Merge i2c implementation

This commit is contained in:
Hierophect 2019-08-04 17:24:07 -04:00
commit 2489c09b44
13 changed files with 987 additions and 9 deletions

View File

@ -148,6 +148,7 @@ SRC_STM32 = \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_usb.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fsmc.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sram.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_i2c.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_dma.c \
stm32f4/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s.c \

View File

@ -10,4 +10,3 @@ CMSIS_MCU = STM32F411xE
LD_FILE = boards/STM32F411VETx_FLASH.ld
TEXT0_ADDR = 0x08000000
TEXT1_ADDR = 0x08020000

View File

@ -273,14 +273,14 @@ void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
*/
GPIO_InitStruct.Pin = I2C2_SCL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Pull = GPIO_NOPULL;//GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_I2C2;
HAL_GPIO_Init(I2C2_SCL_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = I2C2_SDA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Pull = GPIO_NOPULL;//GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_I2C2;
HAL_GPIO_Init(I2C2_SDA_GPIO_Port, &GPIO_InitStruct);

View File

@ -0,0 +1,115 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/I2C.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "stm32f4xx_hal.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "supervisor/shared/translate.h"
I2C_HandleTypeDef hi2c2;
void common_hal_busio_i2c_construct(busio_i2c_obj_t *self,
const mcu_pin_obj_t* scl, const mcu_pin_obj_t* sda, uint32_t frequency, uint32_t timeout) {
hi2c2.Instance = I2C2;
hi2c2.Init.ClockSpeed = 100000;
hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if(HAL_I2C_Init(&hi2c2) != HAL_OK) {
mp_raise_RuntimeError(translate("I2C Init Error"));
} else {
mp_printf(&mp_plat_print, "I2C INIT OK");
}
self->sda_pin = sda->number;
self->scl_pin = scl->number;
claim_pin(sda);
claim_pin(scl);
}
bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) {
return self->sda_pin == NO_PIN;
}
void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) {
if (common_hal_busio_i2c_deinited(self)) {
return;
}
HAL_I2C_MspDeInit(&hi2c2);
self->sda_pin = NO_PIN;
self->scl_pin = NO_PIN;
}
bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) {
return HAL_I2C_IsDeviceReady(&hi2c2, (uint16_t)(addr<<1),2,2) == HAL_OK;
}
bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) {
bool grabbed_lock = false;
//Critical section code that may be required at some point.
// uint32_t store_primask = __get_PRIMASK();
// __disable_irq();
// __DMB();
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// __DMB();
// __set_PRIMASK(store_primask);
return grabbed_lock;
}
bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) {
self->has_lock = false;
}
uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr,
const uint8_t *data, size_t len, bool transmit_stop_bit) {
return HAL_I2C_Master_Transmit(&hi2c2, (uint16_t)(addr<<1), (uint8_t *)data, (uint16_t)len, 2) == HAL_OK ? 0 : MP_EIO;
}
uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr,
uint8_t *data, size_t len) {
return HAL_I2C_Master_Receive(&hi2c2, (uint16_t)(addr<<1), data, (uint16_t)len, 2) == HAL_OK ? 0 : MP_EIO;
}

View File

@ -0,0 +1,44 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_I2C_H
#define MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_I2C_H
#include "common-hal/microcontroller/Pin.h"
#include "stm32f4xx_hal.h"
#include "py/obj.h"
typedef struct {
mp_obj_base_t base;
I2C_HandleTypeDef i2c_handle;
bool has_lock;
uint8_t scl_pin;
uint8_t sda_pin;
} busio_i2c_obj_t;
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_I2C_H

View File

@ -0,0 +1,33 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_ONEWIRE_H
#define MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_ONEWIRE_H
// Use bitbangio.
#include "shared-module/busio/OneWire.h"
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_ONEWIRE_H

View File

@ -0,0 +1,321 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "boards/board.h"
#include "common-hal/microcontroller/Pin.h"
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi,
const mcu_pin_obj_t * miso) {
// Sercom* sercom = NULL;
// uint8_t sercom_index;
// uint32_t clock_pinmux = 0;
// bool mosi_none = mosi == mp_const_none || mosi == NULL;
// bool miso_none = miso == mp_const_none || miso == NULL;
// uint32_t mosi_pinmux = 0;
// uint32_t miso_pinmux = 0;
// uint8_t clock_pad = 0;
// uint8_t mosi_pad = 0;
// uint8_t miso_pad = 0;
// uint8_t dopo = 255;
// // Special case for SAMR boards.
// #ifdef PIN_PC19
// if (miso == &pin_PC19) {
// if (mosi == &pin_PB30 && clock == &pin_PC18) {
// sercom = SERCOM4;
// sercom_index = 4;
// clock_pinmux = MUX_F;
// mosi_pinmux = MUX_F;
// miso_pinmux = MUX_F;
// clock_pad = 3;
// mosi_pad = 2;
// miso_pad = 0;
// dopo = samd_peripherals_get_spi_dopo(clock_pad, mosi_pad);
// }
// // Error, leave SERCOM unset to throw an exception later.
// } else {
// #endif
// for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) {
// sercom_index = clock->sercom[i].index; // 2 for SERCOM2, etc.
// if (sercom_index >= SERCOM_INST_NUM) {
// continue;
// }
// Sercom* potential_sercom = sercom_insts[sercom_index];
// if (
// #if defined(MICROPY_HW_APA102_SCK) && defined(MICROPY_HW_APA102_MOSI) && !defined(CIRCUITPY_BITBANG_APA102)
// (potential_sercom->SPI.CTRLA.bit.ENABLE != 0 &&
// potential_sercom != status_apa102.spi_desc.dev.prvt &&
// !apa102_sck_in_use)) {
// #else
// potential_sercom->SPI.CTRLA.bit.ENABLE != 0) {
// #endif
// continue;
// }
// clock_pinmux = PINMUX(clock->number, (i == 0) ? MUX_C : MUX_D);
// clock_pad = clock->sercom[i].pad;
// if (!samd_peripherals_valid_spi_clock_pad(clock_pad)) {
// continue;
// }
// for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) {
// if (!mosi_none) {
// if (sercom_index == mosi->sercom[j].index) {
// mosi_pinmux = PINMUX(mosi->number, (j == 0) ? MUX_C : MUX_D);
// mosi_pad = mosi->sercom[j].pad;
// dopo = samd_peripherals_get_spi_dopo(clock_pad, mosi_pad);
// if (dopo > 0x3) {
// continue; // pad combination not possible
// }
// if (miso_none) {
// sercom = potential_sercom;
// break;
// }
// } else {
// continue;
// }
// }
// if (!miso_none) {
// for (int k = 0; k < NUM_SERCOMS_PER_PIN; k++) {
// if (sercom_index == miso->sercom[k].index) {
// miso_pinmux = PINMUX(miso->number, (k == 0) ? MUX_C : MUX_D);
// miso_pad = miso->sercom[k].pad;
// sercom = potential_sercom;
// break;
// }
// }
// }
// if (sercom != NULL) {
// break;
// }
// }
// if (sercom != NULL) {
// break;
// }
// }
// #ifdef PIN_PC19
// }
// #endif
// if (sercom == NULL) {
// mp_raise_ValueError(translate("Invalid pins"));
// }
// // Set up SPI clocks on SERCOM.
// samd_peripherals_sercom_clock_init(sercom, sercom_index);
// #if defined(MICROPY_HW_APA102_SCK) && defined(MICROPY_HW_APA102_MOSI) && !defined(CIRCUITPY_BITBANG_APA102)
// // if we're re-using the dotstar sercom, make sure it is disabled or the init will fail out
// hri_sercomspi_clear_CTRLA_ENABLE_bit(sercom);
// #endif
// if (spi_m_sync_init(&self->spi_desc, sercom) != ERR_NONE) {
// mp_raise_OSError(MP_EIO);
// }
// // Pads must be set after spi_m_sync_init(), which uses default values from
// // the prototypical SERCOM.
// hri_sercomspi_write_CTRLA_DOPO_bf(sercom, dopo);
// hri_sercomspi_write_CTRLA_DIPO_bf(sercom, miso_pad);
// // Always start at 250khz which is what SD cards need. They are sensitive to
// // SPI bus noise before they are put into SPI mode.
// uint8_t baud_value = samd_peripherals_spi_baudrate_to_baud_reg_value(250000);
// if (spi_m_sync_set_baudrate(&self->spi_desc, baud_value) != ERR_NONE) {
// // spi_m_sync_set_baudrate does not check for validity, just whether the device is
// // busy or not
// mp_raise_OSError(MP_EIO);
// }
// gpio_set_pin_direction(clock->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(clock->number, GPIO_PULL_OFF);
// gpio_set_pin_function(clock->number, clock_pinmux);
// claim_pin(clock);
// self->clock_pin = clock->number;
// if (mosi_none) {
// self->MOSI_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(mosi->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(mosi->number, GPIO_PULL_OFF);
// gpio_set_pin_function(mosi->number, mosi_pinmux);
// self->MOSI_pin = mosi->number;
// claim_pin(mosi);
// }
// if (miso_none) {
// self->MISO_pin = NO_PIN;
// } else {
// gpio_set_pin_direction(miso->number, GPIO_DIRECTION_IN);
// gpio_set_pin_pull_mode(miso->number, GPIO_PULL_OFF);
// gpio_set_pin_function(miso->number, miso_pinmux);
// self->MISO_pin = miso->number;
// claim_pin(miso);
// }
// spi_m_sync_enable(&self->spi_desc);
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
// never_reset_sercom(self->spi_desc.dev.prvt);
// never_reset_pin_number(self->clock_pin);
// never_reset_pin_number(self->MOSI_pin);
// never_reset_pin_number(self->MISO_pin);
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
//return self->clock_pin == NO_PIN;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
// if (common_hal_busio_spi_deinited(self)) {
// return;
// }
// allow_reset_sercom(self->spi_desc.dev.prvt);
// spi_m_sync_disable(&self->spi_desc);
// spi_m_sync_deinit(&self->spi_desc);
// reset_pin_number(self->clock_pin);
// reset_pin_number(self->MOSI_pin);
// reset_pin_number(self->MISO_pin);
// self->clock_pin = NO_PIN;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// uint8_t baud_reg_value = samd_peripherals_spi_baudrate_to_baud_reg_value(baudrate);
// void * hw = self->spi_desc.dev.prvt;
// // If the settings are already what we want then don't reset them.
// if (hri_sercomspi_get_CTRLA_CPHA_bit(hw) == phase &&
// hri_sercomspi_get_CTRLA_CPOL_bit(hw) == polarity &&
// hri_sercomspi_read_CTRLB_CHSIZE_bf(hw) == ((uint32_t)bits - 8) &&
// hri_sercomspi_read_BAUD_BAUD_bf(hw) == baud_reg_value) {
// return true;
// }
// // Disable, set values (most or all are enable-protected), and re-enable.
// spi_m_sync_disable(&self->spi_desc);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
// hri_sercomspi_write_CTRLA_CPHA_bit(hw, phase);
// hri_sercomspi_write_CTRLA_CPOL_bit(hw, polarity);
// hri_sercomspi_write_CTRLB_CHSIZE_bf(hw, bits - 8);
// hri_sercomspi_write_BAUD_BAUD_bf(hw, baud_reg_value);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
// spi_m_sync_enable(&self->spi_desc);
// hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_MASK);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
// if (!self->has_lock) {
// grabbed_lock = true;
// self->has_lock = true;
// }
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
// if (len == 0) {
// return true;
// }
// int32_t status;
// if (len >= 16) {
// status = sercom_dma_write(self->spi_desc.dev.prvt, data, len);
// } else {
// struct io_descriptor *spi_io;
// spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
// status = spi_io->write(spi_io, data, len);
// }
return 0;//status >= 0; // Status is number of chars read or an error code < 0.
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
// if (len == 0) {
// return true;
// }
// int32_t status;
// if (len >= 16) {
// status = sercom_dma_read(self->spi_desc.dev.prvt, data, len, write_value);
// } else {
// self->spi_desc.dev.dummy_byte = write_value;
// struct io_descriptor *spi_io;
// spi_m_sync_get_io_descriptor(&self->spi_desc, &spi_io);
// status = spi_io->read(spi_io, data, len);
// }
return 0;//status >= 0; // Status is number of chars read or an error code < 0.
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
// if (len == 0) {
// return true;
// }
// int32_t status;
// if (len >= 16) {
// status = sercom_dma_transfer(self->spi_desc.dev.prvt, data_out, data_in, len);
// } else {
// struct spi_xfer xfer;
// xfer.txbuf = data_out;
// xfer.rxbuf = data_in;
// xfer.size = len;
// status = spi_m_sync_transfer(&self->spi_desc, &xfer);
// }
return 0;//status >= 0; // Status is number of chars read or an error code < 0.
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
return 0;//samd_peripherals_spi_baud_reg_value_to_baudrate(hri_sercomspi_read_BAUD_reg(self->spi_desc.dev.prvt));
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
//void * hw = self->spi_desc.dev.prvt;
return 0;//hri_sercomspi_get_CTRLA_CPHA_bit(hw);
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
//void * hw = self->spi_desc.dev.prvt;
return 0;//hri_sercomspi_get_CTRLA_CPOL_bit(hw);
}

View File

@ -0,0 +1,42 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_SPI_H
#define MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_SPI_H
#include "common-hal/microcontroller/Pin.h"
#include "py/obj.h"
typedef struct {
mp_obj_base_t base;
bool has_lock;
uint8_t clock_pin;
uint8_t MOSI_pin;
uint8_t MISO_pin;
} busio_spi_obj_t;
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_SPI_H

View File

@ -0,0 +1,375 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "lib/utils/interrupt_char.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "supervisor/shared/translate.h"
#include "tick.h"
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate,
uint8_t bits, uart_parity_t parity, uint8_t stop, mp_float_t timeout,
uint8_t receiver_buffer_size) {
// Sercom* sercom = NULL;
// uint8_t sercom_index = 255; // Unset index
// uint32_t rx_pinmux = 0;
// uint8_t rx_pad = 255; // Unset pad
// uint32_t tx_pinmux = 0;
// uint8_t tx_pad = 255; // Unset pad
// if (bits > 8) {
// mp_raise_NotImplementedError(translate("bytes > 8 bits not supported"));
// }
// bool have_tx = tx != mp_const_none;
// bool have_rx = rx != mp_const_none;
// if (!have_tx && !have_rx) {
// mp_raise_ValueError(translate("tx and rx cannot both be None"));
// }
// self->baudrate = baudrate;
// self->character_bits = bits;
// self->timeout_ms = timeout * 1000;
// // This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) {
// Sercom* potential_sercom = NULL;
// if (have_tx) {
// sercom_index = tx->sercom[i].index;
// if (sercom_index >= SERCOM_INST_NUM) {
// continue;
// }
// potential_sercom = sercom_insts[sercom_index];
// if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 ||
// !(tx->sercom[i].pad == 0 ||
// tx->sercom[i].pad == 2)) {
// continue;
// }
// tx_pinmux = PINMUX(tx->number, (i == 0) ? MUX_C : MUX_D);
// tx_pad = tx->sercom[i].pad;
// if (rx == mp_const_none) {
// sercom = potential_sercom;
// break;
// }
// }
// for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) {
// if (((!have_tx && rx->sercom[j].index < SERCOM_INST_NUM &&
// sercom_insts[rx->sercom[j].index]->USART.CTRLA.bit.ENABLE == 0) ||
// sercom_index == rx->sercom[j].index) &&
// rx->sercom[j].pad != tx_pad) {
// rx_pinmux = PINMUX(rx->number, (j == 0) ? MUX_C : MUX_D);
// rx_pad = rx->sercom[j].pad;
// sercom = sercom_insts[rx->sercom[j].index];
// sercom_index = rx->sercom[j].index;
// break;
// }
// }
// if (sercom != NULL) {
// break;
// }
// }
// if (sercom == NULL) {
// mp_raise_ValueError(translate("Invalid pins"));
// }
// if (!have_tx) {
// tx_pad = 0;
// if (rx_pad == 0) {
// tx_pad = 2;
// }
// }
// if (!have_rx) {
// rx_pad = (tx_pad + 1) % 4;
// }
// // Set up clocks on SERCOM.
// samd_peripherals_sercom_clock_init(sercom, sercom_index);
// if (rx && receiver_buffer_size > 0) {
// self->buffer_length = receiver_buffer_size;
// // Initially allocate the UART's buffer in the long-lived part of the
// // heap. UARTs are generally long-lived objects, but the "make long-
// // lived" machinery is incapable of moving internal pointers like
// // self->buffer, so do it manually. (However, as long as internal
// // pointers like this are NOT moved, allocating the buffer
// // in the long-lived pool is not strictly necessary)
// self->buffer = (uint8_t *) gc_alloc(self->buffer_length * sizeof(uint8_t), false, true);
// if (self->buffer == NULL) {
// common_hal_busio_uart_deinit(self);
// mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer"));
// }
// } else {
// self->buffer_length = 0;
// self->buffer = NULL;
// }
// if (usart_async_init(usart_desc_p, sercom, self->buffer, self->buffer_length, NULL) != ERR_NONE) {
// mp_raise_ValueError(translate("Could not initialize UART"));
// }
// // usart_async_init() sets a number of defaults based on a prototypical SERCOM
// // which don't necessarily match what we need. After calling it, set the values
// // specific to this instantiation of UART.
// // Set pads computed for this SERCOM.
// // TXPO:
// // 0x0: TX pad 0; no RTS/CTS
// // 0x1: TX pad 2; no RTS/CTS
// // 0x2: TX pad 0; RTS: pad 2, CTS: pad 3 (not used by us right now)
// // So divide by 2 to map pad to value.
// // RXPO:
// // 0x0: RX pad 0
// // 0x1: RX pad 1
// // 0x2: RX pad 2
// // 0x3: RX pad 3
// // Doing a group mask and set of the registers saves 60 bytes over setting the bitfields individually.
// sercom->USART.CTRLA.reg &= ~(SERCOM_USART_CTRLA_TXPO_Msk |
// SERCOM_USART_CTRLA_RXPO_Msk |
// SERCOM_USART_CTRLA_FORM_Msk);
// sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(tx_pad / 2) |
// SERCOM_USART_CTRLA_RXPO(rx_pad) |
// (parity == PARITY_NONE ? 0 : SERCOM_USART_CTRLA_FORM(1));
// // Enable tx and/or rx based on whether the pins were specified.
// // CHSIZE is 0 for 8 bits, 5, 6, 7 for 5, 6, 7 bits. 1 for 9 bits, but we don't support that.
// sercom->USART.CTRLB.reg &= ~(SERCOM_USART_CTRLB_TXEN |
// SERCOM_USART_CTRLB_RXEN |
// SERCOM_USART_CTRLB_PMODE |
// SERCOM_USART_CTRLB_SBMODE |
// SERCOM_USART_CTRLB_CHSIZE_Msk);
// sercom->USART.CTRLB.reg |= (have_tx ? SERCOM_USART_CTRLB_TXEN : 0) |
// (have_rx ? SERCOM_USART_CTRLB_RXEN : 0) |
// (parity == PARITY_ODD ? SERCOM_USART_CTRLB_PMODE : 0) |
// (stop > 1 ? SERCOM_USART_CTRLB_SBMODE : 0) |
// SERCOM_USART_CTRLB_CHSIZE(bits % 8);
// // Set baud rate
// common_hal_busio_uart_set_baudrate(self, baudrate);
// // Turn on rx interrupt handling. The UART async driver has its own set of internal callbacks,
// // which are set up by uart_async_init(). These in turn can call user-specified callbacks.
// // In fact, the actual interrupts are not enabled unless we set up a user-specified callback.
// // This is confusing. It's explained in the Atmel START User Guide -> Implementation Description ->
// // Different read function behavior in some asynchronous drivers. As of this writing:
// // http://start.atmel.com/static/help/index.html?GUID-79201A5A-226F-4FBB-B0B8-AB0BE0554836
// // Look at the ASFv4 code example for async USART.
// usart_async_register_callback(usart_desc_p, USART_ASYNC_RXC_CB, usart_async_rxc_callback);
// if (have_tx) {
// gpio_set_pin_direction(tx->number, GPIO_DIRECTION_OUT);
// gpio_set_pin_pull_mode(tx->number, GPIO_PULL_OFF);
// gpio_set_pin_function(tx->number, tx_pinmux);
// self->tx_pin = tx->number;
// claim_pin(tx);
// } else {
// self->tx_pin = NO_PIN;
// }
// if (have_rx) {
// gpio_set_pin_direction(rx->number, GPIO_DIRECTION_IN);
// gpio_set_pin_pull_mode(rx->number, GPIO_PULL_OFF);
// gpio_set_pin_function(rx->number, rx_pinmux);
// self->rx_pin = rx->number;
// claim_pin(rx);
// } else {
// self->rx_pin = NO_PIN;
// }
// usart_async_enable(usart_desc_p);
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return 0;//self->rx_pin == NO_PIN && self->tx_pin == NO_PIN;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
// if (common_hal_busio_uart_deinited(self)) {
// return;
// }
// // This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// usart_async_disable(usart_desc_p);
// usart_async_deinit(usart_desc_p);
// reset_pin_number(self->rx_pin);
// reset_pin_number(self->tx_pin);
// self->rx_pin = NO_PIN;
// self->tx_pin = NO_PIN;
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
// if (self->rx_pin == NO_PIN) {
// mp_raise_ValueError(translate("No RX pin"));
// }
// // This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// if (len == 0) {
// // Nothing to read.
// return 0;
// }
// struct io_descriptor *io;
// usart_async_get_io_descriptor(usart_desc_p, &io);
// size_t total_read = 0;
// uint64_t start_ticks = ticks_ms;
// // Busy-wait until timeout or until we've read enough chars.
// while (ticks_ms - start_ticks <= self->timeout_ms) {
// // Read as many chars as we can right now, up to len.
// size_t num_read = io_read(io, data, len);
// // Advance pointer in data buffer, and decrease how many chars left to read.
// data += num_read;
// len -= num_read;
// total_read += num_read;
// if (len == 0) {
// // Don't need to read any more: data buf is full.
// break;
// }
// if (num_read > 0) {
// // Reset the timeout on every character read.
// start_ticks = ticks_ms;
// }
// #ifdef MICROPY_VM_HOOK_LOOP
// MICROPY_VM_HOOK_LOOP ;
// // Allow user to break out of a timeout with a KeyboardInterrupt.
// if (mp_hal_is_interrupted()) {
// break;
// }
// #endif
// // If we are zero timeout, make sure we don't loop again (in the event
// // we read in under 1ms)
// if (self->timeout_ms == 0) {
// break;
// }
// }
// if (total_read == 0) {
// *errcode = EAGAIN;
// return MP_STREAM_ERROR;
// }
return 0;//total_read;
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
// if (self->tx_pin == NO_PIN) {
// mp_raise_ValueError(translate("No TX pin"));
// }
// // This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// struct io_descriptor *io;
// usart_async_get_io_descriptor(usart_desc_p, &io);
// if (io_write(io, data, len) < 0) {
// *errcode = MP_EAGAIN;
// return MP_STREAM_ERROR;
// }
// // Wait until write is complete or timeout.
// bool done = false;
// uint64_t start_ticks = ticks_ms;
// // Busy-wait for timeout.
// while (ticks_ms - start_ticks < self->timeout_ms) {
// if (usart_async_is_tx_empty(usart_desc_p)) {
// done = true;
// break;
// }
// #ifdef MICROPY_VM_HOOK_LOOP
// MICROPY_VM_HOOK_LOOP
// #endif
// }
// if (!done) {
// *errcode = MP_EAGAIN;
// return MP_STREAM_ERROR;
// }
// // All the characters got written.
return 0;//len;
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return 0;//self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
// This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// usart_async_set_baud_rate(usart_desc_p,
// // Samples and ARITHMETIC vs FRACTIONAL must correspond to USART_SAMPR in
// // hpl_sercom_config.h.
// _usart_async_calculate_baud_rate(baudrate, // e.g. 9600 baud
// PROTOTYPE_SERCOM_USART_ASYNC_CLOCK_FREQUENCY,
// 16, // samples
// USART_BAUDRATE_ASYNCH_ARITHMETIC,
// 0 // fraction - not used for ARITHMETIC
// ));
// self->baudrate = baudrate;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
// // This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// struct usart_async_status async_status;
// usart_async_get_status(usart_desc_p, &async_status);
return 0;//async_status.rxcnt;
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
// This assignment is only here because the usart_async routines take a *const argument.
// struct usart_async_descriptor * const usart_desc_p = (struct usart_async_descriptor * const) &self->usart_desc;
// usart_async_flush_rx_buffer(usart_desc_p);
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
// if (self->tx_pin == NO_PIN) {
// return false;
// }
// // This assignment is only here because the usart_async routines take a *const argument.
// const struct _usart_async_device * const usart_device_p =
// (struct _usart_async_device * const) &self->usart_desc.device;
return 0;//_usart_async_is_byte_sent(usart_device_p);
}

View File

@ -0,0 +1,46 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H
#define MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H
#include "common-hal/microcontroller/Pin.h"
#include "py/obj.h"
typedef struct {
mp_obj_base_t base;
uint8_t rx_pin;
uint8_t tx_pin;
uint8_t character_bits;
bool rx_error;
uint32_t baudrate;
uint32_t timeout_ms;
uint32_t buffer_length;
uint8_t* buffer;
} busio_uart_obj_t;
#endif // MICROPY_INCLUDED_STM32F4_COMMON_HAL_BUSIO_UART_H

View File

@ -0,0 +1 @@
// No busio module functions.

View File

@ -19,4 +19,5 @@ ifeq ($(MCU_SUB_VARIANT), stm32f412zx)
CIRCUITPY_BOARD = 1
CIRCUITPY_DIGITALIO = 1
CIRCUITPY_MICROCONTROLLER = 1
CIRCUITPY_BUSIO = 1
endif

View File

@ -33,7 +33,7 @@ UART_HandleTypeDef huart2;
void serial_init(void) {
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
@ -42,10 +42,10 @@ void serial_init(void) {
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) == HAL_OK)
{
//HAL_GPIO_WritePin(GPIOE, GPIO_PIN_1, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_1, GPIO_PIN_RESET);
}
//HAL_UART_Transmit(&huart2, (uint8_t*)"Serial On", 9, 5000);
//HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2, GPIO_PIN_RESET);
HAL_UART_Transmit(&huart2, (uint8_t*)"Serial On", 9, 2);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2, GPIO_PIN_RESET);
}
bool serial_connected(void) {
@ -54,7 +54,7 @@ bool serial_connected(void) {
char serial_read(void) {
uint8_t data;
HAL_UART_Receive(&huart2, &data, 1,5000);
HAL_UART_Receive(&huart2, &data, 1,500);
return data;
}