atmel-samd: Add mass storage support.

Fixes #260
This commit is contained in:
Scott Shawcroft 2017-10-10 11:03:12 -07:00 committed by Scott Shawcroft
parent c80e1908c5
commit 51cd4da76e
11 changed files with 344 additions and 223 deletions

View File

@ -44,6 +44,7 @@ INC += -I. \
-Iasf4/$(CHIP_FAMILY)/usb \
-Iasf4/$(CHIP_FAMILY)/usb/class/cdc \
-Iasf4/$(CHIP_FAMILY)/usb/class/hid \
-Iasf4/$(CHIP_FAMILY)/usb/class/msc \
-Iasf4/$(CHIP_FAMILY)/usb/device \
-Iasf4_conf/$(CHIP_FAMILY) \
-Iboards/$(BOARD) \
@ -181,6 +182,7 @@ SRC_ASF := \
hpl/tc/hpl_tc.c \
hpl/usb/hpl_usb.c \
usb/class/cdc/device/cdcdf_acm.c \
usb/class/msc/device/mscdf.c \
usb/device/usbdc.c \
usb/usb_protocol.c \
hal/utils/src/utils_list.c \
@ -204,8 +206,7 @@ endif
SRC_ASF := $(addprefix asf4/$(CHIP_FAMILY)/, $(SRC_ASF))
# Skip this source for now.
# access_vfs.c \
shared_dma.c \
# shared_dma.c \
SRC_C = \
background.c \
@ -216,6 +217,7 @@ SRC_C = \
$(CHIP_FAMILY)_pins.c \
tick.c \
usb.c \
usb_mass_storage.c \
$(FLASH_IMPL) \
bindings/samd/__init__.c \
boards/$(BOARD)/board.c \

View File

@ -1,191 +0,0 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "access_vfs.h"
#include "autoreload.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "lib/oofatfs/ff.h"
#include "lib/oofatfs/diskio.h"
#include "lib/oofatfs/ffconf.h"
#include "py/mpconfig.h"
#include "py/mphal.h"
#include "py/mpstate.h"
#include "py/misc.h"
#define VFS_INDEX 0
// The root FS is always at the end of the list.
static fs_user_mount_t* get_vfs(int index) {
mp_vfs_mount_t* current_mount = MP_STATE_VM(vfs_mount_table);
if (current_mount == NULL) {
return NULL;
}
while (current_mount->next != NULL) {
current_mount = current_mount->next;
}
return current_mount->obj;
}
//! This function tests memory state, and starts memory initialization
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status vfs_test_unit_ready(void)
{
fs_user_mount_t* current_mount = get_vfs(VFS_INDEX);
if (current_mount != NULL) {
return CTRL_GOOD;
}
return CTRL_NO_PRESENT;
}
//! This function returns the address of the last valid sector
//! @param uint32_t_nb_sector Pointer to the last valid sector (sector=512 bytes)
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status vfs_read_capacity(uint32_t *last_valid_sector)
{
fs_user_mount_t * vfs = get_vfs(VFS_INDEX);
if (vfs == NULL ||
disk_ioctl(vfs, GET_SECTOR_COUNT, last_valid_sector) != RES_OK) {
return CTRL_FAIL;
}
// Subtract one from the sector count to get the last valid sector.
(*last_valid_sector)--;
return CTRL_GOOD;
}
//! This function returns the write-protected mode
//!
//! @return true if the memory is protected
//!
bool vfs_wr_protect(void)
{
fs_user_mount_t * vfs = get_vfs(VFS_INDEX);
// This is used to determine the writeability of the disk from USB.
if (vfs == NULL || vfs->writeblocks[0] == MP_OBJ_NULL ||
(vfs->flags & FSUSER_USB_WRITEABLE) == 0) {
return true;
}
return false;
}
//! This function informs about the memory type
//!
//! @return true if the memory is removable
//!
bool vfs_removal(void)
{
return true;
}
// TODO(tannewt): Transfer more than a single sector at a time if we need more
// speed.
//! This function transfers the memory data to the USB MSC interface
//!
//! @param addr Sector address to start read
//! @param nb_sector Number of sectors to transfer (sector=512 bytes)
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
{
fs_user_mount_t * vfs = get_vfs(VFS_INDEX);
uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
DRESULT result = disk_read(vfs, sector_buffer, addr + sector, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
if (!udi_msc_trans_block(true, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
}
return CTRL_GOOD;
}
//! This function transfers the USB MSC data to the memory
//!
//! @param addr Sector address to start write
//! @param nb_sector Number of sectors to transfer (sector=512 bytes)
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector)
{
if (vfs_wr_protect()) {
return CTRL_FAIL;
}
fs_user_mount_t * vfs = get_vfs(VFS_INDEX);
uint8_t sector_buffer[FILESYSTEM_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
if (!udi_msc_trans_block(false, sector_buffer, FILESYSTEM_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
uint32_t sector_address = addr + sector;
DRESULT result = disk_write(vfs, sector_buffer, sector_address, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
// Since by getting here we assume the mount is read-only to MicroPython
// lets update the cached FatFs sector if its the one we just wrote.
#if _MAX_SS != _MIN_SS
if (vfs->ssize == FILESYSTEM_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (_MAX_SS == FILESYSTEM_BLOCK_SIZE) {
#endif
if (sector_address == vfs->fatfs.winsect && sector_address > 0) {
memcpy(vfs->fatfs.win, sector_buffer, FILESYSTEM_BLOCK_SIZE);
}
}
}
autoreload_start();
return CTRL_GOOD;
}

View File

@ -39,7 +39,7 @@
// <CONF_USB_D_N_EP_MAX"> Max possible (by "Max Endpoint Number" config)
// <id> usbd_num_ep_sp
#ifndef CONF_USB_D_NUM_EP_SP
#define CONF_USB_D_NUM_EP_SP CONF_USB_N_4
#define CONF_USB_D_NUM_EP_SP CONF_USB_D_EP_N_MAX
#endif
// </h>
@ -60,7 +60,7 @@
// <i> The number of physical endpoints - 1
// <id> usbd_arch_max_ep_n
#ifndef CONF_USB_D_MAX_EP_N
#define CONF_USB_D_MAX_EP_N CONF_USB_N_2
#define CONF_USB_D_MAX_EP_N CONF_USB_D_EP_N_MAX
#endif
// <y> USB Speed Limit
@ -156,7 +156,7 @@
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep2_I_CACHE
#ifndef CONF_USB_EP2_I_CACHE
#define CONF_USB_EP2_I_CACHE 0
#define CONF_USB_EP2_I_CACHE 64
#endif
// </h>
@ -308,7 +308,7 @@
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep6_I_CACHE
#ifndef CONF_USB_EP6_I_CACHE
#define CONF_USB_EP6_I_CACHE 0
#define CONF_USB_EP6_I_CACHE 64
#endif
// </h>

View File

@ -28,6 +28,8 @@
// <y> Max number of endpoints supported
// <i> Limits the number of endpoints (described by EP address) can be used in app.
// NOTE(tannewt): This not only limits the number of endpoints but also the
// addresses. In other words, even if you use endpoint 6 you need to set this to 11.
// <CONF_USB_N_1"> 1 (EP0 only)
// <CONF_USB_N_2"> 2 (EP0 + 1 endpoint)
// <CONF_USB_N_3"> 3 (EP0 + 2 endpoints)
@ -39,7 +41,7 @@
// <CONF_USB_D_N_EP_MAX"> Max possible (by "Max Endpoint Number" config)
// <id> usbd_num_ep_sp
#ifndef CONF_USB_D_NUM_EP_SP
#define CONF_USB_D_NUM_EP_SP CONF_USB_N_4
#define CONF_USB_D_NUM_EP_SP CONF_USB_D_N_EP_MAX
#endif
// </h>
@ -60,7 +62,7 @@
// <i> The number of physical endpoints - 1
// <id> usbd_arch_max_ep_n
#ifndef CONF_USB_D_MAX_EP_N
#define CONF_USB_D_MAX_EP_N CONF_USB_N_2
#define CONF_USB_D_MAX_EP_N CONF_USB_D_EP_N_MAX
#endif
// <y> USB Speed Limit
@ -308,7 +310,7 @@
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep6_I_CACHE
#ifndef CONF_USB_EP6_I_CACHE
#define CONF_USB_EP6_I_CACHE 0
#define CONF_USB_EP6_I_CACHE 64
#endif
// </h>

View File

@ -26,8 +26,9 @@
#include "background.h"
// #include "common-hal/audioio/AudioOut.h"
#include "usb_mass_storage.h"
void run_background_tasks(void) {
// audioout_background();
// udi_msc_process_trans();
usb_msc_background();
}

View File

@ -172,8 +172,6 @@ bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
return false;
}
int32_t error_code;
// A block is formed by two rows of flash. We must erase each row
// before we write back to it.
error_code = flash_erase(&internal_flash_desc,
dest,
FILESYSTEM_BLOCK_SIZE / flash_get_page_size(&internal_flash_desc));
@ -181,8 +179,6 @@ bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
return false;
}
// A block is made up of multiple pages. Write each page
// sequentially.
error_code = flash_append(&internal_flash_desc, dest, src, FILESYSTEM_BLOCK_SIZE);
if (error_code != ERR_NONE) {
return false;

View File

@ -132,6 +132,10 @@ typedef long mp_off_t;
#include "mpconfigboard.h"
#include "include/sam.h"
// ASF4 defines.
#define CONF_USB_COMPOSITE_CDC_ACM_EN 1
#define CONF_USB_COMPOSITE_MSC_EN 1
#ifdef SAMD21
#define CIRCUITPY_MCU_FAMILY samd21
#define MICROPY_PY_SYS_PLATFORM "Atmel SAMD21"

View File

@ -65,6 +65,7 @@ void filesystem_init(bool create_allowed) {
// set label
f_setlabel(&vfs_fat->fatfs, "CIRCUITPY");
flash_flush();
} else if (res != FR_OK) {
return;
}

View File

@ -38,12 +38,14 @@
// #include "hiddf_keyboard.h"
#include "usb/class/hid/device/hiddf_generic.h"
#include "usb/class/composite/device/composite_desc.h"
#include "usb/class/msc/device/mscdf.h"
#include "peripheral_clk_config.h"
#include "hpl/pm/hpl_pm_base.h"
#include "hpl/gclk/hpl_gclk_base.h"
#include "lib/utils/interrupt_char.h"
#include "reset.h"
#include "usb_mass_storage.h"
#include "supervisor/shared/autoreload.h"
@ -108,6 +110,9 @@ static void init_hardware(void) {
extern uint32_t *_usb_ep1_cache;
static bool usb_device_cb_bulk_out(const uint8_t ep, const enum usb_xfer_code rc, const uint32_t count)
{
if (rc == USB_XFER_RESET) {
return false;
}
volatile hal_atomic_t flags;
atomic_enter_critical(&flags);
// If our buffer can't fit the data received, then error out.
@ -182,13 +187,25 @@ static bool usb_device_cb_line_coding_c(const usb_cdc_line_coding_t* coding)
void init_usb(void) {
init_hardware();
mp_cdc_enabled = false;
usbdc_init(ctrl_buffer);
/* usbdc_register_funcion inside */
cdcdf_acm_init();
mscdf_init(1);
// hiddf_mouse_init();
// hiddf_keyboard_init();
mscdf_register_callback(MSCDF_CB_INQUIRY_DISK, (FUNC_PTR)usb_msc_inquiry_info);
mscdf_register_callback(MSCDF_CB_GET_DISK_CAPACITY, (FUNC_PTR)usb_msc_get_capacity);
mscdf_register_callback(MSCDF_CB_START_READ_DISK, (FUNC_PTR)usb_msc_new_read);
mscdf_register_callback(MSCDF_CB_START_WRITE_DISK, (FUNC_PTR)usb_msc_new_write);
mscdf_register_callback(MSCDF_CB_EJECT_DISK, (FUNC_PTR)usb_msc_disk_eject);
mscdf_register_callback(MSCDF_CB_TEST_DISK_READY, (FUNC_PTR)usb_msc_disk_is_ready);
mscdf_register_callback(MSCDF_CB_XFER_BLOCKS_DONE, (FUNC_PTR)usb_msc_xfer_done);
int32_t result = usbdc_start(&multi_desc);
while (result != ERR_NONE) {}
usbdc_attach();
@ -226,11 +243,6 @@ int usb_read(void) {
return 0;
}
// Disable autoreload if someone is using the repl.
// TODO(tannewt): Check that we're actually in the REPL. It could be an
// input() call from a script.
autoreload_disable();
// Copy from head.
int data;
CRITICAL_SECTION_ENTER();
@ -242,8 +254,6 @@ int usb_read(void) {
}
CRITICAL_SECTION_LEAVE();
//usb_write((uint8_t *)&data, 1);
return data;
}

View File

@ -0,0 +1,289 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "usb_mass_storage.h"
#include "supervisor/shared/autoreload.h"
#include "hal/utils/include/err_codes.h"
#include "hal/utils/include/utils.h"
#include "usb/class/msc/device/mscdf.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "lib/oofatfs/ff.h"
#include "lib/oofatfs/diskio.h"
#include "lib/oofatfs/ffconf.h"
#include "py/mpconfig.h"
#include "py/mphal.h"
#include "py/mpstate.h"
#include "py/misc.h"
// The root FS is always at the end of the list.
static fs_user_mount_t* get_vfs(int lun) {
// TODO(tannewt): Return the mount which matches the lun where 0 is the end
// and is counted in reverse.
if (lun > 0) {
return NULL;
}
mp_vfs_mount_t* current_mount = MP_STATE_VM(vfs_mount_table);
if (current_mount == NULL) {
return NULL;
}
while (current_mount->next != NULL) {
current_mount = current_mount->next;
}
return current_mount->obj;
}
/* Inquiry Information */
// This is designed to handle the common case where we have an internal file
// system and an optional SD card.
static uint8_t inquiry_info[2][36];
/* Capacities of Disk */
static uint8_t format_capa[2][8];
/**
* \brief Eject Disk
* \param[in] lun logic unit number
* \return Operation status.
*/
int32_t usb_msc_disk_eject(uint8_t lun) {
if (lun > 1) {
return ERR_NOT_FOUND;
}
// TODO(tannewt): Should we flush here?
return ERR_NONE;
}
/**
* \brief Inquiry whether Disk is ready
* \param[in] lun logic unit number
* \return Operation status.
*/
int32_t usb_msc_disk_is_ready(uint8_t lun) {
if (lun > 1) {
return ERR_NOT_FOUND;
}
fs_user_mount_t* current_mount = get_vfs(lun);
// Return ERR_NOT_READY if not ready, otherwise ERR_NONE.
if (current_mount != NULL) {
return ERR_NONE;
}
return ERR_NOT_READY;
}
/**
* \brief Callback invoked when inquiry data command received
* \param[in] lun logic unit number
* \return Operation status.
*/
uint8_t *usb_msc_inquiry_info(uint8_t lun) {
if (lun > 1) {
return NULL;
} else {
for (uint8_t i = 0; i < 36; i++) {
inquiry_info[lun][i] = 0;
}
inquiry_info[lun][1] = (0x1 << 7);
inquiry_info[lun][3] = 0x01;
inquiry_info[lun][4] = 31;
return &inquiry_info[lun][0];
}
}
/**
* \brief Callback invoked when read format capacities command received
* \param[in] lun logic unit number
*/
uint8_t *usb_msc_get_capacity(uint8_t lun) {
if (lun > 1) {
return NULL;
} else {
fs_user_mount_t * vfs = get_vfs(lun);
uint32_t last_valid_sector = 0;
uint32_t sector_size = 0;
if (vfs == NULL ||
disk_ioctl(vfs, GET_SECTOR_COUNT, &last_valid_sector) != RES_OK ||
disk_ioctl(vfs, GET_SECTOR_SIZE, &sector_size) != RES_OK) {
return NULL;
}
// Subtract one from the sector count to get the last valid sector.
last_valid_sector--;
format_capa[lun][0] = (uint8_t)(last_valid_sector >> 24);
format_capa[lun][1] = (uint8_t)(last_valid_sector >> 16);
format_capa[lun][2] = (uint8_t)(last_valid_sector >> 8);
format_capa[lun][3] = (uint8_t)(last_valid_sector >> 0);
format_capa[lun][4] = (uint8_t)(sector_size >> 24);
format_capa[lun][5] = (uint8_t)(sector_size >> 16);
format_capa[lun][6] = (uint8_t)(sector_size >> 8);
format_capa[lun][7] = (uint8_t)(sector_size >> 0);
// 8 byte response. First 4 bytes are last block address. Second 4
// bytes are sector size.
return &format_capa[lun][0];
}
}
// USB transfer state.
volatile bool usb_busy;
volatile bool active_read;
volatile bool active_write;
volatile uint8_t active_lun;
volatile uint32_t active_addr;
volatile uint32_t active_nblocks;
volatile bool sector_loaded;
COMPILER_ALIGNED(4) uint8_t sector_buffer[512];
/**
* \brief Callback invoked when a new read blocks command received
* \param[in] lun logic unit number
* \param[in] addr start address of disk to be read
* \param[in] nblocks block amount to be read
* \return Operation status.
*/
int32_t usb_msc_new_read(uint8_t lun, uint32_t addr, uint32_t nblocks) {
if (lun > 1) {
return ERR_DENIED;
}
// Store transfer info so we can service it in the "background".
active_lun = lun;
active_addr = addr;
active_nblocks = nblocks;
active_read = true;
return ERR_NONE;
}
/**
* \brief Callback invoked when a new write blocks command received
* \param[in] lun logic unit number
* \param[in] addr start address of disk to be written
* \param[in] nblocks block amount to be written
* \return Operation status.
*/
int32_t usb_msc_new_write(uint8_t lun, uint32_t addr, uint32_t nblocks) {
if (lun > 1) {
return ERR_DENIED;
}
fs_user_mount_t * vfs = get_vfs(lun);
// This is used to determine the writeability of the disk from USB.
if (vfs == NULL || vfs->writeblocks[0] == MP_OBJ_NULL /*||
(vfs->flags & FSUSER_USB_WRITEABLE) == 0*/) {
return ERR_DENIED;
}
// Store transfer info so we can service it in the "background".
active_lun = lun;
active_addr = addr;
active_nblocks = nblocks;
active_write = true;
sector_loaded = false;
// Return ERR_DENIED when the file system is read-only to the USB host.
return ERR_NONE;
}
/**
* \brief Callback invoked when a blocks transfer is done
* \param[in] lun logic unit number
* \return Operation status.
*/
int32_t usb_msc_xfer_done(uint8_t lun) {
if (lun > 1) {
return ERR_DENIED;
}
if (active_read) {
active_addr += 1;
active_nblocks--;
}
if (active_write) {
sector_loaded = true;
}
usb_busy = false;
return ERR_NONE;
}
// The start_read callback begins a read transaction which we accept but delay our response until the "main thread" calls usb_msc_background. Once it does, we read immediately from the drive into our cache and trigger the USB DMA to output the sector. Once the sector is transmitted, xfer_done will be called.
void usb_msc_background(void) {
if (active_read && !usb_busy) {
if (active_nblocks == 0) {
mscdf_xfer_blocks(false, NULL, 0);
active_read = false;
return;
}
fs_user_mount_t * vfs = get_vfs(active_lun);
disk_read(vfs, sector_buffer, active_addr, 1);
// TODO(tannewt): Check the read result.
mscdf_xfer_blocks(true, sector_buffer, 1);
usb_busy = true;
}
if (active_write && !usb_busy) {
if (sector_loaded) {
fs_user_mount_t * vfs = get_vfs(active_lun);
disk_write(vfs, sector_buffer, active_addr, 1);
// Since by getting here we assume the mount is read-only to
// MicroPython lets update the cached FatFs sector if its the one
// we just wrote.
#if _MAX_SS != _MIN_SS
if (vfs->ssize == FILESYSTEM_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (_MAX_SS == FILESYSTEM_BLOCK_SIZE) {
#endif
if (active_addr == vfs->fatfs.winsect && active_addr > 0) {
memcpy(vfs->fatfs.win,
sector_buffer,
FILESYSTEM_BLOCK_SIZE);
}
}
sector_loaded = false;
active_addr += 1;
active_nblocks--;
}
// Load more blocks from USB if they are needed.
if (active_nblocks > 0) {
int32_t result = mscdf_xfer_blocks(false, sector_buffer, 1);
while (result != ERR_NONE) {}
usb_busy = true;
} else {
mscdf_xfer_blocks(false, NULL, 0);
active_write = false;
// This write is complete, start the autoreload clock.
autoreload_start();
}
}
}

View File

@ -24,17 +24,24 @@
* THE SOFTWARE.
*/
// This adapts the ASF access API to MicroPython's VFS API so we can expose all
// VFS block devices as Lun's over USB mass storage control.
// This adapts the ASF4 USB mass storage API to MicroPython's VFS API so we can
// expose all VFS block devices as Lun's over USB mass storage control.
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H
#define MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_USB_MASS_STORAGE_H
#define MICROPY_INCLUDED_ATMEL_SAMD_USB_MASS_STORAGE_H
Ctrl_status vfs_test_unit_ready(void);
Ctrl_status vfs_read_capacity(uint32_t *u32_nb_sector);
bool vfs_wr_protect(void);
bool vfs_removal(void);
Ctrl_status vfs_usb_read_10(uint32_t addr, uint16_t nb_sector);
Ctrl_status vfs_usb_write_10(uint32_t addr, uint16_t nb_sector);
#include <stdint.h>
#endif // MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H
// "background" task that actually manages loading to and from the file systems.
void usb_msc_background(void);
// Callbacks that hook into ASF4's USB stack.
int32_t usb_msc_disk_eject(uint8_t lun);
int32_t usb_msc_disk_is_ready(uint8_t lun);
int32_t usb_msc_new_read(uint8_t lun, uint32_t addr, uint32_t nblocks);
int32_t usb_msc_new_write(uint8_t lun, uint32_t addr, uint32_t nblocks);
int32_t usb_msc_xfer_done(uint8_t lun);
uint8_t *usb_msc_inquiry_info(uint8_t lun);
uint8_t *usb_msc_get_capacity(uint8_t lun);
#endif // MICROPY_INCLUDED_ATMEL_SAMD_USB_MASS_STORAGE_H