stm32/powerctrl: Improve support for changing system freq on H7 MCUs.

This commit improves pllvalues.py to generate PLL values for H7 MCUs that
are valid (VCO in and out are in range) and extend for the entire range of
SYSCLK values up to 400MHz (up to 480MHz is currently unsupported).
This commit is contained in:
Damien George 2020-01-31 23:20:42 +11:00
parent 03b73ce329
commit 2c8c2b935e
4 changed files with 213 additions and 55 deletions

View File

@ -649,7 +649,7 @@ CMSIS_MCU_HDR = $(CMSIS_DIR)/$(CMSIS_MCU_LOWER).h
modmachine.c: $(GEN_PLLFREQTABLE_HDR)
$(GEN_PLLFREQTABLE_HDR): $(PLLVALUES) | $(HEADER_BUILD)
$(ECHO) "GEN $@"
$(Q)$(PYTHON) $(PLLVALUES) -c $(if $(filter $(MCU_SERIES),f7),--relax-pll48,) file:$(BOARD_DIR)/stm32$(MCU_SERIES)xx_hal_conf.h > $@
$(Q)$(PYTHON) $(PLLVALUES) -c -m $(MCU_SERIES) file:$(BOARD_DIR)/stm32$(MCU_SERIES)xx_hal_conf.h > $@
$(BUILD)/modstm.o: $(GEN_STMCONST_HDR)
# Use a pattern rule here so that make will only call make-stmconst.py once to

View File

@ -7,6 +7,36 @@ for the machine.freq() function.
from __future__ import print_function
import re
class MCU:
def __init__(self, range_sysclk, range_m, range_n, range_p, range_q, range_vco_in, range_vco_out):
self.range_sysclk = range_sysclk
self.range_m = range_m
self.range_n = range_n
self.range_p = range_p
self.range_q = range_q
self.range_vco_in = range_vco_in
self.range_vco_out = range_vco_out
mcu_default = MCU(
range_sysclk=range(2, 216 + 1, 2),
range_m=range(2, 63 + 1),
range_n=range(192, 432 + 1),
range_p=range(2, 8 + 1, 2),
range_q=range(2, 15 + 1),
range_vco_in=range(1, 2 + 1),
range_vco_out=range(192, 432 + 1),
)
mcu_h7 = MCU(
range_sysclk=range(2, 400 + 1, 2), # above 400MHz currently unsupported
range_m=range(1, 63 + 1),
range_n=range(4, 512 + 1),
range_p=range(2, 128 + 1, 2),
range_q=range(1, 128 + 1),
range_vco_in=range(1, 16 + 1),
range_vco_out=range(150, 960 + 1), # 150-420=medium, 192-960=wide
)
def close_int(x):
return abs(x - round(x)) < 0.01
@ -42,41 +72,40 @@ def compute_pll(hse, sys):
# improved version that doesn't require N/M to be an integer
def compute_pll2(hse, sys, relax_pll48):
# Loop over the allowed values of P, looking for a valid PLL configuration
# that gives the desired "sys" frequency. We use floats for P to force
# floating point arithmetic on Python 2.
# that gives the desired "sys" frequency.
fallback = None
for P in (2.0, 4.0, 6.0, 8.0):
NbyM = sys * P / hse
for P in mcu.range_p:
# VCO_OUT must be between 192MHz and 432MHz
if not (192 <= hse * NbyM <= 432):
if not sys * P in mcu.range_vco_out:
continue
NbyM = float(sys * P) / hse # float for Python 2
# scan M
M = int(192 // NbyM) # starting value
while 2 * M < hse:
M += 1
# VCO_IN must be between 1MHz and 2MHz (2MHz recommended)
for M in range(M, hse + 1):
if NbyM * M < 191.99 or not close_int(NbyM * M):
continue
M_min = mcu.range_n[0] // int(round(NbyM)) # starting value
while mcu.range_vco_in[-1] * M_min < hse:
M_min += 1
# VCO_IN must be >=1MHz, but higher is better for stability so start high (low M)
for M in range(M_min, hse + 1):
# compute N
N = NbyM * M
# N must be an integer
if not close_int(N):
continue
N = round(N)
# N is restricted
if not (192 <= N <= 432):
if N not in mcu.range_n:
continue
Q = (sys * P / 48)
Q = float(sys * P) / 48 # float for Python 2
# Q must be an integer in a set range
if not (2 <= Q <= 15):
continue
if not close_int(Q):
if int(M) == int(hse) and fallback is None:
# the values don't give 48MHz on PLL48 but are otherwise OK
fallback = M, N, P, int(Q)
continue
if close_int(Q) and round(Q) in mcu.range_q:
# found valid values
return (M, N, P, Q)
# Re-try Q to get at most 48MHz
Q = (sys * P + 47) // 48
if Q not in mcu.range_q:
continue
if fallback is None:
# the values don't give 48MHz on PLL48 but are otherwise OK
fallback = M, N, P, Q
if relax_pll48:
# might have found values which don't give 48MHz on PLL48
return fallback
@ -85,6 +114,7 @@ def compute_pll2(hse, sys, relax_pll48):
return None
def compute_derived(hse, pll):
hse = float(hse) # float for Python 2
M, N, P, Q = pll
vco_in = hse / M
vco_out = hse * N / M
@ -103,16 +133,16 @@ def verify_pll(hse, pll):
assert close_int(Q)
# verify range
assert 2 <= M <= 63
assert 192 <= N <= 432
assert P in (2, 4, 6, 8)
assert 2 <= Q <= 15
assert 1 <= vco_in <= 2
assert 192 <= vco_out <= 432
assert M in mcu.range_m
assert N in mcu.range_n
assert P in mcu.range_p
assert Q in mcu.range_q
assert mcu.range_vco_in[0] <= vco_in <= mcu.range_vco_in[-1]
assert mcu.range_vco_out[0] <= vco_out <= mcu.range_vco_out[-1]
def compute_pll_table(source_clk, relax_pll48):
valid_plls = []
for sysclk in range(2, 217, 2):
for sysclk in mcu.range_sysclk:
pll = compute_pll2(source_clk, sysclk, relax_pll48)
if pll is not None:
verify_pll(source_clk, pll)
@ -121,10 +151,34 @@ def compute_pll_table(source_clk, relax_pll48):
def generate_c_table(hse, valid_plls):
valid_plls.sort()
if mcu.range_sysclk[-1] <= 0xff and mcu.range_m[-1] <= 0x3f and mcu.range_p[-1] // 2 - 1 <= 0x3:
typedef = 'uint16_t'
sys_mask = 0xff
m_shift = 10
m_mask = 0x3f
p_shift = 8
p_mask = 0x3
else:
typedef = 'uint32_t'
sys_mask = 0xffff
m_shift = 24
m_mask = 0xff
p_shift = 16
p_mask = 0xff
print("#define PLL_FREQ_TABLE_SYS(pll) ((pll) & %d)" % (sys_mask,))
print("#define PLL_FREQ_TABLE_M(pll) (((pll) >> %d) & %d)" % (m_shift, m_mask))
print("#define PLL_FREQ_TABLE_P(pll) (((((pll) >> %d) & %d) + 1) * 2)" % (p_shift, p_mask))
print("typedef %s pll_freq_table_t;" % (typedef,))
print("// (M, P/2-1, SYS) values for %u MHz source" % hse)
print("static const uint16_t pll_freq_table[%u] = {" % len(valid_plls))
print("static const pll_freq_table_t pll_freq_table[%u] = {" % (len(valid_plls),))
for sys, (M, N, P, Q) in valid_plls:
print(" (%u << 10) | (%u << 8) | %u," % (M, P // 2 - 1, sys))
print(" (%u << %u) | (%u << %u) | %u," % (M, m_shift, P // 2 - 1, p_shift, sys), end='')
if M >= 2:
vco_in, vco_out, pllck, pll48ck = compute_derived(hse, (M, N, P, Q))
print(" // M=%u N=%u P=%u Q=%u vco_in=%.2f vco_out=%.2f pll48=%.2f"
% (M, N, P, Q, vco_in, vco_out, pll48ck), end=''
)
print()
print("};")
def print_table(hse, valid_plls):
@ -157,6 +211,7 @@ def search_header_for_hsx_values(filename, vals):
return vals
def main():
global mcu
global out_format
# parse input args
@ -164,7 +219,7 @@ def main():
argv = sys.argv[1:]
c_table = False
relax_pll48 = False
mcu_series = 'f4'
hse = None
hsi = None
@ -172,14 +227,14 @@ def main():
if argv[0] == '-c':
c_table = True
argv.pop(0)
elif argv[0] == '--relax-pll48':
relax_pll48 = True
elif argv[0] == '-m':
argv.pop(0)
mcu_series = argv.pop(0).lower()
else:
break
if len(argv) != 1:
print("usage: pllvalues.py [-c] <hse in MHz>")
print("usage: pllvalues.py [-c] [-m <mcu_series>] <hse in MHz>")
sys.exit(1)
if argv[0].startswith("file:"):
@ -194,6 +249,15 @@ def main():
# HSE given directly as an integer
hse = int(argv[0])
# Select MCU parameters
if mcu_series == 'h7':
mcu = mcu_h7
else:
mcu = mcu_default
# Relax constraight on PLLQ being 48MHz on F7 and H7 MCUs, which have separate PLLs for 48MHz
relax_pll48 = mcu_series in ('f7', 'h7')
hse_valid_plls = compute_pll_table(hse, relax_pll48)
if hsi is not None:
hsi_valid_plls = compute_pll_table(hsi, relax_pll48)

View File

@ -310,6 +310,11 @@ STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
#else
mp_int_t sysclk = mp_obj_get_int(args[0]);
mp_int_t ahb = sysclk;
#if defined (STM32H7)
if (ahb > 200000000) {
ahb /= 2;
}
#endif
mp_int_t apb1 = ahb / 4;
mp_int_t apb2 = ahb / 2;
if (n_args > 1) {

View File

@ -93,12 +93,48 @@ void powerctrl_check_enter_bootloader(void) {
#if !defined(STM32F0) && !defined(STM32L0) && !defined(STM32WB)
typedef struct _sysclk_scaling_table_entry_t {
uint16_t mhz;
uint16_t value;
} sysclk_scaling_table_entry_t;
#if defined(STM32F7)
STATIC const sysclk_scaling_table_entry_t volt_scale_table[] = {
{ 151, PWR_REGULATOR_VOLTAGE_SCALE3 },
{ 180, PWR_REGULATOR_VOLTAGE_SCALE2 },
// Above 180MHz uses default PWR_REGULATOR_VOLTAGE_SCALE1
};
#elif defined(STM32H7)
STATIC const sysclk_scaling_table_entry_t volt_scale_table[] = {
// See table 55 "Kernel clock distribution overview" of RM0433.
{200, PWR_REGULATOR_VOLTAGE_SCALE3},
{300, PWR_REGULATOR_VOLTAGE_SCALE2},
// Above 300MHz uses default PWR_REGULATOR_VOLTAGE_SCALE1
// (above 400MHz needs special handling for overdrive, currently unsupported)
};
#endif
STATIC int powerctrl_config_vos(uint32_t sysclk_mhz) {
#if defined(STM32F7) || defined(STM32H7)
uint32_t volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
for (int i = 0; i < MP_ARRAY_SIZE(volt_scale_table); ++i) {
if (sysclk_mhz <= volt_scale_table[i].mhz) {
volt_scale = volt_scale_table[i].value;
break;
}
}
if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) {
return -MP_EIO;
}
#endif
return 0;
}
// Assumes that PLL is used as the SYSCLK source
int powerctrl_rcc_clock_config_pll(RCC_ClkInitTypeDef *rcc_init, uint32_t sysclk_mhz, bool need_pllsai) {
uint32_t flash_latency;
#if defined(STM32F7)
if (need_pllsai) {
// Configure PLLSAI at 48MHz for those peripherals that need this freq
// (calculation assumes it can get an integral value of PLLSAIN)
@ -118,20 +154,16 @@ int powerctrl_rcc_clock_config_pll(RCC_ClkInitTypeDef *rcc_init, uint32_t sysclk
}
RCC->DCKCFGR2 |= RCC_DCKCFGR2_CK48MSEL;
}
#endif
// If possible, scale down the internal voltage regulator to save power
uint32_t volt_scale;
if (sysclk_mhz <= 151) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
} else if (sysclk_mhz <= 180) {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE2;
} else {
volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
}
if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) {
return -MP_EIO;
int ret = powerctrl_config_vos(sysclk_mhz);
if (ret) {
return ret;
}
#if defined(STM32F7)
// These flash_latency values assume a supply voltage between 2.7V and 3.6V
if (sysclk_mhz <= 30) {
flash_latency = FLASH_LATENCY_0;
@ -172,6 +204,17 @@ int powerctrl_rcc_clock_config_pll(RCC_ClkInitTypeDef *rcc_init, uint32_t sysclk
#if !defined(STM32F0) && !defined(STM32L0) && !defined(STM32L4) && !defined(STM32WB)
STATIC uint32_t calc_ahb_div(uint32_t wanted_div) {
#if defined(STM32H7)
if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
else if (wanted_div <= 16) { return RCC_HCLK_DIV16; }
else if (wanted_div <= 64) { return RCC_HCLK_DIV64; }
else if (wanted_div <= 128) { return RCC_HCLK_DIV128; }
else if (wanted_div <= 256) { return RCC_HCLK_DIV256; }
else { return RCC_HCLK_DIV512; }
#else
if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
@ -181,14 +224,35 @@ STATIC uint32_t calc_ahb_div(uint32_t wanted_div) {
else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
else { return RCC_SYSCLK_DIV512; }
#endif
}
STATIC uint32_t calc_apb_div(uint32_t wanted_div) {
STATIC uint32_t calc_apb1_div(uint32_t wanted_div) {
#if defined(STM32H7)
if (wanted_div <= 1) { return RCC_APB1_DIV1; }
else if (wanted_div <= 2) { return RCC_APB1_DIV2; }
else if (wanted_div <= 4) { return RCC_APB1_DIV4; }
else if (wanted_div <= 8) { return RCC_APB1_DIV8; }
else { return RCC_APB1_DIV16; }
#else
if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
else { return RCC_SYSCLK_DIV16; }
else { return RCC_HCLK_DIV16; }
#endif
}
STATIC uint32_t calc_apb2_div(uint32_t wanted_div) {
#if defined(STM32H7)
if (wanted_div <= 1) { return RCC_APB2_DIV1; }
else if (wanted_div <= 2) { return RCC_APB2_DIV2; }
else if (wanted_div <= 4) { return RCC_APB2_DIV4; }
else if (wanted_div <= 8) { return RCC_APB2_DIV8; }
else { return RCC_APB2_DIV16; }
#else
return calc_apb1_div(wanted_div);
#endif
}
int powerctrl_set_sysclk(uint32_t sysclk, uint32_t ahb, uint32_t apb1, uint32_t apb2) {
@ -207,11 +271,11 @@ int powerctrl_set_sysclk(uint32_t sysclk, uint32_t ahb, uint32_t apb1, uint32_t
// Search for a valid PLL configuration that keeps USB at 48MHz
uint32_t sysclk_mhz = sysclk / 1000000;
for (const uint16_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) {
uint32_t sys = *pll & 0xff;
for (const pll_freq_table_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) {
uint32_t sys = PLL_FREQ_TABLE_SYS(*pll);
if (sys <= sysclk_mhz) {
m = (*pll >> 10) & 0x3f;
p = ((*pll >> 7) & 0x6) + 2;
m = PLL_FREQ_TABLE_M(*pll);
p = PLL_FREQ_TABLE_P(*pll);
if (m == 0) {
// special entry for using HSI directly
sysclk_source = RCC_SYSCLKSOURCE_HSI;
@ -259,8 +323,13 @@ set_clk:
#if !defined(STM32H7)
ahb = sysclk >> AHBPrescTable[RCC_ClkInitStruct.AHBCLKDivider >> RCC_CFGR_HPRE_Pos];
#endif
RCC_ClkInitStruct.APB1CLKDivider = calc_apb_div(ahb / apb1);
RCC_ClkInitStruct.APB2CLKDivider = calc_apb_div(ahb / apb2);
RCC_ClkInitStruct.APB1CLKDivider = calc_apb1_div(ahb / apb1);
RCC_ClkInitStruct.APB2CLKDivider = calc_apb2_div(ahb / apb2);
#if defined(STM32H7)
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
#endif
#if MICROPY_HW_CLK_LAST_FREQ
// Save the bus dividers for use later
@ -294,6 +363,26 @@ set_clk:
RCC_OscInitStruct.PLL.PLLN = n;
RCC_OscInitStruct.PLL.PLLP = p;
RCC_OscInitStruct.PLL.PLLQ = q;
#if defined(STM32H7)
RCC_OscInitStruct.PLL.PLLR = 0;
if (MICROPY_HW_CLK_VALUE / 1000000 <= 2 * m) {
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_0; // 1-2MHz
} else if (MICROPY_HW_CLK_VALUE / 1000000 <= 4 * m) {
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_1; // 2-4MHz
} else if (MICROPY_HW_CLK_VALUE / 1000000 <= 8 * m) {
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; // 4-8MHz
} else {
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3; // 8-16MHz
}
if (MICROPY_HW_CLK_VALUE / 1000000 * n <= 420 * m) {
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOMEDIUM; // 150-420MHz
} else {
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; // 192-960MHz
}
RCC_OscInitStruct.PLL.PLLFRACN = 0;
#endif
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
return -MP_EIO;
}