examples/natmod: Add features1 and features2 examples.
This commit is contained in:
parent
4eef940edb
commit
60c3c22a0d
14
examples/natmod/features1/Makefile
Normal file
14
examples/natmod/features1/Makefile
Normal file
@ -0,0 +1,14 @@
|
||||
# Location of top-level MicroPython directory
|
||||
MPY_DIR = ../../..
|
||||
|
||||
# Name of module
|
||||
MOD = features1
|
||||
|
||||
# Source files (.c or .py)
|
||||
SRC = features1.c
|
||||
|
||||
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
|
||||
ARCH = x64
|
||||
|
||||
# Include to get the rules for compiling and linking the module
|
||||
include $(MPY_DIR)/py/dynruntime.mk
|
106
examples/natmod/features1/features1.c
Normal file
106
examples/natmod/features1/features1.c
Normal file
@ -0,0 +1,106 @@
|
||||
/* This example demonstrates the following features in a native module:
|
||||
- defining simple functions exposed to Python
|
||||
- defining local, helper C functions
|
||||
- defining constant integers and strings exposed to Python
|
||||
- getting and creating integer objects
|
||||
- creating Python lists
|
||||
- raising exceptions
|
||||
- allocating memory
|
||||
- BSS and constant data (rodata)
|
||||
- relocated pointers in rodata
|
||||
*/
|
||||
|
||||
// Include the header file to get access to the MicroPython API
|
||||
#include "py/dynruntime.h"
|
||||
|
||||
// BSS (zero) data
|
||||
uint16_t data16[4];
|
||||
|
||||
// Constant data (rodata)
|
||||
const uint8_t table8[] = { 0, 1, 1, 2, 3, 5, 8, 13 };
|
||||
const uint16_t table16[] = { 0x1000, 0x2000 };
|
||||
|
||||
// Constant data pointing to BSS/constant data
|
||||
uint16_t *const table_ptr16a[] = { &data16[0], &data16[1], &data16[2], &data16[3] };
|
||||
const uint16_t *const table_ptr16b[] = { &table16[0], &table16[1] };
|
||||
|
||||
// A simple function that adds its 2 arguments (must be integers)
|
||||
STATIC mp_obj_t add(mp_obj_t x_in, mp_obj_t y_in) {
|
||||
mp_int_t x = mp_obj_get_int(x_in);
|
||||
mp_int_t y = mp_obj_get_int(y_in);
|
||||
return mp_obj_new_int(x + y);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
|
||||
|
||||
// A local helper function (not exposed to Python)
|
||||
STATIC mp_int_t fibonacci_helper(mp_int_t x) {
|
||||
if (x < MP_ARRAY_SIZE(table8)) {
|
||||
return table8[x];
|
||||
} else {
|
||||
return fibonacci_helper(x - 1) + fibonacci_helper(x - 2);
|
||||
}
|
||||
}
|
||||
|
||||
// A function which computes Fibonacci numbers
|
||||
STATIC mp_obj_t fibonacci(mp_obj_t x_in) {
|
||||
mp_int_t x = mp_obj_get_int(x_in);
|
||||
if (x < 0) {
|
||||
mp_raise_ValueError("can't compute negative Fibonacci number");
|
||||
}
|
||||
return mp_obj_new_int(fibonacci_helper(x));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(fibonacci_obj, fibonacci);
|
||||
|
||||
// A function that accesses the BSS data
|
||||
STATIC mp_obj_t access(size_t n_args, const mp_obj_t *args) {
|
||||
if (n_args == 0) {
|
||||
// Create a list holding all items from data16
|
||||
mp_obj_list_t *lst = MP_OBJ_TO_PTR(mp_obj_new_list(MP_ARRAY_SIZE(data16), NULL));
|
||||
for (int i = 0; i < MP_ARRAY_SIZE(data16); ++i) {
|
||||
lst->items[i] = mp_obj_new_int(data16[i]);
|
||||
}
|
||||
return MP_OBJ_FROM_PTR(lst);
|
||||
} else if (n_args == 1) {
|
||||
// Get one item from data16
|
||||
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
|
||||
return mp_obj_new_int(data16[idx]);
|
||||
} else {
|
||||
// Set one item in data16 (via table_ptr16a)
|
||||
mp_int_t idx = mp_obj_get_int(args[0]) & 3;
|
||||
*table_ptr16a[idx] = mp_obj_get_int(args[1]);
|
||||
return mp_const_none;
|
||||
}
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(access_obj, 0, 2, access);
|
||||
|
||||
// A function that allocates memory and creates a bytearray
|
||||
STATIC mp_obj_t make_array(void) {
|
||||
uint16_t *ptr = m_new(uint16_t, MP_ARRAY_SIZE(table_ptr16b));
|
||||
for (int i = 0; i < MP_ARRAY_SIZE(table_ptr16b); ++i) {
|
||||
ptr[i] = *table_ptr16b[i];
|
||||
}
|
||||
return mp_obj_new_bytearray_by_ref(sizeof(uint16_t) * MP_ARRAY_SIZE(table_ptr16b), ptr);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(make_array_obj, make_array);
|
||||
|
||||
// This is the entry point and is called when the module is imported
|
||||
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
||||
// This must be first, it sets up the globals dict and other things
|
||||
MP_DYNRUNTIME_INIT_ENTRY
|
||||
|
||||
// Messages can be printed as usualy
|
||||
mp_printf(&mp_plat_print, "initialising module self=%p\n", self);
|
||||
|
||||
// Make the functions available in the module's namespace
|
||||
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
|
||||
mp_store_global(MP_QSTR_fibonacci, MP_OBJ_FROM_PTR(&fibonacci_obj));
|
||||
mp_store_global(MP_QSTR_access, MP_OBJ_FROM_PTR(&access_obj));
|
||||
mp_store_global(MP_QSTR_make_array, MP_OBJ_FROM_PTR(&make_array_obj));
|
||||
|
||||
// Add some constants to the module's namespace
|
||||
mp_store_global(MP_QSTR_VAL, MP_OBJ_NEW_SMALL_INT(42));
|
||||
mp_store_global(MP_QSTR_MSG, MP_OBJ_NEW_QSTR(MP_QSTR_HELLO_MICROPYTHON));
|
||||
|
||||
// This must be last, it restores the globals dict
|
||||
MP_DYNRUNTIME_INIT_EXIT
|
||||
}
|
14
examples/natmod/features2/Makefile
Normal file
14
examples/natmod/features2/Makefile
Normal file
@ -0,0 +1,14 @@
|
||||
# Location of top-level MicroPython directory
|
||||
MPY_DIR = ../../..
|
||||
|
||||
# Name of module
|
||||
MOD = features2
|
||||
|
||||
# Source files (.c or .py)
|
||||
SRC = main.c prod.c test.py
|
||||
|
||||
# Architecture to build for (x86, x64, armv7m, xtensa, xtensawin)
|
||||
ARCH = x64
|
||||
|
||||
# Include to get the rules for compiling and linking the module
|
||||
include $(MPY_DIR)/py/dynruntime.mk
|
83
examples/natmod/features2/main.c
Normal file
83
examples/natmod/features2/main.c
Normal file
@ -0,0 +1,83 @@
|
||||
/* This example demonstrates the following features in a native module:
|
||||
- using floats
|
||||
- defining additional code in Python (see test.py)
|
||||
- have extra C code in a separate file (see prod.c)
|
||||
*/
|
||||
|
||||
// Include the header file to get access to the MicroPython API
|
||||
#include "py/dynruntime.h"
|
||||
|
||||
// Include the header for auxiliary C code for this module
|
||||
#include "prod.h"
|
||||
|
||||
// Automatically detect if this module should include double-precision code.
|
||||
// If double precision is supported by the target architecture then it can
|
||||
// be used in native module regardless of what float setting the target
|
||||
// MicroPython runtime uses (being none, float or double).
|
||||
#if defined(__i386__) || defined(__x86_64__) || (defined(__ARM_FP) && (__ARM_FP & 8))
|
||||
#define USE_DOUBLE 1
|
||||
#else
|
||||
#define USE_DOUBLE 0
|
||||
#endif
|
||||
|
||||
// A function that uses the default float type configured for the current target
|
||||
// This default can be overridden by specifying MICROPY_FLOAT_IMPL at the make level
|
||||
STATIC mp_obj_t add(mp_obj_t x, mp_obj_t y) {
|
||||
return mp_obj_new_float(mp_obj_get_float(x) + mp_obj_get_float(y));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
|
||||
|
||||
// A function that explicitly uses single precision floats
|
||||
STATIC mp_obj_t add_f(mp_obj_t x, mp_obj_t y) {
|
||||
return mp_obj_new_float_from_f(mp_obj_get_float_to_f(x) + mp_obj_get_float_to_f(y));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_f_obj, add_f);
|
||||
|
||||
#if USE_DOUBLE
|
||||
// A function that explicitly uses double precision floats
|
||||
STATIC mp_obj_t add_d(mp_obj_t x, mp_obj_t y) {
|
||||
return mp_obj_new_float_from_d(mp_obj_get_float_to_d(x) + mp_obj_get_float_to_d(y));
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_2(add_d_obj, add_d);
|
||||
#endif
|
||||
|
||||
// A function that computes the product of floats in an array.
|
||||
// This function uses the most general C argument interface, which is more difficult
|
||||
// to use but has access to the globals dict of the module via self->globals.
|
||||
STATIC mp_obj_t productf(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
||||
// Check number of arguments is valid
|
||||
mp_arg_check_num(n_args, n_kw, 1, 1, false);
|
||||
|
||||
// Extract buffer pointer and verify typecode
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_RW);
|
||||
if (bufinfo.typecode != 'f') {
|
||||
mp_raise_ValueError("expecting float array");
|
||||
}
|
||||
|
||||
// Compute product, store result back in first element of array
|
||||
float *ptr = bufinfo.buf;
|
||||
float prod = prod_array(bufinfo.len / sizeof(*ptr), ptr);
|
||||
ptr[0] = prod;
|
||||
|
||||
return mp_const_none;
|
||||
}
|
||||
|
||||
// This is the entry point and is called when the module is imported
|
||||
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
||||
// This must be first, it sets up the globals dict and other things
|
||||
MP_DYNRUNTIME_INIT_ENTRY
|
||||
|
||||
// Make the functions available in the module's namespace
|
||||
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
|
||||
mp_store_global(MP_QSTR_add_f, MP_OBJ_FROM_PTR(&add_f_obj));
|
||||
#if USE_DOUBLE
|
||||
mp_store_global(MP_QSTR_add_d, MP_OBJ_FROM_PTR(&add_d_obj));
|
||||
#endif
|
||||
|
||||
// The productf function uses the most general C argument interface
|
||||
mp_store_global(MP_QSTR_productf, MP_DYNRUNTIME_MAKE_FUNCTION(productf));
|
||||
|
||||
// This must be last, it restores the globals dict
|
||||
MP_DYNRUNTIME_INIT_EXIT
|
||||
}
|
9
examples/natmod/features2/prod.c
Normal file
9
examples/natmod/features2/prod.c
Normal file
@ -0,0 +1,9 @@
|
||||
#include "prod.h"
|
||||
|
||||
float prod_array(int n, float *ar) {
|
||||
float ans = 1;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ans *= ar[i];
|
||||
}
|
||||
return ans;
|
||||
}
|
1
examples/natmod/features2/prod.h
Normal file
1
examples/natmod/features2/prod.h
Normal file
@ -0,0 +1 @@
|
||||
float prod_array(int n, float *ar);
|
26
examples/natmod/features2/test.py
Normal file
26
examples/natmod/features2/test.py
Normal file
@ -0,0 +1,26 @@
|
||||
# This Python code will be merged with the C code in main.c
|
||||
|
||||
import array
|
||||
|
||||
def isclose(a, b):
|
||||
return abs(a - b) < 1e-3
|
||||
|
||||
def test():
|
||||
tests = [
|
||||
isclose(add(0.1, 0.2), 0.3),
|
||||
isclose(add_f(0.1, 0.2), 0.3),
|
||||
]
|
||||
|
||||
ar = array.array('f', [1, 2, 3.5])
|
||||
productf(ar)
|
||||
tests.append(isclose(ar[0], 7))
|
||||
|
||||
if 'add_d' in globals():
|
||||
tests.append(isclose(add_d(0.1, 0.2), 0.3))
|
||||
|
||||
print(tests)
|
||||
|
||||
if not all(tests):
|
||||
raise SystemExit(1)
|
||||
|
||||
test()
|
Loading…
x
Reference in New Issue
Block a user