find(args[0].u_obj);
machine_hard_uart_obj_t * self = &machine_hard_uart_obj[uart_id];
// baudrate
init->baud_rate = args[0].u_int;
hal_uart_init_t * init = &self->uart->init;
// flow control
init->flow_control = args[4].u_int;
init->flow_control = args[5].u_int;
#if 0
// init UART (if it fails, it's because the port doesn't exist)
if (!uart_init2(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", self->uart_id));
}
// set timeouts
self->timeout = args[5].u_int;
self->timeout_char = args[6].u_int;
self->timeout = args[6].u_int;
self->timeout_char = args[7].u_int;
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
@ -193,75 +194,75 @@ STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, con
self->read_buf_head = 0;
self->read_buf_tail = 0;
if (args[7].u_int <= 0) {
if (args[8].u_int <= 0) {
// no read buffer
self->read_buf_len = 0;
self->read_buf = NULL;
} else {
// read buffer using interrupts
self->read_buf_len = args[7].u_int;
self->read_buf = m_new(byte, args[7].u_int << self->char_width);
self->read_buf_len = args[8].u_int;
self->read_buf = m_new(byte, args[8].u_int << self->char_width);
}
hal_uart_init_t uart_init = {
#if MICROPY_HW_UART1_HWFC
.flow_control = true,
#else
.flow_control = false,
#endif
.use_parity = false,
#if (BLUETOOTH_SD == 100)
.irq_priority = 3
#else
.irq_priority = 6
#endif
};
#endif // 0
switch (init->baud_rate) {
#if MICROPY_HW_UART1_HWFC
init->flow_control = true;
#else
init->flow_control = false;
#endif
init->use_parity = false;
#if (BLUETOOTH_SD == 100)
init->irq_priority = 3;
#else
init->irq_priority = 6;
#endif
switch (args[1].u_int) {
case 1200:
uart_init.baud_rate = HAL_UART_BAUD_1K2;
init->baud_rate = HAL_UART_BAUD_1K2;
break;
case 2400:
uart_init.baud_rate = HAL_UART_BAUD_2K4;
init->baud_rate = HAL_UART_BAUD_2K4;
break;
case 4800:
uart_init.baud_rate = HAL_UART_BAUD_4K8;
init->baud_rate = HAL_UART_BAUD_4K8;
break;
case 9600:
uart_init.baud_rate = HAL_UART_BAUD_9K6;
init->baud_rate = HAL_UART_BAUD_9K6;
break;
case 14400:
uart_init.baud_rate = HAL_UART_BAUD_14K4;
init->baud_rate = HAL_UART_BAUD_14K4;
break;
case 19200:
uart_init.baud_rate = HAL_UART_BAUD_19K2;
init->baud_rate = HAL_UART_BAUD_19K2;
break;
case 28800:
uart_init.baud_rate = HAL_UART_BAUD_28K8;
init->baud_rate = HAL_UART_BAUD_28K8;
break;
case 38400:
uart_init.baud_rate = HAL_UART_BAUD_38K4;
init->baud_rate = HAL_UART_BAUD_38K4;
break;
case 57600:
uart_init.baud_rate = HAL_UART_BAUD_57K6;
init->baud_rate = HAL_UART_BAUD_57K6;
break;
case 76800:
uart_init.baud_rate = HAL_UART_BAUD_76K8;
init->baud_rate = HAL_UART_BAUD_76K8;
break;
case 115200:
uart_init.baud_rate = HAL_UART_BAUD_115K2;
init->baud_rate = HAL_UART_BAUD_115K2;
break;
case 230400:
uart_init.baud_rate = HAL_UART_BAUD_230K4;
init->baud_rate = HAL_UART_BAUD_230K4;
break;
case 250000:
uart_init.baud_rate = HAL_UART_BAUD_250K0;
init->baud_rate = HAL_UART_BAUD_250K0;
break;
case 500000:
uart_init.baud_rate = HAL_UART_BAUD_500K0;
init->baud_rate = HAL_UART_BAUD_500K0;
break;
case 1000000:
uart_init.baud_rate = HAL_UART_BAUD_1M0;
init->baud_rate = HAL_UART_BAUD_1M0;
break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
@ -269,72 +270,23 @@ STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, con
break;
}
uart_init.rx_pin = &MICROPY_HW_UART1_RX;
uart_init.tx_pin = &MICROPY_HW_UART1_TX;
init->rx_pin = &MICROPY_HW_UART1_RX;
init->tx_pin = &MICROPY_HW_UART1_TX;
#if MICROPY_HW_UART1_HWFC
uart_init.rts_pin = &MICROPY_HW_UART1_RTS;
uart_init.cts_pin = &MICROPY_HW_UART1_CTS;
init->rts_pin = &MICROPY_HW_UART1_RTS;
init->cts_pin = &MICROPY_HW_UART1_CTS;
#endif
hal_uart_init(&uart_init);
hal_uart_init(self->uart->p_instance, init);
return mp_const_none;
return MP_OBJ_FROM_PTR(self);
}
/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object.
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
int uart_id = 0;
if (MP_OBJ_IS_STR(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
} else if (strcmp(port, "COM1") == 0) {
uart_id = PYB_UART_1;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) does not exist", port));
}
} else {
uart_id = mp_obj_get_int(args[0]);
if (uart_id < 1 || uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id));
}
}
pyb_uart_obj_t *self;
if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
// create new UART object
self = m_new0(pyb_uart_obj_t, 1);
self->base.type = &pyb_uart_type;
self->uart_id = uart_id;
MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
} else {
// reference existing UART object
self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
}
return self;
}
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
machine_hard_uart_obj_t *self = self_in;
if (uart_rx_any(self)) {
return mp_const_true;
} else {
@ -346,56 +298,53 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
pyb_uart_obj_t *self = self_in;
STATIC mp_obj_t machine_hard_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
machine_hard_uart_obj_t *self = self_in;
// get the character to write (might be 9 bits)
uint16_t data = mp_obj_get_int(char_in);
hal_uart_error_t err = 0;
for (int i = 0; i < 2; i++) {
uart_tx_char(self, (int)(&data)[i]);
err = uart_tx_char(self, (int)(&data)[i]);
}
self->uart.instance->TASKS_STOPTX = 0;
HAL_StatusTypeDef status = self->uart->p_instance->EVENTS_ERROR;
HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR;
if (status != HAL_OK) {
if (err != HAL_UART_ERROR_NONE) {
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_hard_uart_writechar_obj, machine_hard_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
pyb_uart_obj_t *self = self_in;
STATIC mp_obj_t machine_hard_uart_readchar(mp_obj_t self_in) {
machine_hard_uart_obj_t *self = self_in;
#if 0
if (uart_rx_wait(self, self->timeout)) {
#endif
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
#if 0
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_readchar_obj, machine_hard_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
STATIC mp_obj_t machine_hard_uart_sendbreak(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_sendbreak_obj, machine_hard_uart_sendbreak);
STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
// instance methods
//{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_uart_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_uart_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_uart_any_obj },
/// \method read([nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&mp_stream_read_obj },
/// \method readline()
@ -403,9 +352,9 @@ STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
/// \method readinto(buf[, nbytes])
{ MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&mp_stream_readinto_obj },
/// \method writechar(buf)
{ MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&pyb_uart_writechar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&pyb_uart_readchar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&pyb_uart_sendbreak_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writechar), (mp_obj_t)&machine_hard_uart_writechar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_readchar), (mp_obj_t)&machine_hard_uart_readchar_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sendbreak), (mp_obj_t)&machine_hard_uart_sendbreak_obj },
// class constants
/*
@ -416,8 +365,8 @@ STATIC const mp_map_elem_t pyb_uart_locals_dict_table[] = {
STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);
STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
STATIC mp_uint_t machine_hard_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
byte *buf = buf_in;
// check that size is a multiple of character width
@ -439,7 +388,7 @@ STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, i
for (;;) {
int data = uart_rx_char(self);
*buf++ = data;
*buf++ = data;
if (--size == 0) {
// return number of bytes read
@ -448,8 +397,8 @@ STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, i
}
}
STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
pyb_uart_obj_t *self = self_in;
STATIC mp_uint_t machine_hard_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
const byte *buf = buf_in;
// check that size is a multiple of character width
@ -458,39 +407,38 @@ STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t
return MP_STREAM_ERROR;
}
hal_uart_error_t err = 0;
for (int i = 0; i < size; i++) {
uart_tx_char(self, (int)((uint8_t *)buf)[i]);
err = uart_tx_char(self, (int)((uint8_t *)buf)[i]);
}
HAL_StatusTypeDef status = self->uart.instance->EVENTS_ERROR;
if (status == HAL_OK) {
if (err == HAL_UART_ERROR_NONE) {
// return number of bytes written
return size;
} else {
*errcode = mp_hal_status_to_errno_table[status];
*errcode = mp_hal_status_to_errno_table[err];
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
pyb_uart_obj_t *self = self_in;
STATIC mp_uint_t machine_hard_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
(void)self;
return MP_STREAM_ERROR;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = pyb_uart_read,
.write = pyb_uart_write,
.ioctl = pyb_uart_ioctl,
.read = machine_hard_uart_read,
.write = machine_hard_uart_write,
.ioctl = machine_hard_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t pyb_uart_type = {
const mp_obj_type_t machine_hard_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = pyb_uart_print,
.make_new = pyb_uart_make_new,
.make_new = machine_hard_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,

View File

@ -33,16 +33,16 @@ typedef enum {
PYB_UART_1 = 1,
} pyb_uart_t;
typedef struct _pyb_uart_obj_t pyb_uart_obj_t;
extern const mp_obj_type_t pyb_uart_type;
typedef struct _machine_hard_uart_obj_t machine_hard_uart_obj_t;
extern const mp_obj_type_t machine_hard_uart_type;
void uart_init0(void);
void uart_deinit(void);
void uart_irq_handler(mp_uint_t uart_id);
bool uart_rx_any(pyb_uart_obj_t *uart_obj);
int uart_rx_char(pyb_uart_obj_t *uart_obj);
void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len);
void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len);
bool uart_rx_any(machine_hard_uart_obj_t * uart_obj);
int uart_rx_char(machine_hard_uart_obj_t * uart_obj);
void uart_tx_strn(machine_hard_uart_obj_t * uart_obj, const char *str, uint len);
void uart_tx_strn_cooked(machine_hard_uart_obj_t *uart_obj, const char *str, uint len);
#endif

View File

@ -37,7 +37,7 @@ STATIC const mp_map_elem_t pyb_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj},
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&machine_hard_uart_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
/* { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj }*/
};

View File

@ -118,7 +118,7 @@ STATIC mp_obj_t os_dupterm(mp_uint_t n_args, const mp_obj_t *args) {
} else {
if (args[0] == mp_const_none) {
MP_STATE_PORT(pyb_stdio_uart) = NULL;
} else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
} else if (mp_obj_get_type(args[0]) == &machine_hard_uart_type) {
MP_STATE_PORT(pyb_stdio_uart) = args[0];
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));

View File

@ -341,10 +341,10 @@ extern const struct _mp_obj_module_t ble_module;
struct _pyb_timer_obj_t *pyb_timer_obj_all[14]; \
\
/* stdio is repeated on this UART object if it's not null */ \
struct _pyb_uart_obj_t *pyb_stdio_uart; \
struct _machine_hard_uart_obj_t *pyb_stdio_uart; \
\
/* pointers to all UART objects (if they have been created) */ \
struct _pyb_uart_obj_t *pyb_uart_obj_all[1]; \
struct _machine_hard_uart_obj_t *pyb_uart_obj_all[1]; \
\
/* list of registered NICs */ \
mp_obj_list_t mod_network_nic_list; \