Merge pull request #31 from tannewt/external_flash

Add support for external flash chips and improve mass storage.
This commit is contained in:
Scott Shawcroft 2016-10-21 16:38:57 -07:00 committed by GitHub
commit 30dc24191f
24 changed files with 1052 additions and 139 deletions

View File

@ -143,6 +143,7 @@ SRC_ASF = $(addprefix asf/sam0/,\
)
SRC_C = \
access_vfs.c \
builtin_open.c \
fatfs_port.c \
main.c \
@ -156,9 +157,8 @@ SRC_C = \
modutime.c \
mphalport.c \
pin_named_pins.c \
rom_fs.c \
samdneopixel.c \
storage.c \
$(FLASH_IMPL) \
asf/common/services/sleepmgr/samd/sleepmgr.c \
asf/common/services/storage/ctrl_access/ctrl_access.c \
asf/common/services/usb/class/cdc/device/udi_cdc.c \

View File

@ -24,10 +24,18 @@
* THE SOFTWARE.
*/
#include "rom_fs.h"
#include <string.h>
#include "access_vfs.h"
#include "asf/common/services/usb/class/msc/device/udi_msc.h"
#include "storage.h"
#include "extmod/fsusermount.h"
#include "lib/fatfs/diskio.h"
#include "py/mpconfig.h"
#include "py/mpstate.h"
#include "py/misc.h"
#define VFS_INDEX 0
//! This function tests memory state, and starts memory initialization
//! @return Ctrl_status
@ -35,42 +43,72 @@
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status rom_fs_test_unit_ready(void)
Ctrl_status vfs_test_unit_ready(void)
{
return CTRL_GOOD;
if (VFS_INDEX >= MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
return CTRL_FAIL;
}
DSTATUS status = disk_status(VFS_INDEX);
if (status == STA_NOINIT) {
return CTRL_NO_PRESENT;
}
return CTRL_GOOD;
}
//! This function returns the address of the last valid sector
//! @param uint32_t_nb_sector Pointer to number of sectors (sector=512 bytes)
//! @param uint32_t_nb_sector Pointer to the last valid sector (sector=512 bytes)
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status rom_fs_read_capacity(uint32_t *uint32_t_nb_sector)
Ctrl_status vfs_read_capacity(uint32_t *last_valid_sector)
{
*uint32_t_nb_sector = storage_get_block_count();
return CTRL_GOOD;
if (disk_ioctl(VFS_INDEX, GET_SECTOR_COUNT, last_valid_sector) != RES_OK) {
return CTRL_FAIL;
}
// Subtract one from the sector count to get the last valid sector.
(*last_valid_sector)--;
return CTRL_GOOD;
}
//! This function returns the write-protected mode
//!
//! @return true if the memory is protected
//!
bool rom_fs_wr_protect(void)
bool vfs_wr_protect(void)
{
return false;
if (VFS_INDEX >= MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
return true;
}
fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[VFS_INDEX];
if (vfs == NULL) {
return true;
}
// This is used to determine the writeability of the disk from USB.
if (vfs->writeblocks[0] == MP_OBJ_NULL ||
(vfs->flags & FSUSER_USB_WRITEABLE) == 0) {
return true;
}
return false;
}
//! This function informs about the memory type
//!
//! @return true if the memory is removable
//!
bool rom_fs_removal(void)
bool vfs_removal(void)
{
return true;
}
bool vfs_unload(bool unload)
{
return unload;
}
// TODO(tannewt): Transfer more than a single sector at a time if we need more
// speed.
//! This function transfers the memory data to the USB MSC interface
@ -84,11 +122,17 @@ bool rom_fs_removal(void)
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status rom_fs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
storage_read_block(sector_buffer, addr + sector);
DRESULT result = disk_read(VFS_INDEX, sector_buffer, addr + sector, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
if (!udi_msc_trans_block(true, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
@ -108,16 +152,36 @@ Ctrl_status rom_fs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status rom_fs_usb_write_10(uint32_t addr, uint16_t nb_sector)
Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
if (!udi_msc_trans_block(false, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
if (!storage_write_block(sector_buffer, addr + sector)) {
uint32_t sector_address = addr + sector;
DRESULT result = disk_write(VFS_INDEX, sector_buffer, sector_address, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
// Since by getting here we assume the mount is read-only to MicroPython
// lets update the cached FatFs sector if its the one we just wrote.
fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[VFS_INDEX];
volatile uint16_t x = addr;
(void) x;
#if _MAX_SS != _MIN_SS
if (vfs->ssize == FLASH_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (_MAX_SS == FLASH_BLOCK_SIZE) {
#endif
if (sector_address == vfs->fatfs.winsect && sector_address > 0) {
memcpy(vfs->fatfs.win, sector_buffer, FLASH_BLOCK_SIZE);
}
}
}
return CTRL_GOOD;
}

View File

@ -24,17 +24,20 @@
* THE SOFTWARE.
*/
// This adapts the ASF access API to MicroPython's VFS API so we can expose all
// VFS block devices as Lun's over USB mass storage control.
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H__
#include "asf/common/services/storage/ctrl_access/ctrl_access.h"
Ctrl_status rom_fs_test_unit_ready(void);
Ctrl_status rom_fs_read_capacity(uint32_t *u32_nb_sector);
bool rom_fs_wr_protect(void);
bool rom_fs_removal(void);
Ctrl_status rom_fs_usb_read_10(uint32_t addr, uint16_t nb_sector);
Ctrl_status rom_fs_usb_write_10(uint32_t addr, uint16_t nb_sector);
Ctrl_status vfs_test_unit_ready(void);
Ctrl_status vfs_read_capacity(uint32_t *u32_nb_sector);
bool vfs_wr_protect(void);
bool vfs_removal(void);
bool vfs_unload(bool);
Ctrl_status vfs_usb_read_10(uint32_t addr, uint16_t nb_sector);
Ctrl_status vfs_usb_write_10(uint32_t addr, uint16_t nb_sector);
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_ROM_FS_H__

View File

@ -68,15 +68,15 @@
/*! \name LUN 0 Definitions
*/
//! @{
#define LUN_0_INCLUDE "rom_fs.h"
#define Lun_0_test_unit_ready rom_fs_test_unit_ready
#define Lun_0_read_capacity rom_fs_read_capacity
#define Lun_0_unload NULL /* Can not be unloaded */
#define Lun_0_wr_protect rom_fs_wr_protect
#define Lun_0_removal rom_fs_removal
#define Lun_0_usb_read_10 rom_fs_usb_read_10
#define Lun_0_usb_write_10 rom_fs_usb_write_10
#define LUN_0_NAME "\"On-Chip ROM\""
#define LUN_0_INCLUDE "access_vfs.h"
#define Lun_0_test_unit_ready vfs_test_unit_ready
#define Lun_0_read_capacity vfs_read_capacity
#define Lun_0_unload NULL
#define Lun_0_wr_protect vfs_wr_protect
#define Lun_0_removal vfs_removal
#define Lun_0_usb_read_10 vfs_usb_read_10
#define Lun_0_usb_write_10 vfs_usb_write_10
#define LUN_0_NAME "\"MicroPython VFS[0]\""
//! @}
#define MEM_USB LUN_USB

View File

@ -1,3 +1,5 @@
LD_FILE = boards/samd21x18-bootloader.ld
USB_VID = 0x2341
USB_PID = 0x824D
FLASH_IMPL = internal_flash.c

View File

@ -1,3 +1,5 @@
LD_FILE = boards/samd21x18-bootloader.ld
USB_VID = 0x239A
USB_PID = 0x8015
FLASH_IMPL = internal_flash.c

View File

@ -68,15 +68,15 @@
/*! \name LUN 0 Definitions
*/
//! @{
#define LUN_0_INCLUDE "rom_fs.h"
#define Lun_0_test_unit_ready rom_fs_test_unit_ready
#define Lun_0_read_capacity rom_fs_read_capacity
#define Lun_0_unload NULL /* Can not be unloaded */
#define Lun_0_wr_protect rom_fs_wr_protect
#define Lun_0_removal rom_fs_removal
#define Lun_0_usb_read_10 rom_fs_usb_read_10
#define Lun_0_usb_write_10 rom_fs_usb_write_10
#define LUN_0_NAME "\"On-Chip ROM\""
#define LUN_0_INCLUDE "access_vfs.h"
#define Lun_0_test_unit_ready vfs_test_unit_ready
#define Lun_0_read_capacity vfs_read_capacity
#define Lun_0_unload NULL
#define Lun_0_wr_protect vfs_wr_protect
#define Lun_0_removal vfs_removal
#define Lun_0_usb_read_10 vfs_usb_read_10
#define Lun_0_usb_write_10 vfs_usb_write_10
#define LUN_0_NAME "\"MicroPython VFS[0]\""
//! @}
#define MEM_USB LUN_USB

View File

@ -1,10 +1,31 @@
// LEDs
#define MICROPY_HW_LED1 PIN_PA17 // red
// #define UART_REPL
#define USB_REPL
#define MICROPY_HW_BOARD_NAME "Adafruit Metro M0 with Flash (Experimental)"
#define MICROPY_HW_MCU_NAME "samd21g18"
#define MICROPY_HW_LED_MSC PIN_PA17
#define MICROPY_HW_LED_TX PIN_PA27
#define MICROPY_HW_LED_RX PIN_PB03
#define SPI_FLASH_BAUDRATE (1000000)
// Off-board flash
// #define SPI_FLASH_MUX_SETTING SPI_SIGNAL_MUX_SETTING_E
// #define SPI_FLASH_PAD0_PINMUX PINMUX_PA16C_SERCOM1_PAD0 // MISO D11
// Use default pinmux for the chip select since we manage it ourselves.
// #define SPI_FLASH_PAD1_PINMUX PINMUX_DEFAULT
// #define SPI_FLASH_PAD2_PINMUX PINMUX_PA18C_SERCOM1_PAD2 // MOSI D10
// #define SPI_FLASH_PAD3_PINMUX PINMUX_PA19C_SERCOM1_PAD3 // SCK D12
// #define SPI_FLASH_CS PIN_PA17
// #define SPI_FLASH_SERCOM SERCOM1
// On-board flash
#define SPI_FLASH_MUX_SETTING SPI_SIGNAL_MUX_SETTING_E
#define SPI_FLASH_PAD0_PINMUX PINMUX_PA12D_SERCOM4_PAD0 // MISO
// Use default pinmux for the chip select since we manage it ourselves.
#define SPI_FLASH_PAD1_PINMUX PINMUX_DEFAULT // CS
#define SPI_FLASH_PAD2_PINMUX PINMUX_PB10D_SERCOM4_PAD2 // MOSI
#define SPI_FLASH_PAD3_PINMUX PINMUX_PB11D_SERCOM4_PAD3 // SCK
#define SPI_FLASH_CS PIN_PA13
#define SPI_FLASH_SERCOM SERCOM4

View File

@ -1,3 +1,5 @@
LD_FILE = boards/samd21x18-bootloader-external-flash.ld
USB_VID = 0x239A
USB_PID = 0x8015
FLASH_IMPL = spi_flash.c

View File

@ -92,7 +92,7 @@ PIN(PA19, false, NO_ADC_INPUT,
TIMER(TC3, 0, 1, 1, PIN_PA19E_TC3_WO1, MUX_PA19E_TC3_WO1),
TIMER(0, TCC0, 3, 3, PIN_PA19F_TCC0_WO3, MUX_PA19F_TCC0_WO3),
SERCOM(SERCOM1, 3, PINMUX_PA19C_SERCOM1_PAD3),
SERCOM(SERCOM3, 3, PINMUX_PA19C_SERCOM1_PAD3));
SERCOM(SERCOM3, 3, PINMUX_PA19D_SERCOM3_PAD3));
PIN(PA17, false, NO_ADC_INPUT,
TIMER(0, TCC2, 1, 1, PIN_PA17E_TCC2_WO1, MUX_PA17E_TCC2_WO1),
TIMER(0, TCC0, 3, 7, PIN_PA17F_TCC0_WO7, MUX_PA17F_TCC0_WO7),

View File

@ -64,5 +64,13 @@ SECTIONS
_ebss = .;
} >RAM
/* this just checks there is enough RAM for a minimal stack */
.stack :
{
. = ALIGN(4);
. = . + 0x800; /* Reserve a minimum of 2K for the stack. */
. = ALIGN(4);
} >RAM
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -64,5 +64,13 @@ SECTIONS
_ebss = .;
} >RAM
/* this just checks there is enough RAM for a minimal stack */
.stack :
{
. = ALIGN(4);
. = . + 0x800; /* Reserve a minimum of 2K for the stack. */
. = ALIGN(4);
} >RAM
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -0,0 +1,75 @@
/*
GNU linker script for SAMD21
*/
/* Specify the memory areas */
MEMORY
{
FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x00040000 /* 256 KiB */
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 0x008000 /* 32 KiB */
}
/* top end of the stack */
_estack = ORIGIN(RAM) + LENGTH(RAM);
/* define output sections */
SECTIONS
{
/* The program code and other data goes into FLASH */
.text :
{
. = ALIGN(4);
_sfixed = .;
KEEP(*(.vectors)) /* isr vector table */
*(.text) /* .text sections (code) */
*(.text*) /* .text* sections (code) */
*(.rodata) /* .rodata sections (constants, strings, etc.) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
. = ALIGN(4);
_etext = .; /* define a global symbol at end of code */
_sidata = _etext; /* This is used by the startup in order to initialize the .data section */
} >FLASH
/* This is the initialized data section
The program executes knowing that the data is in the RAM
but the loader puts the initial values in the FLASH (inidata).
It is one task of the startup to copy the initial values from FLASH to RAM. */
.data : AT ( _sidata )
{
. = ALIGN(4);
_srelocate = .; /* create a global symbol at data start; used by startup code in order to initialise the .data section in RAM */
*(.ramfunc)
*(.ramfunc*)
*(.data) /* .data sections */
*(.data*) /* .data* sections */
. = ALIGN(4);
_erelocate = .; /* define a global symbol at data end; used by startup code in order to initialise the .data section in RAM */
} >RAM
/* Uninitialized data section */
.bss :
{
. = ALIGN(4);
_sbss = .;
_szero = .; /* define a global symbol at bss start; used by startup code */
*(.bss)
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ezero = .; /* define a global symbol at bss end; used by startup code */
_ebss = .;
} >RAM
/* this just checks there is enough RAM for a minimal stack */
.stack :
{
. = ALIGN(4);
. = . + 0x800; /* Reserve a minimum of 2K for the stack. */
. = ALIGN(4);
} >RAM
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -63,5 +63,13 @@ SECTIONS
_ebss = .;
} >RAM
/* this just checks there is enough RAM for a minimal stack */
.stack :
{
. = ALIGN(4);
. = . + 0x800; /* Reserve a minimum of 2K for the stack. */
. = ALIGN(4);
} >RAM
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -34,35 +34,35 @@
#include "asf/sam0/drivers/nvm/nvm.h"
#include "storage.h"
#include "internal_flash.h"
#define TOTAL_FLASH_SIZE 0x010000
#define TOTAL_INTERNAL_FLASH_SIZE 0x010000
#define FLASH_MEM_SEG1_START_ADDR (0x00040000 - TOTAL_FLASH_SIZE)
#define FLASH_PART1_START_BLOCK (0x100)
#define FLASH_PART1_NUM_BLOCKS (TOTAL_FLASH_SIZE / FLASH_BLOCK_SIZE)
#define INTERNAL_FLASH_MEM_SEG1_START_ADDR (0x00040000 - TOTAL_INTERNAL_FLASH_SIZE)
#define INTERNAL_FLASH_PART1_START_BLOCK (0x100)
#define INTERNAL_FLASH_PART1_NUM_BLOCKS (TOTAL_INTERNAL_FLASH_SIZE / INTERNAL_FLASH_BLOCK_SIZE)
static bool flash_is_initialised = false;
static bool internal_flash_is_initialised = false;
void storage_init(void) {
if (!flash_is_initialised) {
void internal_flash_init(void) {
if (!internal_flash_is_initialised) {
struct nvm_config config_nvm;
nvm_get_config_defaults(&config_nvm);
config_nvm.manual_page_write = false;
nvm_set_config(&config_nvm);
flash_is_initialised = true;
internal_flash_is_initialised = true;
}
}
uint32_t storage_get_block_size(void) {
return FLASH_BLOCK_SIZE;
uint32_t internal_flash_get_block_size(void) {
return INTERNAL_FLASH_BLOCK_SIZE;
}
uint32_t storage_get_block_count(void) {
return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS;
uint32_t internal_flash_get_block_count(void) {
return INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS;
}
void storage_flush(void) {
void internal_flash_flush(void) {
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
@ -102,16 +102,16 @@ static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_blo
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
if (INTERNAL_FLASH_PART1_START_BLOCK <= block && block < INTERNAL_FLASH_PART1_START_BLOCK + INTERNAL_FLASH_PART1_NUM_BLOCKS) {
// a block in partition 1
block -= FLASH_PART1_START_BLOCK;
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
block -= INTERNAL_FLASH_PART1_START_BLOCK;
return INTERNAL_FLASH_MEM_SEG1_START_ADDR + block * INTERNAL_FLASH_BLOCK_SIZE;
}
// bad block
return -1;
}
bool storage_read_block(uint8_t *dest, uint32_t block) {
bool internal_flash_read_block(uint8_t *dest, uint32_t block) {
//printf("RD %u\n", block);
if (block == 0) {
// fake the MBR so we can decide on our own partition table
@ -120,7 +120,7 @@ bool storage_read_block(uint8_t *dest, uint32_t block) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS);
build_partition(dest + 446, 0, 0x01 /* FAT12 */, INTERNAL_FLASH_PART1_START_BLOCK, INTERNAL_FLASH_PART1_NUM_BLOCKS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
@ -140,7 +140,7 @@ bool storage_read_block(uint8_t *dest, uint32_t block) {
enum status_code error_code;
// A block is made up of multiple pages. Read each page
// sequentially.
for (int i = 0; i < FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_read_buffer(src + i * NVMCTRL_PAGE_SIZE,
@ -152,7 +152,7 @@ bool storage_read_block(uint8_t *dest, uint32_t block) {
}
}
bool storage_write_block(const uint8_t *src, uint32_t block) {
bool internal_flash_write_block(const uint8_t *src, uint32_t block) {
if (block == 0) {
// can't write MBR, but pretend we did
return true;
@ -184,7 +184,7 @@ bool storage_write_block(const uint8_t *src, uint32_t block) {
// A block is made up of multiple pages. Write each page
// sequentially.
for (int i = 0; i < FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
for (int i = 0; i < INTERNAL_FLASH_BLOCK_SIZE / NVMCTRL_PAGE_SIZE; i++) {
do
{
error_code = nvm_write_buffer(dest + i * NVMCTRL_PAGE_SIZE,
@ -199,18 +199,18 @@ bool storage_write_block(const uint8_t *src, uint32_t block) {
}
}
mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
if (!internal_flash_read_block(dest + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
mp_uint_t internal_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!storage_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
if (!internal_flash_write_block(src + i * INTERNAL_FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
@ -223,68 +223,68 @@ mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t flash_obj = {&flash_type};
STATIC const mp_obj_base_t internal_flash_obj = {&internal_flash_type};
STATIC mp_obj_t flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
STATIC mp_obj_t internal_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&flash_obj;
return (mp_obj_t)&internal_flash_obj;
}
STATIC mp_obj_t flash_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
STATIC mp_obj_t internal_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = storage_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = internal_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(flash_readblocks_obj, flash_readblocks);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_readblocks_obj, internal_flash_obj_readblocks);
STATIC mp_obj_t flash_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
STATIC mp_obj_t internal_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = storage_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
mp_uint_t ret = internal_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(flash_writeblocks_obj, flash_writeblocks);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_writeblocks_obj, internal_flash_obj_writeblocks);
STATIC mp_obj_t flash_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
STATIC mp_obj_t internal_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: storage_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: storage_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(storage_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(storage_get_block_size());
case BP_IOCTL_INIT: internal_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: internal_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(internal_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(flash_ioctl_obj, flash_ioctl);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(internal_flash_obj_ioctl_obj, internal_flash_obj_ioctl);
STATIC const mp_map_elem_t flash_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&flash_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&flash_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&flash_ioctl_obj },
STATIC const mp_map_elem_t internal_flash_obj_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&internal_flash_obj_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&internal_flash_obj_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&internal_flash_obj_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(flash_locals_dict, flash_locals_dict_table);
STATIC MP_DEFINE_CONST_DICT(internal_flash_obj_locals_dict, internal_flash_obj_locals_dict_table);
const mp_obj_type_t flash_type = {
const mp_obj_type_t internal_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_Flash,
.make_new = flash_make_new,
.locals_dict = (mp_obj_t)&flash_locals_dict,
.name = MP_QSTR_InternalFlash,
.make_new = internal_flash_obj_make_new,
.locals_dict = (mp_obj_t)&internal_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
vfs->readblocks[0] = (mp_obj_t)&flash_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&flash_obj;
vfs->readblocks[2] = (mp_obj_t)storage_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&flash_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&flash_obj;
vfs->writeblocks[2] = (mp_obj_t)storage_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&flash_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&flash_obj;
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE;
vfs->readblocks[0] = (mp_obj_t)&internal_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&internal_flash_obj;
vfs->readblocks[2] = (mp_obj_t)internal_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&internal_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&internal_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)internal_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&internal_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&internal_flash_obj;
}

View File

@ -0,0 +1,53 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_INTERNAL_FLASH_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_INTERNAL_FLASH_H__
#include "mpconfigport.h"
#define INTERNAL_FLASH_BLOCK_SIZE (512)
#define INTERNAL_FLASH_SYSTICK_MASK (0x1ff) // 512ms
#define INTERNAL_FLASH_IDLE_TICK(tick) (((tick) & INTERNAL_FLASH_SYSTICK_MASK) == 2)
void internal_flash_init(void);
uint32_t internal_flash_get_block_size(void);
uint32_t internal_flash_get_block_count(void);
void internal_flash_irq_handler(void);
void internal_flash_flush(void);
bool internal_flash_read_block(uint8_t *dest, uint32_t block);
bool internal_flash_write_block(const uint8_t *src, uint32_t block);
// these return 0 on success, non-zero on error
mp_uint_t internal_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
mp_uint_t internal_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
extern const struct _mp_obj_type_t internal_flash_type;
struct _fs_user_mount_t;
void flash_init_vfs(struct _fs_user_mount_t *vfs);
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_INTERNAL_FLASH_H__

View File

@ -10,6 +10,7 @@
#include "py/gc.h"
#include "lib/fatfs/ff.h"
#include "lib/fatfs/diskio.h"
#include "lib/utils/pyexec.h"
#include "extmod/fsusermount.h"
@ -23,7 +24,6 @@
#include "mpconfigboard.h"
#include "modmachine_pin.h"
#include "storage.h"
fs_user_mount_t fs_user_mount_flash;
@ -72,6 +72,8 @@ static const char fresh_readme_txt[] =
"Please visit http://micropython.org/help/ for further help.\r\n"
;
extern void flash_init_vfs(fs_user_mount_t *vfs);
// we don't make this function static because it needs a lot of stack and we
// want it to be executed without using stack within main() function
void init_flash_fs() {
@ -159,6 +161,12 @@ static char *stack_top;
static char heap[16384];
void reset_mp() {
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
disk_ioctl(0, CTRL_SYNC, NULL);
disk_ioctl(1, CTRL_SYNC, NULL);
disk_ioctl(2, CTRL_SYNC, NULL);
#if MICROPY_ENABLE_GC
gc_init(heap, heap + sizeof(heap));
#endif
@ -184,9 +192,6 @@ int main(int argc, char **argv) {
samd21_init();
#endif
// Initialise the local flash filesystem.
// Create it if needed, mount in on /flash, and set it as current dir.
init_flash_fs();
int stack_dummy;
// Store the location of stack_dummy as an approximation for the top of the
@ -195,6 +200,16 @@ int main(int argc, char **argv) {
stack_top = (char*)&stack_dummy;
reset_mp();
// Initialise the local flash filesystem after the gc in case we need to
// grab memory from it. Create it if needed, mount in on /flash, and set it
// as current dir.
init_flash_fs();
// Start USB after getting everything going.
#ifdef USB_REPL
udc_start();
#endif
// Main script is finished, so now go into REPL mode.
// The REPL mode can change, or it can request a soft reset.
int exit_code = 0;
@ -326,10 +341,6 @@ void samd21_init(void) {
// pin_conf.direction = PORT_PIN_DIR_OUTPUT;
// port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
// port_pin_set_output_level(MICROPY_HW_LED1, false);
#ifdef USB_REPL
udc_start();
#endif
}
#endif

View File

@ -37,7 +37,6 @@
#include "modmachine_dac.h"
#include "modmachine_pin.h"
#include "modmachine_pwm.h"
#include "storage.h"
#if MICROPY_PY_MACHINE
// TODO(tannewt): Add the machine_ prefix to all types so that we don't risk
@ -49,7 +48,6 @@ STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_Flash), MP_ROM_PTR(&flash_type) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_spi_type) },
};

View File

@ -70,7 +70,11 @@
#define MICROPY_FATFS_VOLUMES (4)
#define MICROPY_FATFS_MULTI_PARTITION (1)
#define MICROPY_FSUSERMOUNT (1)
#define MICROPY_FATFS_MAX_SS (4096)
// Only enable this if you really need it. It allocates a byte cache of this
// size.
// #define MICROPY_FATFS_MAX_SS (4096)
#define FLASH_BLOCK_SIZE (512)
#define MICROPY_VFS_FAT (1)
#define MICROPY_PY_MACHINE (1)

641
atmel-samd/spi_flash.c Normal file
View File

@ -0,0 +1,641 @@
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "asf/sam0/drivers/sercom/spi/spi.h"
#include "py/gc.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "asf/sam0/drivers/nvm/nvm.h"
#include "spi_flash.h"
#define SPI_FLASH_PART1_START_BLOCK (0x1)
#define NO_SECTOR_LOADED 0xFFFFFFFF
#define CMD_READ_JEDEC_ID 0x9f
#define CMD_READ_DATA 0x03
#define CMD_SECTOR_ERASE 0x20
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
#define CMD_ENABLE_WRITE 0x06
#define CMD_PAGE_PROGRAM 0x02
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
#define CMD_READ_STATUS 0x05
static bool spi_flash_is_initialised = false;
struct spi_module spi_flash_instance;
// The total size of the flash.
static uint32_t flash_size;
// The erase sector size.
static uint32_t sector_size;
// The page size. Its the maximum number of bytes that can be written at once.
static uint32_t page_size;
// The currently cached sector in the cache, ram or flash based.
static uint32_t current_sector;
// Track which blocks (up to 32) in the current sector currently live in the
// cache.
static uint32_t dirty_mask;
// We use this when we can allocate the whole cache in RAM.
static uint8_t** ram_cache;
// Address of the scratch flash sector.
#define SCRATCH_SECTOR (flash_size - sector_size)
// Enable the flash over SPI.
static void flash_enable() {
port_pin_set_output_level(SPI_FLASH_CS, false);
}
// Disable the flash over SPI.
static void flash_disable() {
port_pin_set_output_level(SPI_FLASH_CS, true);
}
// Wait until both the write enable and write in progress bits have cleared.
static bool wait_for_flash_ready() {
uint8_t status_request[2] = {CMD_READ_STATUS, 0x00};
uint8_t response[2] = {0x00, 0x01};
enum status_code status = STATUS_OK;
// Both the write enable and write in progress bits should be low.
while (status == STATUS_OK && ((response[1] & 0x1) == 1 || (response[1] & 0x2) == 2)) {
flash_enable();
status = spi_transceive_buffer_wait(&spi_flash_instance, status_request, response, 2);
flash_disable();
}
return status == STATUS_OK;
}
// Turn on the write enable bit so we can program and erase the flash.
static bool write_enable() {
flash_enable();
uint8_t command = CMD_ENABLE_WRITE;
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, &command, 1);
flash_disable();
return status == STATUS_OK;
}
// Pack the low 24 bits of the address into a uint8_t array.
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
bytes[0] = (address >> 16) & 0xff;
bytes[1] = (address >> 8) & 0xff;
bytes[2] = address & 0xff;
}
// Read data_length's worth of bytes starting at address into data.
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
wait_for_flash_ready();
enum status_code status;
// We can read as much as we want sequentially.
uint8_t read_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
address_to_bytes(address, read_request + 1);
flash_enable();
status = spi_write_buffer_wait(&spi_flash_instance, read_request, 4);
if (status == STATUS_OK) {
status = spi_read_buffer_wait(&spi_flash_instance, data, data_length, 0x00);
}
flash_disable();
return status == STATUS_OK;
}
// Writes data_length's worth of bytes starting at address from data. Assumes
// that the sector that address resides in has already been erased. So make sure
// to run erase_sector.
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
if (page_size == 0) {
return false;
}
for (uint32_t bytes_written = 0;
bytes_written < data_length;
bytes_written += page_size) {
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
flash_enable();
uint8_t command[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
address_to_bytes(address + bytes_written, command + 1);
enum status_code status;
status = spi_write_buffer_wait(&spi_flash_instance, command, 4);
if (status == STATUS_OK) {
status = spi_write_buffer_wait(&spi_flash_instance, data + bytes_written, page_size);
}
flash_disable();
if (status != STATUS_OK) {
return false;
}
}
return true;
}
// Erases the given sector. Make sure you copied all of the data out of it you
// need! Also note, sector_address is really 24 bits.
static bool erase_sector(uint32_t sector_address) {
// Before we erase the sector we need to wait for any writes to finish and
// and then enable the write again.
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
uint8_t erase_request[4] = {CMD_SECTOR_ERASE, 0x00, 0x00, 0x00};
address_to_bytes(sector_address, erase_request + 1);
flash_enable();
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, erase_request, 4);
flash_disable();
return status == STATUS_OK;
}
// Sector is really 24 bits.
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
// Copy page by page to minimize RAM buffer.
uint8_t buffer[page_size];
for (int i = 0; i < FLASH_BLOCK_SIZE / page_size; i++) {
if (!read_flash(src_address + i * page_size, buffer, page_size)) {
return false;
}
if (!write_flash(dest_address + i * page_size, buffer, page_size)) {
return false;
}
}
return true;
}
void spi_flash_init(void) {
if (!spi_flash_is_initialised) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
config_spi_master.mux_setting = SPI_FLASH_MUX_SETTING;
config_spi_master.pinmux_pad0 = SPI_FLASH_PAD0_PINMUX;
config_spi_master.pinmux_pad1 = SPI_FLASH_PAD1_PINMUX;
config_spi_master.pinmux_pad2 = SPI_FLASH_PAD2_PINMUX;
config_spi_master.pinmux_pad3 = SPI_FLASH_PAD3_PINMUX;
config_spi_master.mode_specific.master.baudrate = SPI_FLASH_BAUDRATE;
spi_init(&spi_flash_instance, SPI_FLASH_SERCOM, &config_spi_master);
spi_enable(&spi_flash_instance);
// Manage chip select ourselves.
struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
port_pin_set_config(SPI_FLASH_CS, &pin_conf);
flash_disable();
// Activity LED for flash writes.
#ifdef MICROPY_HW_LED_MSC
port_pin_set_config(MICROPY_HW_LED_MSC, &pin_conf);
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
uint8_t response[4] = {0x00, 0x00, 0x00, 0x00};
flash_enable();
volatile enum status_code status = spi_transceive_buffer_wait(&spi_flash_instance, jedec_id_request, response, 4);
flash_disable();
(void) status;
if (response[1] == 0x01 && response[2] == 0x40 && response[3] == 0x15) {
flash_size = 1 << 21; // 2 MiB
sector_size = 1 << 12; // 4 KiB
page_size = 256; // 256 bytes
} else {
// Unknown flash chip!
flash_size = 0;
}
current_sector = NO_SECTOR_LOADED;
dirty_mask = 0;
ram_cache = NULL;
spi_flash_is_initialised = true;
}
}
// The size of each individual block.
uint32_t spi_flash_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
// The total number of available blocks.
uint32_t spi_flash_get_block_count(void) {
// We subtract one erase sector size because we may use it as a staging area
// for writes.
return SPI_FLASH_PART1_START_BLOCK + (flash_size - sector_size) / FLASH_BLOCK_SIZE;
}
// Flush the cache that was written to the scratch portion of flash. Only used
// when ram is tight.
static bool flush_scratch_flash() {
// First, copy out any blocks that we haven't touched from the sector we've
// cached.
bool copy_to_scratch_ok = true;
for (int i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
copy_to_scratch_ok = copy_to_scratch_ok &&
copy_block(current_sector + i * FLASH_BLOCK_SIZE,
SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE);
}
}
if (!copy_to_scratch_ok) {
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
// in. We still risk losing the data written to the scratch sector.
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Finally, copy the new version into it.
for (int i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE,
current_sector + i * FLASH_BLOCK_SIZE);
}
return true;
}
// Attempts to allocate a new set of page buffers for caching a full sector in
// ram. Each page is allocated separately so that the GC doesn't need to provide
// one huge block. We can free it as we write if we want to also.
static bool allocate_ram_cache() {
uint8_t blocks_per_sector = sector_size / FLASH_BLOCK_SIZE;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
ram_cache = gc_alloc(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
if (ram_cache == NULL) {
return false;
}
// Declare i and j outside the loops in case we fail to allocate everything
// we need. In that case we'll give it back.
int i = 0;
int j = 0;
bool success = true;
for (i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (int j = 0; j < pages_per_block; j++) {
uint8_t *page_cache = gc_alloc(page_size, false);
if (page_cache == NULL) {
success = false;
break;
}
ram_cache[i * pages_per_block + j] = page_cache;
}
if (!success) {
break;
}
}
// We couldn't allocate enough so give back what we got.
if (!success) {
for (; i >= 0; i--) {
for (; j >= 0; j--) {
gc_free(ram_cache[i * pages_per_block + j]);
}
j = pages_per_block - 1;
}
gc_free(ram_cache);
ram_cache = NULL;
}
return success;
}
// Flush the cached sector from ram onto the flash. We'll free the cache unless
// keep_cache is true.
static bool flush_ram_cache(bool keep_cache) {
// First, copy out any blocks that we haven't touched from the sector
// we've cached. If we don't do this we'll erase the data during the sector
// erase below.
bool copy_to_ram_ok = true;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
for (int j = 0; j < pages_per_block; j++) {
copy_to_ram_ok = read_flash(
current_sector + (i * pages_per_block + j) * page_size,
ram_cache[i * pages_per_block + j],
page_size);
if (!copy_to_ram_ok) {
break;
}
}
}
if (!copy_to_ram_ok) {
break;
}
}
if (!copy_to_ram_ok) {
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Lastly, write all the data in ram that we've cached.
for (int i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (int j = 0; j < pages_per_block; j++) {
write_flash(current_sector + (i * pages_per_block + j) * page_size,
ram_cache[i * pages_per_block + j],
page_size);
if (!keep_cache) {
gc_free(ram_cache[i * pages_per_block + j]);
}
}
}
// We're done with the cache for now so give it back.
if (!keep_cache) {
gc_free(ram_cache);
ram_cache = NULL;
}
return true;
}
// Delegates to the correct flash flush method depending on the existing cache.
static void spi_flash_flush_keep_cache(bool keep_cache) {
if (current_sector == NO_SECTOR_LOADED) {
return;
}
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
#endif
// If we've cached to the flash itself flush from there.
if (ram_cache == NULL) {
flush_scratch_flash();
} else {
flush_ram_cache(keep_cache);
}
current_sector = NO_SECTOR_LOADED;
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
}
// External flash function used. If called externally we assume we won't need
// the cache after.
void spi_flash_flush(void) {
spi_flash_flush_keep_cache(false);
}
// Builds a partition entry for the MBR.
static void build_partition(uint8_t *buf, int boot, int type,
uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
// a block in partition 1
block -= SPI_FLASH_PART1_START_BLOCK;
return block * FLASH_BLOCK_SIZE;
}
// bad block
return -1;
}
bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
if (block == 0) {
// Fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
SPI_FLASH_PART1_START_BLOCK,
spi_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
memset(dest, 0, FLASH_BLOCK_SIZE);
return true;
} else {
// Non-MBR block, get data from flash memory.
uint32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// We're reading from the currently cached sector.
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
if (ram_cache != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(dest + i * page_size,
ram_cache[block_index * pages_per_block + i],
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return read_flash(scratch_address, dest, FLASH_BLOCK_SIZE);
}
}
return read_flash(address, dest, FLASH_BLOCK_SIZE);
}
}
bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
if (block < SPI_FLASH_PART1_START_BLOCK) {
// Fake writing below the flash partition.
return true;
} else {
// Non-MBR block, copy to cache
uint32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Wait for any previous writes to finish.
wait_for_flash_ready();
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// Flush the cache if we're moving onto a sector our we're writing the
// same block again.
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
if (current_sector != NO_SECTOR_LOADED) {
spi_flash_flush_keep_cache(true);
}
if (ram_cache == NULL && !allocate_ram_cache()) {
erase_sector(SCRATCH_SECTOR);
wait_for_flash_ready();
}
current_sector = this_sector;
dirty_mask = 0;
}
dirty_mask |= mask;
// Copy the block to the appropriate cache.
if (ram_cache != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(ram_cache[block_index * pages_per_block + i],
data + i * page_size,
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return write_flash(scratch_address, data, FLASH_BLOCK_SIZE);
}
}
}
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t spi_flash_obj = {&spi_flash_type};
STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&spi_flash_obj;
}
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);
STATIC mp_obj_t spi_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: spi_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_ioctl_obj, spi_flash_obj_ioctl);
STATIC const mp_map_elem_t spi_flash_obj_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&spi_flash_obj_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&spi_flash_obj_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&spi_flash_obj_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(spi_flash_obj_locals_dict, spi_flash_obj_locals_dict_table);
const mp_obj_type_t spi_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_SPIFlash,
.make_new = spi_flash_obj_make_new,
.locals_dict = (mp_obj_t)&spi_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE;
vfs->readblocks[0] = (mp_obj_t)&spi_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->readblocks[2] = (mp_obj_t)spi_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&spi_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)spi_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&spi_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&spi_flash_obj;
}

View File

@ -23,31 +23,32 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_STORAGE_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_STORAGE_H__
#ifndef __MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H__
#define __MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H__
#include "mpconfigport.h"
#define FLASH_BLOCK_SIZE (512)
// Erase sector size.
#define SPI_FLASH_SECTOR_SIZE (0x1000 - 100)
#define STORAGE_SYSTICK_MASK (0x1ff) // 512ms
#define STORAGE_IDLE_TICK(tick) (((tick) & STORAGE_SYSTICK_MASK) == 2)
#define SPI_FLASH_SYSTICK_MASK (0x1ff) // 512ms
#define SPI_FLASH_IDLE_TICK(tick) (((tick) & SPI_FLASH_SYSTICK_MASK) == 2)
void storage_init(void);
uint32_t storage_get_block_size(void);
uint32_t storage_get_block_count(void);
void storage_irq_handler(void);
void storage_flush(void);
bool storage_read_block(uint8_t *dest, uint32_t block);
bool storage_write_block(const uint8_t *src, uint32_t block);
void spi_flash_init(void);
uint32_t spi_flash_get_block_size(void);
uint32_t spi_flash_get_block_count(void);
void spi_flash_irq_handler(void);
void spi_flash_flush(void);
bool spi_flash_read_block(uint8_t *dest, uint32_t block);
bool spi_flash_write_block(const uint8_t *src, uint32_t block);
// these return 0 on success, non-zero on error
mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
extern const struct _mp_obj_type_t flash_type;
extern const struct _mp_obj_type_t spi_flash_type;
struct _fs_user_mount_t;
void flash_init_vfs(struct _fs_user_mount_t *vfs);
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_STORAGE_H__
#endif // __MICROPY_INCLUDED_ATMEL_SAMD_SPI_FLASH_H__

View File

@ -24,10 +24,15 @@
* THE SOFTWARE.
*/
#include "lib/fatfs/ff.h"
#include "py/obj.h"
// these are the values for fs_user_mount_t.flags
#define FSUSER_NATIVE (0x0001) // readblocks[2]/writeblocks[2] contain native func
#define FSUSER_FREE_OBJ (0x0002) // fs_user_mount_t obj should be freed on umount
#define FSUSER_HAVE_IOCTL (0x0004) // new protocol with ioctl
#define FSUSER_NATIVE (0x0001) // readblocks[2]/writeblocks[2] contain native func
#define FSUSER_FREE_OBJ (0x0002) // fs_user_mount_t obj should be freed on umount
#define FSUSER_HAVE_IOCTL (0x0004) // new protocol with ioctl
// Device is write-able over USB and read-only to MicroPython.
#define FSUSER_USB_WRITEABLE (0x0008)
// constants for block protocol ioctl
#define BP_IOCTL_INIT (1)

View File

@ -278,7 +278,11 @@ STATIC mp_obj_t fat_vfs_statvfs(mp_obj_t vfs_in, mp_obj_t path_in) {
mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(10, NULL));
t->items[0] = MP_OBJ_NEW_SMALL_INT(fatfs->csize * fatfs->ssize); // f_bsize
#if _MIN_SS != _MAX_SS
t->items[0] = MP_OBJ_NEW_SMALL_INT(fatfs->csize * fatfs->ssize); // f_bsize
#else
t->items[0] = MP_OBJ_NEW_SMALL_INT(fatfs->csize * _MIN_SS); // f_bsize
#endif
t->items[1] = t->items[0]; // f_frsize
t->items[2] = MP_OBJ_NEW_SMALL_INT((fatfs->n_fatent - 2) * fatfs->csize); // f_blocks
t->items[3] = MP_OBJ_NEW_SMALL_INT(nclst); // f_bfree

View File

@ -90,7 +90,7 @@ DSTATUS disk_initialize (
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber (0..) */
BYTE pdrv /* Physical drive number (0..) */
)
{
fs_user_mount_t *vfs = disk_get_device(pdrv);
@ -98,7 +98,10 @@ DSTATUS disk_status (
return STA_NOINIT;
}
if (vfs->writeblocks[0] == MP_OBJ_NULL) {
// This is used to determine the writeability of the disk from MicroPython.
// So, if its USB writeable we make it read-only from MicroPython.
if (vfs->writeblocks[0] == MP_OBJ_NULL ||
(vfs->flags & FSUSER_USB_WRITEABLE) != 0) {
return STA_PROTECT;
} else {
return 0;
@ -110,7 +113,7 @@ DSTATUS disk_status (
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE pdrv, /* Physical drive number (0..) */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Sector address (LBA) */
UINT count /* Number of sectors to read (1..128) */