Compiles for m4. Untested on m0.
This introduces a new spi_flash_api.h that works for both SPI and QSPI. The previous spi_flash functions are now called external_flash to minimize confusion.
This commit is contained in:
parent
a2bd772d5c
commit
4710a2adba
|
@ -252,7 +252,10 @@ ifeq ($(INTERNAL_FLASH_FILESYSTEM),1)
|
|||
SRC_C += internal_flash.c
|
||||
endif
|
||||
ifeq ($(SPI_FLASH_FILESYSTEM),1)
|
||||
SRC_C += spi_flash.c
|
||||
SRC_C += external_flash.c spi_flash.c
|
||||
endif
|
||||
ifeq ($(QSPI_FLASH_FILESYSTEM),1)
|
||||
SRC_C += external_flash.c qspi_flash.c
|
||||
endif
|
||||
|
||||
SRC_COMMON_HAL = \
|
||||
|
|
|
@ -38,7 +38,7 @@
|
|||
|
||||
#define SPEAKER_ENABLE_PIN (&pin_PA30)
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
#define MICROPY_PORT_B ( 0 )
|
||||
#define MICROPY_PORT_C ( 0 )
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -33,7 +33,7 @@
|
|||
#define MICROPY_PORT_B ( 0 )
|
||||
#define MICROPY_PORT_C ( 0 )
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -33,7 +33,7 @@
|
|||
#define MICROPY_PORT_B (PORT_PB22 | PORT_PB23 | PORT_PB03 )
|
||||
#define MICROPY_PORT_C (0)
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -34,7 +34,7 @@
|
|||
#define MICROPY_PORT_B (PORT_PB03 | PORT_PB22 | PORT_PB23)
|
||||
#define MICROPY_PORT_C (0)
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -40,7 +40,7 @@
|
|||
|
||||
#define AUTORESET_DELAY_MS 500
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code
|
||||
|
|
|
@ -40,7 +40,7 @@
|
|||
|
||||
#define CALIBRATE_CRYSTALLESS 1
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
@ -49,4 +49,3 @@
|
|||
#define BOARD_FLASH_SIZE (0x00040000 - 0x2000 - CIRCUITPY_INTERNAL_NVM_SIZE)
|
||||
|
||||
#include "flash_W25Q32BV.h"
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@
|
|||
|
||||
#define CALIBRATE_CRYSTALLESS 1
|
||||
|
||||
#include "spi_flash.h"
|
||||
#include "external_flash.h"
|
||||
|
||||
// If you change this, then make sure to update the linker scripts as well to
|
||||
// make sure you don't overwrite code.
|
||||
|
|
|
@ -0,0 +1,663 @@
|
|||
/*
|
||||
* This file is part of the MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
#include "external_flash.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "extmod/vfs.h"
|
||||
#include "extmod/vfs_fat.h"
|
||||
#include "py/misc.h"
|
||||
#include "py/obj.h"
|
||||
#include "py/runtime.h"
|
||||
#include "lib/oofatfs/ff.h"
|
||||
#include "peripherals.h"
|
||||
#include "spi_flash_api.h"
|
||||
#include "supervisor/shared/rgb_led_status.h"
|
||||
|
||||
//#include "shared_dma.h"
|
||||
|
||||
#include "hal_gpio.h"
|
||||
#include "hal_spi_m_sync.h"
|
||||
|
||||
#define SPI_FLASH_PART1_START_BLOCK (0x1)
|
||||
|
||||
#define NO_SECTOR_LOADED 0xFFFFFFFF
|
||||
|
||||
#define CMD_READ_JEDEC_ID 0x9f
|
||||
#define CMD_READ_DATA 0x03
|
||||
#define CMD_SECTOR_ERASE 0x20
|
||||
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
|
||||
#define CMD_DISABLE_WRITE 0x04
|
||||
#define CMD_ENABLE_WRITE 0x06
|
||||
#define CMD_PAGE_PROGRAM 0x02
|
||||
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
|
||||
#define CMD_READ_STATUS 0x05
|
||||
#define CMD_WRITE_STATUS_BYTE1 0x01
|
||||
|
||||
static bool spi_flash_is_initialised = false;
|
||||
|
||||
struct spi_m_sync_descriptor spi_flash_desc;
|
||||
|
||||
// The currently cached sector in the cache, ram or flash based.
|
||||
static uint32_t current_sector;
|
||||
|
||||
// Track which blocks (up to 32) in the current sector currently live in the
|
||||
// cache.
|
||||
static uint32_t dirty_mask;
|
||||
|
||||
// Address of the scratch flash sector.
|
||||
#define SCRATCH_SECTOR (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE)
|
||||
|
||||
// Wait until both the write enable and write in progress bits have cleared.
|
||||
static bool wait_for_flash_ready(void) {
|
||||
uint8_t read_status_request[2] = {CMD_READ_STATUS, 0x00};
|
||||
uint8_t read_status_response[2] = {0x00, 0x00};
|
||||
bool ok = true;
|
||||
// Both the write enable and write in progress bits should be low.
|
||||
do {
|
||||
ok = spi_flash_command(read_status_request, read_status_response, 2);
|
||||
} while (ok && (read_status_response[1] & 0x3) != 0);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Turn on the write enable bit so we can program and erase the flash.
|
||||
static bool write_enable(void) {
|
||||
uint8_t enable_write_request[1] = {CMD_ENABLE_WRITE};
|
||||
return spi_flash_command(enable_write_request, 0, 1);
|
||||
}
|
||||
|
||||
// Read data_length's worth of bytes starting at address into data.
|
||||
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
if (!spi_flash_is_initialised) {
|
||||
return false;
|
||||
}
|
||||
if (!wait_for_flash_ready()) {
|
||||
return false;
|
||||
}
|
||||
return spi_flash_read_data(address, data, data_length);
|
||||
}
|
||||
|
||||
// Writes data_length's worth of bytes starting at address from data. Assumes
|
||||
// that the sector that address resides in has already been erased. So make sure
|
||||
// to run erase_sector.
|
||||
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
|
||||
if (!spi_flash_is_initialised) {
|
||||
return false;
|
||||
}
|
||||
// Don't bother writing if the data is all 1s. Thats equivalent to the flash
|
||||
// state after an erase.
|
||||
bool all_ones = true;
|
||||
for (uint16_t i = 0; i < data_length; i++) {
|
||||
if (data[i] != 0xff) {
|
||||
all_ones = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (all_ones) {
|
||||
return true;
|
||||
}
|
||||
|
||||
for (uint32_t bytes_written = 0;
|
||||
bytes_written < data_length;
|
||||
bytes_written += SPI_FLASH_PAGE_SIZE) {
|
||||
if (!wait_for_flash_ready() || !write_enable()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!spi_flash_write_data(address + bytes_written, (uint8_t*) data + bytes_written,
|
||||
SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool page_erased(uint32_t sector_address) {
|
||||
// Check the first few bytes to catch the common case where there is data
|
||||
// without using a bunch of memory.
|
||||
uint8_t short_buffer[4];
|
||||
if (read_flash(sector_address, short_buffer, 4)) {
|
||||
for (uint16_t i = 0; i < 4; i++) {
|
||||
if (short_buffer[i] != 0xff) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Now check the full length.
|
||||
uint8_t full_buffer[FILESYSTEM_BLOCK_SIZE];
|
||||
if (read_flash(sector_address, full_buffer, FILESYSTEM_BLOCK_SIZE)) {
|
||||
for (uint16_t i = 0; i < FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if (short_buffer[i] != 0xff) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Erases the given sector. Make sure you copied all of the data out of it you
|
||||
// need! Also note, sector_address is really 24 bits.
|
||||
static bool erase_sector(uint32_t sector_address) {
|
||||
// Before we erase the sector we need to wait for any writes to finish and
|
||||
// and then enable the write again.
|
||||
if (!wait_for_flash_ready() || !write_enable()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
spi_flash_sector_command(CMD_SECTOR_ERASE, sector_address);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Sector is really 24 bits.
|
||||
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
|
||||
// Copy page by page to minimize RAM buffer.
|
||||
uint8_t buffer[SPI_FLASH_PAGE_SIZE];
|
||||
for (uint32_t i = 0; i < FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE; i++) {
|
||||
if (!read_flash(src_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
if (!write_flash(dest_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void external_flash_init(void) {
|
||||
if (spi_flash_is_initialised) {
|
||||
return;
|
||||
}
|
||||
|
||||
spi_flash_init();
|
||||
|
||||
// Activity LED for flash writes.
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
gpio_set_pin_function(SPI_FLASH_CS_PIN, GPIO_PIN_FUNCTION_OFF);
|
||||
gpio_set_pin_direction(MICROPY_HW_LED_MSC, GPIO_DIRECTION_OUT);
|
||||
// There's already a pull-up on the board.
|
||||
gpio_set_pin_level(MICROPY_HW_LED_MSC, false);
|
||||
#endif
|
||||
|
||||
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
|
||||
uint8_t jedec_id_response[4] = {0x00, 0x00, 0x00, 0x00};
|
||||
spi_flash_command(jedec_id_request, jedec_id_response, 4);
|
||||
|
||||
uint8_t manufacturer = jedec_id_response[1];
|
||||
if ((jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER
|
||||
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
|| jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
#endif
|
||||
) &&
|
||||
jedec_id_response[2] == SPI_FLASH_JEDEC_MEMORY_TYPE &&
|
||||
jedec_id_response[3] == SPI_FLASH_JEDEC_CAPACITY) {
|
||||
spi_flash_is_initialised = true;
|
||||
} else {
|
||||
// Unknown flash chip!
|
||||
spi_flash_is_initialised = false;
|
||||
return;
|
||||
}
|
||||
|
||||
if ((manufacturer == SPI_FLASH_JEDEC_MANUFACTURER && SPI_FLASH_SECTOR_PROTECTION)
|
||||
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
|| (manufacturer == SPI_FLASH_JEDEC_MANUFACTURER_2 && SPI_FLASH_SECTOR_PROTECTION_2)
|
||||
#endif
|
||||
) {
|
||||
write_enable();
|
||||
|
||||
// Turn off sector protection
|
||||
uint8_t disable_protect_request[2] = {CMD_WRITE_STATUS_BYTE1, 0x00};
|
||||
spi_flash_command(disable_protect_request, NULL, 2);
|
||||
}
|
||||
|
||||
// Turn off writes in case this is a microcontroller only reset.
|
||||
uint8_t disable_write_request[1] = {CMD_DISABLE_WRITE};
|
||||
spi_flash_command(disable_write_request, NULL, 1);
|
||||
|
||||
wait_for_flash_ready();
|
||||
|
||||
current_sector = NO_SECTOR_LOADED;
|
||||
dirty_mask = 0;
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
|
||||
spi_flash_is_initialised = true;
|
||||
}
|
||||
|
||||
// The size of each individual block.
|
||||
uint32_t external_flash_get_block_size(void) {
|
||||
return FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
// The total number of available blocks.
|
||||
uint32_t external_flash_get_block_count(void) {
|
||||
// We subtract one erase sector size because we may use it as a staging area
|
||||
// for writes.
|
||||
return SPI_FLASH_PART1_START_BLOCK + (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE) / FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
// Flush the cache that was written to the scratch portion of flash. Only used
|
||||
// when ram is tight.
|
||||
static bool flush_scratch_flash(void) {
|
||||
// First, copy out any blocks that we haven't touched from the sector we've
|
||||
// cached.
|
||||
bool copy_to_scratch_ok = true;
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if ((dirty_mask & (1 << i)) == 0) {
|
||||
copy_to_scratch_ok = copy_to_scratch_ok &&
|
||||
copy_block(current_sector + i * FILESYSTEM_BLOCK_SIZE,
|
||||
SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
if (!copy_to_scratch_ok) {
|
||||
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
|
||||
// in. We still risk losing the data written to the scratch sector.
|
||||
return false;
|
||||
}
|
||||
// Second, erase the current sector.
|
||||
erase_sector(current_sector);
|
||||
// Finally, copy the new version into it.
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
copy_block(SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE,
|
||||
current_sector + i * FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Attempts to allocate a new set of page buffers for caching a full sector in
|
||||
// ram. Each page is allocated separately so that the GC doesn't need to provide
|
||||
// one huge block. We can free it as we write if we want to also.
|
||||
static bool allocate_ram_cache(void) {
|
||||
uint8_t blocks_per_sector = SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE;
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
MP_STATE_VM(flash_ram_cache) = m_malloc_maybe(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL) {
|
||||
return false;
|
||||
}
|
||||
// Declare i and j outside the loops in case we fail to allocate everything
|
||||
// we need. In that case we'll give it back.
|
||||
uint8_t i = 0;
|
||||
uint8_t j = 0;
|
||||
bool success = true;
|
||||
for (i = 0; i < blocks_per_sector; i++) {
|
||||
for (j = 0; j < pages_per_block; j++) {
|
||||
uint8_t *page_cache = m_malloc_maybe(SPI_FLASH_PAGE_SIZE, false);
|
||||
if (page_cache == NULL) {
|
||||
success = false;
|
||||
break;
|
||||
}
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j] = page_cache;
|
||||
}
|
||||
if (!success) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// We couldn't allocate enough so give back what we got.
|
||||
if (!success) {
|
||||
// We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
|
||||
// would never stop because i is unsigned.
|
||||
i++;
|
||||
for (; i > 0; i--) {
|
||||
for (; j > 0; j--) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache)[(i - 1) * pages_per_block + (j - 1)]);
|
||||
}
|
||||
j = pages_per_block;
|
||||
}
|
||||
m_free(MP_STATE_VM(flash_ram_cache));
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
}
|
||||
return success;
|
||||
}
|
||||
|
||||
// Flush the cached sector from ram onto the flash. We'll free the cache unless
|
||||
// keep_cache is true.
|
||||
static bool flush_ram_cache(bool keep_cache) {
|
||||
// First, copy out any blocks that we haven't touched from the sector
|
||||
// we've cached. If we don't do this we'll erase the data during the sector
|
||||
// erase below.
|
||||
bool copy_to_ram_ok = true;
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if ((dirty_mask & (1 << i)) == 0) {
|
||||
for (uint8_t j = 0; j < pages_per_block; j++) {
|
||||
copy_to_ram_ok = read_flash(
|
||||
current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
if (!copy_to_ram_ok) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!copy_to_ram_ok) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!copy_to_ram_ok) {
|
||||
return false;
|
||||
}
|
||||
// Second, erase the current sector.
|
||||
erase_sector(current_sector);
|
||||
// Lastly, write all the data in ram that we've cached.
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
for (uint8_t j = 0; j < pages_per_block; j++) {
|
||||
write_flash(current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
if (!keep_cache) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
// We're done with the cache for now so give it back.
|
||||
if (!keep_cache) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache));
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Delegates to the correct flash flush method depending on the existing cache.
|
||||
static void spi_flash_flush_keep_cache(bool keep_cache) {
|
||||
if (current_sector == NO_SECTOR_LOADED) {
|
||||
return;
|
||||
}
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
|
||||
#endif
|
||||
temp_status_color(ACTIVE_WRITE);
|
||||
// If we've cached to the flash itself flush from there.
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL) {
|
||||
flush_scratch_flash();
|
||||
} else {
|
||||
flush_ram_cache(keep_cache);
|
||||
}
|
||||
current_sector = NO_SECTOR_LOADED;
|
||||
clear_temp_status();
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
|
||||
#endif
|
||||
}
|
||||
|
||||
// External flash function used. If called externally we assume we won't need
|
||||
// the cache after.
|
||||
void external_flash_flush(void) {
|
||||
spi_flash_flush_keep_cache(false);
|
||||
}
|
||||
|
||||
void flash_flush(void) {
|
||||
external_flash_flush();
|
||||
}
|
||||
|
||||
// Builds a partition entry for the MBR.
|
||||
static void build_partition(uint8_t *buf, int boot, int type,
|
||||
uint32_t start_block, uint32_t num_blocks) {
|
||||
buf[0] = boot;
|
||||
|
||||
if (num_blocks == 0) {
|
||||
buf[1] = 0;
|
||||
buf[2] = 0;
|
||||
buf[3] = 0;
|
||||
} else {
|
||||
buf[1] = 0xff;
|
||||
buf[2] = 0xff;
|
||||
buf[3] = 0xff;
|
||||
}
|
||||
|
||||
buf[4] = type;
|
||||
|
||||
if (num_blocks == 0) {
|
||||
buf[5] = 0;
|
||||
buf[6] = 0;
|
||||
buf[7] = 0;
|
||||
} else {
|
||||
buf[5] = 0xff;
|
||||
buf[6] = 0xff;
|
||||
buf[7] = 0xff;
|
||||
}
|
||||
|
||||
buf[8] = start_block;
|
||||
buf[9] = start_block >> 8;
|
||||
buf[10] = start_block >> 16;
|
||||
buf[11] = start_block >> 24;
|
||||
|
||||
buf[12] = num_blocks;
|
||||
buf[13] = num_blocks >> 8;
|
||||
buf[14] = num_blocks >> 16;
|
||||
buf[15] = num_blocks >> 24;
|
||||
}
|
||||
|
||||
static int32_t convert_block_to_flash_addr(uint32_t block) {
|
||||
if (SPI_FLASH_PART1_START_BLOCK <= block && block < external_flash_get_block_count()) {
|
||||
// a block in partition 1
|
||||
block -= SPI_FLASH_PART1_START_BLOCK;
|
||||
return block * FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
// bad block
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool external_flash_read_block(uint8_t *dest, uint32_t block) {
|
||||
if (block == 0) {
|
||||
// Fake the MBR so we can decide on our own partition table
|
||||
for (int i = 0; i < 446; i++) {
|
||||
dest[i] = 0;
|
||||
}
|
||||
|
||||
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
|
||||
SPI_FLASH_PART1_START_BLOCK,
|
||||
external_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
|
||||
build_partition(dest + 462, 0, 0, 0, 0);
|
||||
build_partition(dest + 478, 0, 0, 0, 0);
|
||||
build_partition(dest + 494, 0, 0, 0, 0);
|
||||
|
||||
dest[510] = 0x55;
|
||||
dest[511] = 0xaa;
|
||||
|
||||
return true;
|
||||
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
|
||||
memset(dest, 0, FILESYSTEM_BLOCK_SIZE);
|
||||
return true;
|
||||
} else {
|
||||
// Non-MBR block, get data from flash memory.
|
||||
int32_t address = convert_block_to_flash_addr(block);
|
||||
if (address == -1) {
|
||||
// bad block number
|
||||
return false;
|
||||
}
|
||||
|
||||
// Mask out the lower bits that designate the address within the sector.
|
||||
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
|
||||
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
|
||||
uint8_t mask = 1 << (block_index);
|
||||
// We're reading from the currently cached sector.
|
||||
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
|
||||
if (MP_STATE_VM(flash_ram_cache) != NULL) {
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (int i = 0; i < pages_per_block; i++) {
|
||||
memcpy(dest + i * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
|
||||
return read_flash(scratch_address, dest, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
return read_flash(address, dest, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
bool external_flash_write_block(const uint8_t *data, uint32_t block) {
|
||||
if (block < SPI_FLASH_PART1_START_BLOCK) {
|
||||
// Fake writing below the flash partition.
|
||||
return true;
|
||||
} else {
|
||||
// Non-MBR block, copy to cache
|
||||
int32_t address = convert_block_to_flash_addr(block);
|
||||
if (address == -1) {
|
||||
// bad block number
|
||||
return false;
|
||||
}
|
||||
// Wait for any previous writes to finish.
|
||||
wait_for_flash_ready();
|
||||
// Mask out the lower bits that designate the address within the sector.
|
||||
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
|
||||
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
|
||||
uint8_t mask = 1 << (block_index);
|
||||
// Flush the cache if we're moving onto a sector or we're writing the
|
||||
// same block again.
|
||||
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
|
||||
// Check to see if we'd write to an erased page. In that case we
|
||||
// can write directly.
|
||||
if (page_erased(address)) {
|
||||
return write_flash(address, data, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
if (current_sector != NO_SECTOR_LOADED) {
|
||||
spi_flash_flush_keep_cache(true);
|
||||
}
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL && !allocate_ram_cache()) {
|
||||
erase_sector(SCRATCH_SECTOR);
|
||||
wait_for_flash_ready();
|
||||
}
|
||||
current_sector = this_sector;
|
||||
dirty_mask = 0;
|
||||
}
|
||||
dirty_mask |= mask;
|
||||
// Copy the block to the appropriate cache.
|
||||
if (MP_STATE_VM(flash_ram_cache) != NULL) {
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (int i = 0; i < pages_per_block; i++) {
|
||||
memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
|
||||
data + i * SPI_FLASH_PAGE_SIZE,
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
|
||||
return write_flash(scratch_address, data, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mp_uint_t external_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
|
||||
for (size_t i = 0; i < num_blocks; i++) {
|
||||
if (!external_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
|
||||
return 1; // error
|
||||
}
|
||||
}
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
mp_uint_t external_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
|
||||
for (size_t i = 0; i < num_blocks; i++) {
|
||||
if (!external_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
|
||||
return 1; // error
|
||||
}
|
||||
}
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
// MicroPython bindings
|
||||
//
|
||||
// Expose the flash as an object with the block protocol.
|
||||
|
||||
// there is a singleton Flash object
|
||||
STATIC const mp_obj_base_t external_flash_obj = {&external_flash_type};
|
||||
|
||||
STATIC mp_obj_t external_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check arguments
|
||||
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
||||
|
||||
// return singleton object
|
||||
return (mp_obj_t)&external_flash_obj;
|
||||
}
|
||||
|
||||
STATIC mp_obj_t external_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
|
||||
mp_uint_t ret = external_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
|
||||
return MP_OBJ_NEW_SMALL_INT(ret);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(external_flash_obj_readblocks_obj, external_flash_obj_readblocks);
|
||||
|
||||
STATIC mp_obj_t external_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
|
||||
mp_uint_t ret = external_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
|
||||
return MP_OBJ_NEW_SMALL_INT(ret);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(external_flash_obj_writeblocks_obj, external_flash_obj_writeblocks);
|
||||
|
||||
STATIC mp_obj_t external_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
|
||||
mp_int_t cmd = mp_obj_get_int(cmd_in);
|
||||
switch (cmd) {
|
||||
case BP_IOCTL_INIT: external_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
|
||||
case BP_IOCTL_DEINIT: external_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
|
||||
case BP_IOCTL_SYNC: external_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
|
||||
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(external_flash_get_block_count());
|
||||
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(external_flash_get_block_size());
|
||||
default: return mp_const_none;
|
||||
}
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(external_flash_obj_ioctl_obj, external_flash_obj_ioctl);
|
||||
|
||||
STATIC const mp_rom_map_elem_t external_flash_obj_locals_dict_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&external_flash_obj_readblocks_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&external_flash_obj_writeblocks_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&external_flash_obj_ioctl_obj) },
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(external_flash_obj_locals_dict, external_flash_obj_locals_dict_table);
|
||||
|
||||
const mp_obj_type_t external_flash_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_SPIFlash,
|
||||
.make_new = external_flash_obj_make_new,
|
||||
.locals_dict = (mp_obj_t)&external_flash_obj_locals_dict,
|
||||
};
|
||||
|
||||
void flash_init_vfs(fs_user_mount_t *vfs) {
|
||||
vfs->base.type = &mp_fat_vfs_type;
|
||||
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
|
||||
vfs->fatfs.drv = vfs;
|
||||
vfs->fatfs.part = 1; // flash filesystem lives on first partition
|
||||
vfs->readblocks[0] = (mp_obj_t)&external_flash_obj_readblocks_obj;
|
||||
vfs->readblocks[1] = (mp_obj_t)&external_flash_obj;
|
||||
vfs->readblocks[2] = (mp_obj_t)external_flash_read_blocks; // native version
|
||||
vfs->writeblocks[0] = (mp_obj_t)&external_flash_obj_writeblocks_obj;
|
||||
vfs->writeblocks[1] = (mp_obj_t)&external_flash_obj;
|
||||
vfs->writeblocks[2] = (mp_obj_t)external_flash_write_blocks; // native version
|
||||
vfs->u.ioctl[0] = (mp_obj_t)&external_flash_obj_ioctl_obj;
|
||||
vfs->u.ioctl[1] = (mp_obj_t)&external_flash_obj;
|
||||
}
|
|
@ -23,8 +23,8 @@
|
|||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
||||
#define MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
||||
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_EXTERNAL_FLASH_H
|
||||
#define MICROPY_INCLUDED_ATMEL_SAMD_EXTERNAL_FLASH_H
|
||||
|
||||
#include <stdbool.h>
|
||||
|
||||
|
@ -40,21 +40,21 @@
|
|||
#define SPI_FLASH_SYSTICK_MASK (0x1ff) // 512ms
|
||||
#define SPI_FLASH_IDLE_TICK(tick) (((tick) & SPI_FLASH_SYSTICK_MASK) == 2)
|
||||
|
||||
void spi_flash_init(void);
|
||||
uint32_t spi_flash_get_block_size(void);
|
||||
uint32_t spi_flash_get_block_count(void);
|
||||
void spi_flash_irq_handler(void);
|
||||
void spi_flash_flush(void);
|
||||
bool spi_flash_read_block(uint8_t *dest, uint32_t block);
|
||||
bool spi_flash_write_block(const uint8_t *src, uint32_t block);
|
||||
void external_flash_init(void);
|
||||
uint32_t external_flash_get_block_size(void);
|
||||
uint32_t external_flash_get_block_count(void);
|
||||
void external_flash_irq_handler(void);
|
||||
void external_flash_flush(void);
|
||||
bool external_flash_read_block(uint8_t *dest, uint32_t block);
|
||||
bool external_flash_write_block(const uint8_t *src, uint32_t block);
|
||||
|
||||
// these return 0 on success, non-zero on error
|
||||
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
|
||||
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
|
||||
mp_uint_t external_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
|
||||
mp_uint_t external_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
|
||||
|
||||
extern const struct _mp_obj_type_t spi_flash_type;
|
||||
extern const struct _mp_obj_type_t external_flash_type;
|
||||
|
||||
struct _fs_user_mount_t;
|
||||
void flash_init_vfs(struct _fs_user_mount_t *vfs);
|
||||
|
||||
#endif // MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
||||
#endif // MICROPY_INCLUDED_ATMEL_SAMD_EXTERNAL_FLASH_H
|
|
@ -0,0 +1,74 @@
|
|||
/*
|
||||
* This file is part of the MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "spi_flash_api.h"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "atmel_start_pins.h"
|
||||
#include "hal_gpio.h"
|
||||
|
||||
bool spi_flash_command(uint8_t* request, uint8_t* response, uint32_t length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool spi_flash_sector_command(uint8_t command, uint32_t address) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void spi_flash_init(void) {
|
||||
MCLK->APBCMASK.bit.QSPI_ = true;
|
||||
MCLK->AHBMASK.bit.QSPI_ = true;
|
||||
MCLK->AHBMASK.bit.QSPI_2X_ = false; // Only true if we are doing DDR.
|
||||
|
||||
QSPI->CTRLA.reg = QSPI_CTRLA_SWRST;
|
||||
// We don't need to wait because we're running as fast as the CPU.
|
||||
|
||||
QSPI->BAUD.bit.BAUD = 2;
|
||||
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY |
|
||||
QSPI_CTRLB_CSMODE_NORELOAD |
|
||||
QSPI_CTRLB_DATALEN_8BITS |
|
||||
QSPI_CTRLB_CSMODE_LASTXFER;
|
||||
|
||||
QSPI->CTRLA.bit.ENABLE = 1;
|
||||
|
||||
// The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it.
|
||||
uint32_t pins[6] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11};
|
||||
for (uint8_t i = 0; i < 6; i++) {
|
||||
gpio_set_pin_direction(pins[i], GPIO_DIRECTION_IN);
|
||||
gpio_set_pin_pull_mode(pins[i], GPIO_PULL_OFF);
|
||||
gpio_set_pin_function(pins[i], GPIO_PIN_FUNCTION_H);
|
||||
}
|
||||
}
|
|
@ -28,49 +28,13 @@
|
|||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "extmod/vfs.h"
|
||||
#include "extmod/vfs_fat.h"
|
||||
#include "py/misc.h"
|
||||
#include "py/obj.h"
|
||||
#include "py/runtime.h"
|
||||
#include "lib/oofatfs/ff.h"
|
||||
#include "peripherals.h"
|
||||
#include "supervisor/shared/rgb_led_status.h"
|
||||
|
||||
//#include "shared_dma.h"
|
||||
|
||||
#include "hal_gpio.h"
|
||||
#include "hal_spi_m_sync.h"
|
||||
|
||||
#define SPI_FLASH_PART1_START_BLOCK (0x1)
|
||||
|
||||
#define NO_SECTOR_LOADED 0xFFFFFFFF
|
||||
|
||||
#define CMD_READ_JEDEC_ID 0x9f
|
||||
#define CMD_READ_DATA 0x03
|
||||
#define CMD_SECTOR_ERASE 0x20
|
||||
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
|
||||
#define CMD_DISABLE_WRITE 0x04
|
||||
#define CMD_ENABLE_WRITE 0x06
|
||||
#define CMD_PAGE_PROGRAM 0x02
|
||||
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
|
||||
#define CMD_READ_STATUS 0x05
|
||||
#define CMD_WRITE_STATUS_BYTE1 0x01
|
||||
|
||||
static bool spi_flash_is_initialised = false;
|
||||
|
||||
struct spi_m_sync_descriptor spi_flash_desc;
|
||||
|
||||
// The currently cached sector in the cache, ram or flash based.
|
||||
static uint32_t current_sector;
|
||||
|
||||
// Track which blocks (up to 32) in the current sector currently live in the
|
||||
// cache.
|
||||
static uint32_t dirty_mask;
|
||||
|
||||
// Address of the scratch flash sector.
|
||||
#define SCRATCH_SECTOR (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE)
|
||||
|
||||
// Enable the flash over SPI.
|
||||
static void flash_enable(void) {
|
||||
gpio_set_pin_level(SPI_FLASH_CS_PIN, false);
|
||||
|
@ -81,30 +45,34 @@ static void flash_disable(void) {
|
|||
gpio_set_pin_level(SPI_FLASH_CS_PIN, true);
|
||||
}
|
||||
|
||||
static void spi_flash_command(uint8_t* request, uint8_t* response, uint32_t length) {
|
||||
void spi_flash_command(uint8_t* request, uint8_t* response, uint32_t length) {
|
||||
struct spi_xfer xfer = { request, response, length };
|
||||
flash_enable();
|
||||
spi_m_sync_transfer(&spi_flash_desc, &jedec_id_xfer);
|
||||
spi_m_sync_transfer(&spi_flash_desc, &xfer);
|
||||
flash_disable();
|
||||
}
|
||||
|
||||
static void qspi_flash_command(uint8_t* request, uint8_t* response, uint32_t length) {
|
||||
|
||||
// Pack the low 24 bits of the address into a uint8_t array.
|
||||
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
|
||||
bytes[0] = (address >> 16) & 0xff;
|
||||
bytes[1] = (address >> 8) & 0xff;
|
||||
bytes[2] = address & 0xff;
|
||||
}
|
||||
|
||||
static void flash_command(uint8_t* request, uint8_t* response, uint32_t length) {
|
||||
#ifdef CIRCUITPY_QSPI
|
||||
qspi_flash_command(request, response, length);
|
||||
#else
|
||||
spi_flash_command(request, response, length);
|
||||
#endif
|
||||
void spi_flash_sector_command(uint8_t command, uint32_t address) {
|
||||
uint8_t request[4] = {command, 0x00, 0x00, 0x00};
|
||||
address_to_bytes(address, page_program_request + 1);
|
||||
struct spi_xfer xfer = { request, NULL, 4 };
|
||||
flash_enable();
|
||||
spi_m_sync_transfer(&spi_flash_desc, &xfer);
|
||||
flash_disable();
|
||||
}
|
||||
|
||||
static bool spi_flash_write_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
flash_enable();
|
||||
uint8_t page_program_request[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
|
||||
// Write the SPI flash write address into the bytes following the command byte.
|
||||
address_to_bytes(address + bytes_written, page_program_request + 1);
|
||||
address_to_bytes(address, page_program_request + 1);
|
||||
struct spi_xfer page_program_xfer = {request, 0, request_length};
|
||||
int32_t status = spi_m_sync_transfer(&spi_flash_desc, &page_program_xfer);
|
||||
if (status >= 0) {
|
||||
|
@ -115,181 +83,11 @@ static bool spi_flash_write_data(uint8_t* request, uint32_t request_length, uint
|
|||
return status >= 0;
|
||||
}
|
||||
|
||||
static bool qspi_flash_write_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool flash_write_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
#ifdef CIRCUITPY_QSPI
|
||||
return qspi_flash_write_data(request, request_length, data, data_length);
|
||||
#else
|
||||
return spi_flash_write_data(request, request_length, data, data_length);
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool spi_flash_read_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
|
||||
}
|
||||
|
||||
static bool qspi_flash_read_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool flash_read_data(uint8_t* request, uint32_t request_length, uint8_t* data, uint32_t data_length) {
|
||||
#ifdef CIRCUITPY_QSPI
|
||||
return qspi_flash_write_data(request, request_length, data, data_length);
|
||||
#else
|
||||
return spi_flash_write_data(request, request_length, data, data_length);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Wait until both the write enable and write in progress bits have cleared.
|
||||
static bool wait_for_flash_ready(void) {
|
||||
uint8_t read_status_request[2] = {CMD_READ_STATUS, 0x00};
|
||||
uint8_t read_status_response[2] = {0x00, 0x00};
|
||||
bool ok = true;
|
||||
// Both the write enable and write in progress bits should be low.
|
||||
do {
|
||||
ok = flash_command(read_status_request, read_status_response, 2);
|
||||
} while (ok && (read_status_response[1] & 0x3) != 0);
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Turn on the write enable bit so we can program and erase the flash.
|
||||
static bool write_enable(void) {
|
||||
uint8_t enable_write_request[1] = {CMD_ENABLE_WRITE};
|
||||
return flash_command(enable_write_request, 0, 1);
|
||||
}
|
||||
|
||||
// Pack the low 24 bits of the address into a uint8_t array.
|
||||
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
|
||||
bytes[0] = (address >> 16) & 0xff;
|
||||
bytes[1] = (address >> 8) & 0xff;
|
||||
bytes[2] = address & 0xff;
|
||||
}
|
||||
|
||||
// Read data_length's worth of bytes starting at address into data.
|
||||
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
|
||||
if (!spi_flash_is_initialised) {
|
||||
return false;
|
||||
}
|
||||
if (!wait_for_flash_ready()) {
|
||||
return false;
|
||||
}
|
||||
// We can read as much as we want sequentially.
|
||||
uint8_t read_data_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
|
||||
// Write the SPI flash read address into the bytes following the command byte.
|
||||
address_to_bytes(address, read_data_request + 1);
|
||||
return flash_read_data(read_data_request, 4, data, data_length);
|
||||
}
|
||||
|
||||
// Writes data_length's worth of bytes starting at address from data. Assumes
|
||||
// that the sector that address resides in has already been erased. So make sure
|
||||
// to run erase_sector.
|
||||
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
|
||||
if (!spi_flash_is_initialised) {
|
||||
return false;
|
||||
}
|
||||
// Don't bother writing if the data is all 1s. Thats equivalent to the flash
|
||||
// state after an erase.
|
||||
bool all_ones = true;
|
||||
for (uint16_t i = 0; i < data_length; i++) {
|
||||
if (data[i] != 0xff) {
|
||||
all_ones = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (all_ones) {
|
||||
return true;
|
||||
}
|
||||
|
||||
for (uint32_t bytes_written = 0;
|
||||
bytes_written < data_length;
|
||||
bytes_written += SPI_FLASH_PAGE_SIZE) {
|
||||
if (!wait_for_flash_ready() || !write_enable()) {
|
||||
return false;
|
||||
}
|
||||
int32_t status;
|
||||
|
||||
#ifdef SPI_FLASH_SECTOR_PROTECTION
|
||||
// Print out the protection status.
|
||||
// uint8_t protect_check[5] = {0x3C, 0x00, 0x00, 0x00, 0x00};
|
||||
// address_to_bytes(address + bytes_written, protect_check + 1);
|
||||
// flash_enable();
|
||||
// status = spi_write_buffer_wait(&spi_flash_desc, protect_check, 5);
|
||||
// flash_disable();
|
||||
#endif
|
||||
|
||||
uint8_t page_program_request[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
|
||||
// Write the SPI flash write address into the bytes following the command byte.
|
||||
address_to_bytes(address + bytes_written, page_program_request + 1);
|
||||
if (!flash_write_data(page_program_request, 4, (uint8_t*) data + bytes_written,
|
||||
SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool page_erased(uint32_t sector_address) {
|
||||
// Check the first few bytes to catch the common case where there is data
|
||||
// without using a bunch of memory.
|
||||
uint8_t short_buffer[4];
|
||||
if (read_flash(sector_address, short_buffer, 4)) {
|
||||
for (uint16_t i = 0; i < 4; i++) {
|
||||
if (short_buffer[i] != 0xff) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Now check the full length.
|
||||
uint8_t full_buffer[FILESYSTEM_BLOCK_SIZE];
|
||||
if (read_flash(sector_address, full_buffer, FILESYSTEM_BLOCK_SIZE)) {
|
||||
for (uint16_t i = 0; i < FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if (short_buffer[i] != 0xff) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Erases the given sector. Make sure you copied all of the data out of it you
|
||||
// need! Also note, sector_address is really 24 bits.
|
||||
static bool erase_sector(uint32_t sector_address) {
|
||||
// Before we erase the sector we need to wait for any writes to finish and
|
||||
// and then enable the write again.
|
||||
if (!wait_for_flash_ready() || !write_enable()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
uint8_t erase_request[4] = {CMD_SECTOR_ERASE, 0x00, 0x00, 0x00};
|
||||
address_to_bytes(sector_address, erase_request + 1);
|
||||
flash_command(erase_request, NULL, 4);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Sector is really 24 bits.
|
||||
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
|
||||
// Copy page by page to minimize RAM buffer.
|
||||
uint8_t buffer[SPI_FLASH_PAGE_SIZE];
|
||||
for (uint32_t i = 0; i < FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE; i++) {
|
||||
if (!read_flash(src_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
if (!write_flash(dest_address + i * SPI_FLASH_PAGE_SIZE, buffer, SPI_FLASH_PAGE_SIZE)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void init_spi_peripheral(void) {
|
||||
void spi_flash_init(void) {
|
||||
samd_peripherals_sercom_clock_init(SPI_FLASH_SERCOM, SPI_FLASH_SERCOM_INDEX);
|
||||
|
||||
// Set up with defaults, then change.
|
||||
|
@ -325,506 +123,3 @@ void init_spi_peripheral(void) {
|
|||
|
||||
spi_m_sync_enable(&spi_flash_desc);
|
||||
}
|
||||
|
||||
static void init_qspi_peripheral(void) {
|
||||
MCLK->APBCMASK.bit.QSPI_ = true;
|
||||
MCLK->AHBMASK.bit.QSPI_ = true;
|
||||
MCLK->AHBMASK.bit.QSPI_2X_ = false; // Only true if we are doing DDR.
|
||||
|
||||
QSPI->CTRLA.reg = QSPI_CTRLA_SWRST;
|
||||
// We don't need to wait because we're running as fast as the CPU.
|
||||
|
||||
QSPI->BAUD.bit.BAUD = 2;
|
||||
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY |
|
||||
QSPI_CTRLB_CSMODE_NORELOAD |
|
||||
QSPI_CTRLB_DATALEN_8BITS |
|
||||
QSPI_CTRLB_CSMODE_LASTXFER;
|
||||
|
||||
QSPI->CTRLA.bit.ENABLE = 1;
|
||||
|
||||
// The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it.
|
||||
uint32_t pins = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11};
|
||||
for (uint8_t i = 0; i < sizeof(pins); i++) {
|
||||
gpio_set_pin_direction(SPI_FLASH_SCK_PIN, GPIO_DIRECTION_IN);
|
||||
gpio_set_pin_pull_mode(SPI_FLASH_SCK_PIN, GPIO_PULL_OFF);
|
||||
gpio_set_pin_function(SPI_FLASH_SCK_PIN, GPIO_PIN_FUNCTION_H);
|
||||
}
|
||||
}
|
||||
|
||||
void init_peripherals(void) {
|
||||
#ifdef CIRCUITPY_QSPI
|
||||
init_qspi_peripheral();
|
||||
#else
|
||||
init_spi_peripheral();
|
||||
#endif
|
||||
}
|
||||
|
||||
void spi_flash_init(void) {
|
||||
if (spi_flash_is_initialised) {
|
||||
return;
|
||||
}
|
||||
|
||||
init_peripherals();
|
||||
|
||||
// Activity LED for flash writes.
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
gpio_set_pin_function(SPI_FLASH_CS_PIN, GPIO_PIN_FUNCTION_OFF);
|
||||
gpio_set_pin_direction(MICROPY_HW_LED_MSC, GPIO_DIRECTION_OUT);
|
||||
// There's already a pull-up on the board.
|
||||
gpio_set_pin_level(MICROPY_HW_LED_MSC, false);
|
||||
#endif
|
||||
|
||||
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
|
||||
uint8_t jedec_id_response[4] = {0x00, 0x00, 0x00, 0x00};
|
||||
flash_command(jedec_id_request, jedec_id_response, 4);
|
||||
|
||||
uint8_t manufacturer = jedec_id_response[1];
|
||||
if ((jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER
|
||||
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
|| jedec_id_response[1] == SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
#endif
|
||||
) &&
|
||||
jedec_id_response[2] == SPI_FLASH_JEDEC_MEMORY_TYPE &&
|
||||
jedec_id_response[3] == SPI_FLASH_JEDEC_CAPACITY) {
|
||||
spi_flash_is_initialised = true;
|
||||
} else {
|
||||
// Unknown flash chip!
|
||||
spi_flash_is_initialised = false;
|
||||
return;
|
||||
}
|
||||
|
||||
if ((manufacturer == SPI_FLASH_JEDEC_MANUFACTURER && SPI_FLASH_SECTOR_PROTECTION)
|
||||
#ifdef SPI_FLASH_JEDEC_MANUFACTURER_2
|
||||
|| (manufacturer == SPI_FLASH_JEDEC_MANUFACTURER_2 && SPI_FLASH_SECTOR_PROTECTION_2)
|
||||
#endif
|
||||
) {
|
||||
write_enable();
|
||||
|
||||
// Turn off sector protection
|
||||
uint8_t disable_protect_request[2] = {CMD_WRITE_STATUS_BYTE1, 0x00};
|
||||
flash_command(disable_protect_request, NULL, 2);
|
||||
}
|
||||
|
||||
// Turn off writes in case this is a microcontroller only reset.
|
||||
uint8_t disable_write_request[1] = {CMD_DISABLE_WRITE};
|
||||
flash_command(disable_write_request, NULL, 1);
|
||||
|
||||
wait_for_flash_ready();
|
||||
|
||||
current_sector = NO_SECTOR_LOADED;
|
||||
dirty_mask = 0;
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
|
||||
spi_flash_is_initialised = true;
|
||||
}
|
||||
|
||||
// The size of each individual block.
|
||||
uint32_t spi_flash_get_block_size(void) {
|
||||
return FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
// The total number of available blocks.
|
||||
uint32_t spi_flash_get_block_count(void) {
|
||||
// We subtract one erase sector size because we may use it as a staging area
|
||||
// for writes.
|
||||
return SPI_FLASH_PART1_START_BLOCK + (SPI_FLASH_TOTAL_SIZE - SPI_FLASH_ERASE_SIZE) / FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
// Flush the cache that was written to the scratch portion of flash. Only used
|
||||
// when ram is tight.
|
||||
static bool flush_scratch_flash(void) {
|
||||
// First, copy out any blocks that we haven't touched from the sector we've
|
||||
// cached.
|
||||
bool copy_to_scratch_ok = true;
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if ((dirty_mask & (1 << i)) == 0) {
|
||||
copy_to_scratch_ok = copy_to_scratch_ok &&
|
||||
copy_block(current_sector + i * FILESYSTEM_BLOCK_SIZE,
|
||||
SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
if (!copy_to_scratch_ok) {
|
||||
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
|
||||
// in. We still risk losing the data written to the scratch sector.
|
||||
return false;
|
||||
}
|
||||
// Second, erase the current sector.
|
||||
erase_sector(current_sector);
|
||||
// Finally, copy the new version into it.
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
copy_block(SCRATCH_SECTOR + i * FILESYSTEM_BLOCK_SIZE,
|
||||
current_sector + i * FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Attempts to allocate a new set of page buffers for caching a full sector in
|
||||
// ram. Each page is allocated separately so that the GC doesn't need to provide
|
||||
// one huge block. We can free it as we write if we want to also.
|
||||
static bool allocate_ram_cache(void) {
|
||||
uint8_t blocks_per_sector = SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE;
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
MP_STATE_VM(flash_ram_cache) = m_malloc_maybe(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL) {
|
||||
return false;
|
||||
}
|
||||
// Declare i and j outside the loops in case we fail to allocate everything
|
||||
// we need. In that case we'll give it back.
|
||||
uint8_t i = 0;
|
||||
uint8_t j = 0;
|
||||
bool success = true;
|
||||
for (i = 0; i < blocks_per_sector; i++) {
|
||||
for (j = 0; j < pages_per_block; j++) {
|
||||
uint8_t *page_cache = m_malloc_maybe(SPI_FLASH_PAGE_SIZE, false);
|
||||
if (page_cache == NULL) {
|
||||
success = false;
|
||||
break;
|
||||
}
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j] = page_cache;
|
||||
}
|
||||
if (!success) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// We couldn't allocate enough so give back what we got.
|
||||
if (!success) {
|
||||
// We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
|
||||
// would never stop because i is unsigned.
|
||||
i++;
|
||||
for (; i > 0; i--) {
|
||||
for (; j > 0; j--) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache)[(i - 1) * pages_per_block + (j - 1)]);
|
||||
}
|
||||
j = pages_per_block;
|
||||
}
|
||||
m_free(MP_STATE_VM(flash_ram_cache));
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
}
|
||||
return success;
|
||||
}
|
||||
|
||||
// Flush the cached sector from ram onto the flash. We'll free the cache unless
|
||||
// keep_cache is true.
|
||||
static bool flush_ram_cache(bool keep_cache) {
|
||||
// First, copy out any blocks that we haven't touched from the sector
|
||||
// we've cached. If we don't do this we'll erase the data during the sector
|
||||
// erase below.
|
||||
bool copy_to_ram_ok = true;
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
if ((dirty_mask & (1 << i)) == 0) {
|
||||
for (uint8_t j = 0; j < pages_per_block; j++) {
|
||||
copy_to_ram_ok = read_flash(
|
||||
current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
if (!copy_to_ram_ok) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!copy_to_ram_ok) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!copy_to_ram_ok) {
|
||||
return false;
|
||||
}
|
||||
// Second, erase the current sector.
|
||||
erase_sector(current_sector);
|
||||
// Lastly, write all the data in ram that we've cached.
|
||||
for (uint8_t i = 0; i < SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE; i++) {
|
||||
for (uint8_t j = 0; j < pages_per_block; j++) {
|
||||
write_flash(current_sector + (i * pages_per_block + j) * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
if (!keep_cache) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
// We're done with the cache for now so give it back.
|
||||
if (!keep_cache) {
|
||||
m_free(MP_STATE_VM(flash_ram_cache));
|
||||
MP_STATE_VM(flash_ram_cache) = NULL;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Delegates to the correct flash flush method depending on the existing cache.
|
||||
static void spi_flash_flush_keep_cache(bool keep_cache) {
|
||||
if (current_sector == NO_SECTOR_LOADED) {
|
||||
return;
|
||||
}
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
|
||||
#endif
|
||||
temp_status_color(ACTIVE_WRITE);
|
||||
// If we've cached to the flash itself flush from there.
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL) {
|
||||
flush_scratch_flash();
|
||||
} else {
|
||||
flush_ram_cache(keep_cache);
|
||||
}
|
||||
current_sector = NO_SECTOR_LOADED;
|
||||
clear_temp_status();
|
||||
#ifdef MICROPY_HW_LED_MSC
|
||||
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
|
||||
#endif
|
||||
}
|
||||
|
||||
// External flash function used. If called externally we assume we won't need
|
||||
// the cache after.
|
||||
void spi_flash_flush(void) {
|
||||
spi_flash_flush_keep_cache(false);
|
||||
}
|
||||
|
||||
void flash_flush(void) {
|
||||
spi_flash_flush();
|
||||
}
|
||||
|
||||
// Builds a partition entry for the MBR.
|
||||
static void build_partition(uint8_t *buf, int boot, int type,
|
||||
uint32_t start_block, uint32_t num_blocks) {
|
||||
buf[0] = boot;
|
||||
|
||||
if (num_blocks == 0) {
|
||||
buf[1] = 0;
|
||||
buf[2] = 0;
|
||||
buf[3] = 0;
|
||||
} else {
|
||||
buf[1] = 0xff;
|
||||
buf[2] = 0xff;
|
||||
buf[3] = 0xff;
|
||||
}
|
||||
|
||||
buf[4] = type;
|
||||
|
||||
if (num_blocks == 0) {
|
||||
buf[5] = 0;
|
||||
buf[6] = 0;
|
||||
buf[7] = 0;
|
||||
} else {
|
||||
buf[5] = 0xff;
|
||||
buf[6] = 0xff;
|
||||
buf[7] = 0xff;
|
||||
}
|
||||
|
||||
buf[8] = start_block;
|
||||
buf[9] = start_block >> 8;
|
||||
buf[10] = start_block >> 16;
|
||||
buf[11] = start_block >> 24;
|
||||
|
||||
buf[12] = num_blocks;
|
||||
buf[13] = num_blocks >> 8;
|
||||
buf[14] = num_blocks >> 16;
|
||||
buf[15] = num_blocks >> 24;
|
||||
}
|
||||
|
||||
static int32_t convert_block_to_flash_addr(uint32_t block) {
|
||||
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
|
||||
// a block in partition 1
|
||||
block -= SPI_FLASH_PART1_START_BLOCK;
|
||||
return block * FILESYSTEM_BLOCK_SIZE;
|
||||
}
|
||||
// bad block
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
|
||||
if (block == 0) {
|
||||
// Fake the MBR so we can decide on our own partition table
|
||||
for (int i = 0; i < 446; i++) {
|
||||
dest[i] = 0;
|
||||
}
|
||||
|
||||
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
|
||||
SPI_FLASH_PART1_START_BLOCK,
|
||||
spi_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
|
||||
build_partition(dest + 462, 0, 0, 0, 0);
|
||||
build_partition(dest + 478, 0, 0, 0, 0);
|
||||
build_partition(dest + 494, 0, 0, 0, 0);
|
||||
|
||||
dest[510] = 0x55;
|
||||
dest[511] = 0xaa;
|
||||
|
||||
return true;
|
||||
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
|
||||
memset(dest, 0, FILESYSTEM_BLOCK_SIZE);
|
||||
return true;
|
||||
} else {
|
||||
// Non-MBR block, get data from flash memory.
|
||||
int32_t address = convert_block_to_flash_addr(block);
|
||||
if (address == -1) {
|
||||
// bad block number
|
||||
return false;
|
||||
}
|
||||
|
||||
// Mask out the lower bits that designate the address within the sector.
|
||||
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
|
||||
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
|
||||
uint8_t mask = 1 << (block_index);
|
||||
// We're reading from the currently cached sector.
|
||||
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
|
||||
if (MP_STATE_VM(flash_ram_cache) != NULL) {
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (int i = 0; i < pages_per_block; i++) {
|
||||
memcpy(dest + i * SPI_FLASH_PAGE_SIZE,
|
||||
MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
|
||||
return read_flash(scratch_address, dest, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
return read_flash(address, dest, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
|
||||
if (block < SPI_FLASH_PART1_START_BLOCK) {
|
||||
// Fake writing below the flash partition.
|
||||
return true;
|
||||
} else {
|
||||
// Non-MBR block, copy to cache
|
||||
int32_t address = convert_block_to_flash_addr(block);
|
||||
if (address == -1) {
|
||||
// bad block number
|
||||
return false;
|
||||
}
|
||||
// Wait for any previous writes to finish.
|
||||
wait_for_flash_ready();
|
||||
// Mask out the lower bits that designate the address within the sector.
|
||||
uint32_t this_sector = address & (~(SPI_FLASH_ERASE_SIZE - 1));
|
||||
uint8_t block_index = (address / FILESYSTEM_BLOCK_SIZE) % (SPI_FLASH_ERASE_SIZE / FILESYSTEM_BLOCK_SIZE);
|
||||
uint8_t mask = 1 << (block_index);
|
||||
// Flush the cache if we're moving onto a sector or we're writing the
|
||||
// same block again.
|
||||
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
|
||||
// Check to see if we'd write to an erased page. In that case we
|
||||
// can write directly.
|
||||
if (page_erased(address)) {
|
||||
return write_flash(address, data, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
if (current_sector != NO_SECTOR_LOADED) {
|
||||
spi_flash_flush_keep_cache(true);
|
||||
}
|
||||
if (MP_STATE_VM(flash_ram_cache) == NULL && !allocate_ram_cache()) {
|
||||
erase_sector(SCRATCH_SECTOR);
|
||||
wait_for_flash_ready();
|
||||
}
|
||||
current_sector = this_sector;
|
||||
dirty_mask = 0;
|
||||
}
|
||||
dirty_mask |= mask;
|
||||
// Copy the block to the appropriate cache.
|
||||
if (MP_STATE_VM(flash_ram_cache) != NULL) {
|
||||
uint8_t pages_per_block = FILESYSTEM_BLOCK_SIZE / SPI_FLASH_PAGE_SIZE;
|
||||
for (int i = 0; i < pages_per_block; i++) {
|
||||
memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
|
||||
data + i * SPI_FLASH_PAGE_SIZE,
|
||||
SPI_FLASH_PAGE_SIZE);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FILESYSTEM_BLOCK_SIZE;
|
||||
return write_flash(scratch_address, data, FILESYSTEM_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
|
||||
for (size_t i = 0; i < num_blocks; i++) {
|
||||
if (!spi_flash_read_block(dest + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
|
||||
return 1; // error
|
||||
}
|
||||
}
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
|
||||
for (size_t i = 0; i < num_blocks; i++) {
|
||||
if (!spi_flash_write_block(src + i * FILESYSTEM_BLOCK_SIZE, block_num + i)) {
|
||||
return 1; // error
|
||||
}
|
||||
}
|
||||
return 0; // success
|
||||
}
|
||||
|
||||
/******************************************************************************/
|
||||
// MicroPython bindings
|
||||
//
|
||||
// Expose the flash as an object with the block protocol.
|
||||
|
||||
// there is a singleton Flash object
|
||||
STATIC const mp_obj_base_t spi_flash_obj = {&spi_flash_type};
|
||||
|
||||
STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
||||
// check arguments
|
||||
mp_arg_check_num(n_args, n_kw, 0, 0, false);
|
||||
|
||||
// return singleton object
|
||||
return (mp_obj_t)&spi_flash_obj;
|
||||
}
|
||||
|
||||
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
|
||||
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
|
||||
return MP_OBJ_NEW_SMALL_INT(ret);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
|
||||
|
||||
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
|
||||
mp_buffer_info_t bufinfo;
|
||||
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
|
||||
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FILESYSTEM_BLOCK_SIZE);
|
||||
return MP_OBJ_NEW_SMALL_INT(ret);
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);
|
||||
|
||||
STATIC mp_obj_t spi_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
|
||||
mp_int_t cmd = mp_obj_get_int(cmd_in);
|
||||
switch (cmd) {
|
||||
case BP_IOCTL_INIT: spi_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
|
||||
case BP_IOCTL_DEINIT: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
|
||||
case BP_IOCTL_SYNC: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
|
||||
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_count());
|
||||
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_size());
|
||||
default: return mp_const_none;
|
||||
}
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_ioctl_obj, spi_flash_obj_ioctl);
|
||||
|
||||
STATIC const mp_rom_map_elem_t spi_flash_obj_locals_dict_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&spi_flash_obj_readblocks_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&spi_flash_obj_writeblocks_obj) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&spi_flash_obj_ioctl_obj) },
|
||||
};
|
||||
|
||||
STATIC MP_DEFINE_CONST_DICT(spi_flash_obj_locals_dict, spi_flash_obj_locals_dict_table);
|
||||
|
||||
const mp_obj_type_t spi_flash_type = {
|
||||
{ &mp_type_type },
|
||||
.name = MP_QSTR_SPIFlash,
|
||||
.make_new = spi_flash_obj_make_new,
|
||||
.locals_dict = (mp_obj_t)&spi_flash_obj_locals_dict,
|
||||
};
|
||||
|
||||
void flash_init_vfs(fs_user_mount_t *vfs) {
|
||||
vfs->base.type = &mp_fat_vfs_type;
|
||||
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
|
||||
vfs->fatfs.drv = vfs;
|
||||
vfs->fatfs.part = 1; // flash filesystem lives on first partition
|
||||
vfs->readblocks[0] = (mp_obj_t)&spi_flash_obj_readblocks_obj;
|
||||
vfs->readblocks[1] = (mp_obj_t)&spi_flash_obj;
|
||||
vfs->readblocks[2] = (mp_obj_t)spi_flash_read_blocks; // native version
|
||||
vfs->writeblocks[0] = (mp_obj_t)&spi_flash_obj_writeblocks_obj;
|
||||
vfs->writeblocks[1] = (mp_obj_t)&spi_flash_obj;
|
||||
vfs->writeblocks[2] = (mp_obj_t)spi_flash_write_blocks; // native version
|
||||
vfs->u.ioctl[0] = (mp_obj_t)&spi_flash_obj_ioctl_obj;
|
||||
vfs->u.ioctl[1] = (mp_obj_t)&spi_flash_obj;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
/*
|
||||
* This file is part of the MicroPython project, http://micropython.org/
|
||||
*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2013, 2014 Damien P. George
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
#ifndef MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
||||
#define MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
// This API is implemented for both normal SPI peripherals and QSPI peripherals.
|
||||
|
||||
bool spi_flash_command(uint8_t* request, uint8_t* response, uint32_t length);
|
||||
bool spi_flash_sector_command(uint8_t command, uint32_t address);
|
||||
bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t data_length);
|
||||
bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t data_length);
|
||||
void spi_flash_init(void);
|
||||
|
||||
#endif // MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H
|
Loading…
Reference in New Issue