Add DAC, and simple audio driver to STM code.

This commit is contained in:
Damien 2013-11-04 23:05:48 +00:00
parent 6addc89e55
commit 1c62d04e2e
7 changed files with 1127 additions and 0 deletions

View File

@ -26,6 +26,7 @@ SRC_C = \
usart.c \ usart.c \
usb.c \ usb.c \
sdio.c \ sdio.c \
audio.c \
lexerstm.c \ lexerstm.c \
SRC_S = \ SRC_S = \
@ -70,6 +71,7 @@ SRC_STM = \
stm32f4xx_rtc.c \ stm32f4xx_rtc.c \
stm32f4xx_usart.c \ stm32f4xx_usart.c \
stm32f4xx_spi.c \ stm32f4xx_spi.c \
stm32f4xx_dac.c \
stm_misc.c \ stm_misc.c \
usb_core.c \ usb_core.c \
usb_dcd.c \ usb_dcd.c \

98
stm/audio.c Normal file
View File

@ -0,0 +1,98 @@
#include <stdint.h>
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_dac.h"
#include "nlr.h"
#include "misc.h"
//#include "lexer.h"
//#include "lexerstm.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"
#define SAMPLE_BUF_SIZE (32)
// sample_buf_in is always the same or ahead of sample_buf_out
// when they are the same, there are no more samples left to process
// in this scheme, there is always 1 unusable byte in the buffer, just before sample_buf_out
int sample_buf_in;
int sample_buf_out;
byte sample_buf[SAMPLE_BUF_SIZE];
bool audio_is_full(void) {
return ((sample_buf_in + 1) % SAMPLE_BUF_SIZE) == sample_buf_out;
}
void audio_fill(byte sample) {
sample_buf[sample_buf_in] = sample;
sample_buf_in = (sample_buf_in + 1) % SAMPLE_BUF_SIZE;
// enable interrupt
}
void audio_drain(void) {
if (sample_buf_in == sample_buf_out) {
// buffer is empty; disable interrupt
} else {
// buffer has a sample; output it
byte sample = sample_buf[sample_buf_out];
DAC_SetChannel2Data(DAC_Align_8b_R, sample);
sample_buf_out = (sample_buf_out + 1) % SAMPLE_BUF_SIZE;
}
}
// direct access to DAC
py_obj_t pyb_audio_dac(py_obj_t val) {
DAC_SetChannel2Data(DAC_Align_8b_R, py_obj_get_int(val));
return py_const_none;
}
py_obj_t pyb_audio_is_full(void) {
if (audio_is_full()) {
return py_const_true;
} else {
return py_const_false;
}
}
py_obj_t pyb_audio_fill(py_obj_t val) {
audio_fill(py_obj_get_int(val));
return py_const_none;
}
void audio_init(void) {
// DAC peripheral clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
// DAC channel 2 (DAC_OUT2 = PA.5) configuration
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// DAC channel2 Configuration
DAC_InitTypeDef DAC_InitStructure;
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_2, &DAC_InitStructure);
// Enable DAC Channel2
DAC_Cmd(DAC_Channel_2, ENABLE);
// from now on use DAC_SetChannel2Data to trigger a conversion
sample_buf_in = 0;
sample_buf_out = 0;
// enable interrupt
// Python interface
py_obj_t m = py_module_new();
rt_store_attr(m, qstr_from_str_static("dac"), rt_make_function_1(pyb_audio_dac));
rt_store_attr(m, qstr_from_str_static("is_full"), rt_make_function_0(pyb_audio_is_full));
rt_store_attr(m, qstr_from_str_static("fill"), rt_make_function_1(pyb_audio_fill));
rt_store_name(qstr_from_str_static("audio"), m);
}

1
stm/audio.h Normal file
View File

@ -0,0 +1 @@
void audio_init(void);

715
stm/lib/stm32f4xx_dac.c Normal file
View File

@ -0,0 +1,715 @@
/**
******************************************************************************
* @file stm32f4xx_dac.c
* @author MCD Application Team
* @version V1.1.0
* @date 11-January-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the Digital-to-Analog Converter (DAC) peripheral:
* + DAC channels configuration: trigger, output buffer, data format
* + DMA management
* + Interrupts and flags management
*
@verbatim
===============================================================================
##### DAC Peripheral features #####
===============================================================================
[..]
*** DAC Channels ***
====================
[..]
The device integrates two 12-bit Digital Analog Converters that can
be used independently or simultaneously (dual mode):
(#) DAC channel1 with DAC_OUT1 (PA4) as output
(#) DAC channel2 with DAC_OUT2 (PA5) as output
*** DAC Triggers ***
====================
[..]
Digital to Analog conversion can be non-triggered using DAC_Trigger_None
and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register
using DAC_SetChannel1Data() / DAC_SetChannel2Data() functions.
[..]
Digital to Analog conversion can be triggered by:
(#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_Trigger_Ext_IT9.
The used pin (GPIOx_Pin9) must be configured in input mode.
(#) Timers TRGO: TIM2, TIM4, TIM5, TIM6, TIM7 and TIM8
(DAC_Trigger_T2_TRGO, DAC_Trigger_T4_TRGO...)
The timer TRGO event should be selected using TIM_SelectOutputTrigger()
(#) Software using DAC_Trigger_Software
*** DAC Buffer mode feature ***
===============================
[..]
Each DAC channel integrates an output buffer that can be used to
reduce the output impedance, and to drive external loads directly
without having to add an external operational amplifier.
To enable, the output buffer use
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
[..]
(@) Refer to the device datasheet for more details about output
impedance value with and without output buffer.
*** DAC wave generation feature ***
===================================
[..]
Both DAC channels can be used to generate
(#) Noise wave using DAC_WaveGeneration_Noise
(#) Triangle wave using DAC_WaveGeneration_Triangle
-@- Wave generation can be disabled using DAC_WaveGeneration_None
*** DAC data format ***
=======================
[..]
The DAC data format can be:
(#) 8-bit right alignment using DAC_Align_8b_R
(#) 12-bit left alignment using DAC_Align_12b_L
(#) 12-bit right alignment using DAC_Align_12b_R
*** DAC data value to voltage correspondence ***
================================================
[..]
The analog output voltage on each DAC channel pin is determined
by the following equation:
DAC_OUTx = VREF+ * DOR / 4095
with DOR is the Data Output Register
VEF+ is the input voltage reference (refer to the device datasheet)
e.g. To set DAC_OUT1 to 0.7V, use
DAC_SetChannel1Data(DAC_Align_12b_R, 868);
Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V
*** DMA requests ***
=====================
[..]
A DMA1 request can be generated when an external trigger (but not
a software trigger) occurs if DMA1 requests are enabled using
DAC_DMACmd()
[..]
DMA1 requests are mapped as following:
(#) DAC channel1 : mapped on DMA1 Stream5 channel7 which must be
already configured
(#) DAC channel2 : mapped on DMA1 Stream6 channel7 which must be
already configured
##### How to use this driver #####
===============================================================================
[..]
(+) DAC APB clock must be enabled to get write access to DAC
registers using
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE)
(+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode.
(+) Configure the DAC channel using DAC_Init() function
(+) Enable the DAC channel using DAC_Cmd() function
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_conf.h"
#include "stm32f4xx_dac.h"
#include "stm32f4xx_rcc.h"
/** @addtogroup STM32F4xx_StdPeriph_Driver
* @{
*/
/** @defgroup DAC
* @brief DAC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* CR register Mask */
#define CR_CLEAR_MASK ((uint32_t)0x00000FFE)
/* DAC Dual Channels SWTRIG masks */
#define DUAL_SWTRIG_SET ((uint32_t)0x00000003)
#define DUAL_SWTRIG_RESET ((uint32_t)0xFFFFFFFC)
/* DHR registers offsets */
#define DHR12R1_OFFSET ((uint32_t)0x00000008)
#define DHR12R2_OFFSET ((uint32_t)0x00000014)
#define DHR12RD_OFFSET ((uint32_t)0x00000020)
/* DOR register offset */
#define DOR_OFFSET ((uint32_t)0x0000002C)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DAC_Private_Functions
* @{
*/
/** @defgroup DAC_Group1 DAC channels configuration
* @brief DAC channels configuration: trigger, output buffer, data format
*
@verbatim
===============================================================================
##### DAC channels configuration: trigger, output buffer, data format #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the DAC peripheral registers to their default reset values.
* @param None
* @retval None
*/
void DAC_DeInit(void)
{
/* Enable DAC reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, ENABLE);
/* Release DAC from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_DAC, DISABLE);
}
/**
* @brief Initializes the DAC peripheral according to the specified parameters
* in the DAC_InitStruct.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure that contains
* the configuration information for the specified DAC channel.
* @retval None
*/
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_TRIGGER(DAC_InitStruct->DAC_Trigger));
assert_param(IS_DAC_GENERATE_WAVE(DAC_InitStruct->DAC_WaveGeneration));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude));
assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_InitStruct->DAC_OutputBuffer));
/*---------------------------- DAC CR Configuration --------------------------*/
/* Get the DAC CR value */
tmpreg1 = DAC->CR;
/* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */
tmpreg1 &= ~(CR_CLEAR_MASK << DAC_Channel);
/* Configure for the selected DAC channel: buffer output, trigger,
wave generation, mask/amplitude for wave generation */
/* Set TSELx and TENx bits according to DAC_Trigger value */
/* Set WAVEx bits according to DAC_WaveGeneration value */
/* Set MAMPx bits according to DAC_LFSRUnmask_TriangleAmplitude value */
/* Set BOFFx bit according to DAC_OutputBuffer value */
tmpreg2 = (DAC_InitStruct->DAC_Trigger | DAC_InitStruct->DAC_WaveGeneration |
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude | \
DAC_InitStruct->DAC_OutputBuffer);
/* Calculate CR register value depending on DAC_Channel */
tmpreg1 |= tmpreg2 << DAC_Channel;
/* Write to DAC CR */
DAC->CR = tmpreg1;
}
/**
* @brief Fills each DAC_InitStruct member with its default value.
* @param DAC_InitStruct: pointer to a DAC_InitTypeDef structure which will
* be initialized.
* @retval None
*/
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct)
{
/*--------------- Reset DAC init structure parameters values -----------------*/
/* Initialize the DAC_Trigger member */
DAC_InitStruct->DAC_Trigger = DAC_Trigger_None;
/* Initialize the DAC_WaveGeneration member */
DAC_InitStruct->DAC_WaveGeneration = DAC_WaveGeneration_None;
/* Initialize the DAC_LFSRUnmask_TriangleAmplitude member */
DAC_InitStruct->DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
/* Initialize the DAC_OutputBuffer member */
DAC_InitStruct->DAC_OutputBuffer = DAC_OutputBuffer_Enable;
}
/**
* @brief Enables or disables the specified DAC channel.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the DAC channel.
* This parameter can be: ENABLE or DISABLE.
* @note When the DAC channel is enabled the trigger source can no more be modified.
* @retval None
*/
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel */
DAC->CR |= (DAC_CR_EN1 << DAC_Channel);
}
else
{
/* Disable the selected DAC channel */
DAC->CR &= (~(DAC_CR_EN1 << DAC_Channel));
}
}
/**
* @brief Enables or disables the selected DAC channel software trigger.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel software trigger.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for the selected DAC channel */
DAC->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4);
}
else
{
/* Disable software trigger for the selected DAC channel */
DAC->SWTRIGR &= ~((uint32_t)DAC_SWTRIGR_SWTRIG1 << (DAC_Channel >> 4));
}
}
/**
* @brief Enables or disables simultaneously the two DAC channels software triggers.
* @param NewState: new state of the DAC channels software triggers.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for both DAC channels */
DAC->SWTRIGR |= DUAL_SWTRIG_SET;
}
else
{
/* Disable software trigger for both DAC channels */
DAC->SWTRIGR &= DUAL_SWTRIG_RESET;
}
}
/**
* @brief Enables or disables the selected DAC channel wave generation.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_Wave: specifies the wave type to enable or disable.
* This parameter can be one of the following values:
* @arg DAC_Wave_Noise: noise wave generation
* @arg DAC_Wave_Triangle: triangle wave generation
* @param NewState: new state of the selected DAC channel wave generation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_WAVE(DAC_Wave));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected wave generation for the selected DAC channel */
DAC->CR |= DAC_Wave << DAC_Channel;
}
else
{
/* Disable the selected wave generation for the selected DAC channel */
DAC->CR &= ~(DAC_Wave << DAC_Channel);
}
}
/**
* @brief Set the specified data holding register value for DAC channel1.
* @param DAC_Align: Specifies the data alignment for DAC channel1.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data: Data to be loaded in the selected data holding register.
* @retval None
*/
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
tmp = (uint32_t)DAC_BASE;
tmp += DHR12R1_OFFSET + DAC_Align;
/* Set the DAC channel1 selected data holding register */
*(__IO uint32_t *) tmp = Data;
}
/**
* @brief Set the specified data holding register value for DAC channel2.
* @param DAC_Align: Specifies the data alignment for DAC channel2.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data: Data to be loaded in the selected data holding register.
* @retval None
*/
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data));
tmp = (uint32_t)DAC_BASE;
tmp += DHR12R2_OFFSET + DAC_Align;
/* Set the DAC channel2 selected data holding register */
*(__IO uint32_t *)tmp = Data;
}
/**
* @brief Set the specified data holding register value for dual channel DAC.
* @param DAC_Align: Specifies the data alignment for dual channel DAC.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data2: Data for DAC Channel2 to be loaded in the selected data holding register.
* @param Data1: Data for DAC Channel1 to be loaded in the selected data holding register.
* @note In dual mode, a unique register access is required to write in both
* DAC channels at the same time.
* @retval None
*/
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1)
{
uint32_t data = 0, tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
assert_param(IS_DAC_DATA(Data1));
assert_param(IS_DAC_DATA(Data2));
/* Calculate and set dual DAC data holding register value */
if (DAC_Align == DAC_Align_8b_R)
{
data = ((uint32_t)Data2 << 8) | Data1;
}
else
{
data = ((uint32_t)Data2 << 16) | Data1;
}
tmp = (uint32_t)DAC_BASE;
tmp += DHR12RD_OFFSET + DAC_Align;
/* Set the dual DAC selected data holding register */
*(__IO uint32_t *)tmp = data;
}
/**
* @brief Returns the last data output value of the selected DAC channel.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @retval The selected DAC channel data output value.
*/
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
tmp = (uint32_t) DAC_BASE ;
tmp += DOR_OFFSET + ((uint32_t)DAC_Channel >> 2);
/* Returns the DAC channel data output register value */
return (uint16_t) (*(__IO uint32_t*) tmp);
}
/**
* @}
*/
/** @defgroup DAC_Group2 DMA management functions
* @brief DMA management functions
*
@verbatim
===============================================================================
##### DMA management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC channel DMA request.
* @note When enabled DMA1 is generated when an external trigger (EXTI Line9,
* TIM2, TIM4, TIM5, TIM6, TIM7 or TIM8 but not a software trigger) occurs.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel DMA request.
* This parameter can be: ENABLE or DISABLE.
* @note The DAC channel1 is mapped on DMA1 Stream 5 channel7 which must be
* already configured.
* @note The DAC channel2 is mapped on DMA1 Stream 6 channel7 which must be
* already configured.
* @retval None
*/
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected DAC channel DMA request */
DAC->CR |= (DAC_CR_DMAEN1 << DAC_Channel);
}
else
{
/* Disable the selected DAC channel DMA request */
DAC->CR &= (~(DAC_CR_DMAEN1 << DAC_Channel));
}
}
/**
* @}
*/
/** @defgroup DAC_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC interrupts.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before the
* acknowledgement for the first external trigger is received (first request).
* @param NewState: new state of the specified DAC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_DAC_IT(DAC_IT));
if (NewState != DISABLE)
{
/* Enable the selected DAC interrupts */
DAC->CR |= (DAC_IT << DAC_Channel);
}
else
{
/* Disable the selected DAC interrupts */
DAC->CR &= (~(uint32_t)(DAC_IT << DAC_Channel));
}
}
/**
* @brief Checks whether the specified DAC flag is set or not.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to check.
* This parameter can be only of the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @note The DMA underrun occurs when a second external trigger arrives before the
* acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_FLAG (SET or RESET).
*/
FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
/* Check the status of the specified DAC flag */
if ((DAC->SR & (DAC_FLAG << DAC_Channel)) != (uint8_t)RESET)
{
/* DAC_FLAG is set */
bitstatus = SET;
}
else
{
/* DAC_FLAG is reset */
bitstatus = RESET;
}
/* Return the DAC_FLAG status */
return bitstatus;
}
/**
* @brief Clears the DAC channel's pending flags.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to clear.
* This parameter can be of the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @note The DMA underrun occurs when a second external trigger arrives before the
* acknowledgement for the first external trigger is received (first request).
* @retval None
*/
void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
/* Clear the selected DAC flags */
DAC->SR = (DAC_FLAG << DAC_Channel);
}
/**
* @brief Checks whether the specified DAC interrupt has occurred or not.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt source to check.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before the
* acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_IT (SET or RESET).
*/
ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT)
{
ITStatus bitstatus = RESET;
uint32_t enablestatus = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* Get the DAC_IT enable bit status */
enablestatus = (DAC->CR & (DAC_IT << DAC_Channel)) ;
/* Check the status of the specified DAC interrupt */
if (((DAC->SR & (DAC_IT << DAC_Channel)) != (uint32_t)RESET) && enablestatus)
{
/* DAC_IT is set */
bitstatus = SET;
}
else
{
/* DAC_IT is reset */
bitstatus = RESET;
}
/* Return the DAC_IT status */
return bitstatus;
}
/**
* @brief Clears the DAC channel's interrupt pending bits.
* @param DAC_Channel: The selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt pending bit to clear.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before the
* acknowledgement for the first external trigger is received (first request).
* @retval None
*/
void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* Clear the selected DAC interrupt pending bits */
DAC->SR = (DAC_IT << DAC_Channel);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

304
stm/lib/stm32f4xx_dac.h Normal file
View File

@ -0,0 +1,304 @@
/**
******************************************************************************
* @file stm32f4xx_dac.h
* @author MCD Application Team
* @version V1.1.0
* @date 11-January-2013
* @brief This file contains all the functions prototypes for the DAC firmware
* library.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_DAC_H
#define __STM32F4xx_DAC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx.h"
/** @addtogroup STM32F4xx_StdPeriph_Driver
* @{
*/
/** @addtogroup DAC
* @{
*/
/* Exported types ------------------------------------------------------------*/
/**
* @brief DAC Init structure definition
*/
typedef struct
{
uint32_t DAC_Trigger; /*!< Specifies the external trigger for the selected DAC channel.
This parameter can be a value of @ref DAC_trigger_selection */
uint32_t DAC_WaveGeneration; /*!< Specifies whether DAC channel noise waves or triangle waves
are generated, or whether no wave is generated.
This parameter can be a value of @ref DAC_wave_generation */
uint32_t DAC_LFSRUnmask_TriangleAmplitude; /*!< Specifies the LFSR mask for noise wave generation or
the maximum amplitude triangle generation for the DAC channel.
This parameter can be a value of @ref DAC_lfsrunmask_triangleamplitude */
uint32_t DAC_OutputBuffer; /*!< Specifies whether the DAC channel output buffer is enabled or disabled.
This parameter can be a value of @ref DAC_output_buffer */
}DAC_InitTypeDef;
/* Exported constants --------------------------------------------------------*/
/** @defgroup DAC_Exported_Constants
* @{
*/
/** @defgroup DAC_trigger_selection
* @{
*/
#define DAC_Trigger_None ((uint32_t)0x00000000) /*!< Conversion is automatic once the DAC1_DHRxxxx register
has been loaded, and not by external trigger */
#define DAC_Trigger_T2_TRGO ((uint32_t)0x00000024) /*!< TIM2 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T4_TRGO ((uint32_t)0x0000002C) /*!< TIM4 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T5_TRGO ((uint32_t)0x0000001C) /*!< TIM5 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T6_TRGO ((uint32_t)0x00000004) /*!< TIM6 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T7_TRGO ((uint32_t)0x00000014) /*!< TIM7 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_T8_TRGO ((uint32_t)0x0000000C) /*!< TIM8 TRGO selected as external conversion trigger for DAC channel */
#define DAC_Trigger_Ext_IT9 ((uint32_t)0x00000034) /*!< EXTI Line9 event selected as external conversion trigger for DAC channel */
#define DAC_Trigger_Software ((uint32_t)0x0000003C) /*!< Conversion started by software trigger for DAC channel */
#define IS_DAC_TRIGGER(TRIGGER) (((TRIGGER) == DAC_Trigger_None) || \
((TRIGGER) == DAC_Trigger_T6_TRGO) || \
((TRIGGER) == DAC_Trigger_T8_TRGO) || \
((TRIGGER) == DAC_Trigger_T7_TRGO) || \
((TRIGGER) == DAC_Trigger_T5_TRGO) || \
((TRIGGER) == DAC_Trigger_T2_TRGO) || \
((TRIGGER) == DAC_Trigger_T4_TRGO) || \
((TRIGGER) == DAC_Trigger_Ext_IT9) || \
((TRIGGER) == DAC_Trigger_Software))
/**
* @}
*/
/** @defgroup DAC_wave_generation
* @{
*/
#define DAC_WaveGeneration_None ((uint32_t)0x00000000)
#define DAC_WaveGeneration_Noise ((uint32_t)0x00000040)
#define DAC_WaveGeneration_Triangle ((uint32_t)0x00000080)
#define IS_DAC_GENERATE_WAVE(WAVE) (((WAVE) == DAC_WaveGeneration_None) || \
((WAVE) == DAC_WaveGeneration_Noise) || \
((WAVE) == DAC_WaveGeneration_Triangle))
/**
* @}
*/
/** @defgroup DAC_lfsrunmask_triangleamplitude
* @{
*/
#define DAC_LFSRUnmask_Bit0 ((uint32_t)0x00000000) /*!< Unmask DAC channel LFSR bit0 for noise wave generation */
#define DAC_LFSRUnmask_Bits1_0 ((uint32_t)0x00000100) /*!< Unmask DAC channel LFSR bit[1:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits2_0 ((uint32_t)0x00000200) /*!< Unmask DAC channel LFSR bit[2:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits3_0 ((uint32_t)0x00000300) /*!< Unmask DAC channel LFSR bit[3:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits4_0 ((uint32_t)0x00000400) /*!< Unmask DAC channel LFSR bit[4:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits5_0 ((uint32_t)0x00000500) /*!< Unmask DAC channel LFSR bit[5:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits6_0 ((uint32_t)0x00000600) /*!< Unmask DAC channel LFSR bit[6:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits7_0 ((uint32_t)0x00000700) /*!< Unmask DAC channel LFSR bit[7:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits8_0 ((uint32_t)0x00000800) /*!< Unmask DAC channel LFSR bit[8:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits9_0 ((uint32_t)0x00000900) /*!< Unmask DAC channel LFSR bit[9:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits10_0 ((uint32_t)0x00000A00) /*!< Unmask DAC channel LFSR bit[10:0] for noise wave generation */
#define DAC_LFSRUnmask_Bits11_0 ((uint32_t)0x00000B00) /*!< Unmask DAC channel LFSR bit[11:0] for noise wave generation */
#define DAC_TriangleAmplitude_1 ((uint32_t)0x00000000) /*!< Select max triangle amplitude of 1 */
#define DAC_TriangleAmplitude_3 ((uint32_t)0x00000100) /*!< Select max triangle amplitude of 3 */
#define DAC_TriangleAmplitude_7 ((uint32_t)0x00000200) /*!< Select max triangle amplitude of 7 */
#define DAC_TriangleAmplitude_15 ((uint32_t)0x00000300) /*!< Select max triangle amplitude of 15 */
#define DAC_TriangleAmplitude_31 ((uint32_t)0x00000400) /*!< Select max triangle amplitude of 31 */
#define DAC_TriangleAmplitude_63 ((uint32_t)0x00000500) /*!< Select max triangle amplitude of 63 */
#define DAC_TriangleAmplitude_127 ((uint32_t)0x00000600) /*!< Select max triangle amplitude of 127 */
#define DAC_TriangleAmplitude_255 ((uint32_t)0x00000700) /*!< Select max triangle amplitude of 255 */
#define DAC_TriangleAmplitude_511 ((uint32_t)0x00000800) /*!< Select max triangle amplitude of 511 */
#define DAC_TriangleAmplitude_1023 ((uint32_t)0x00000900) /*!< Select max triangle amplitude of 1023 */
#define DAC_TriangleAmplitude_2047 ((uint32_t)0x00000A00) /*!< Select max triangle amplitude of 2047 */
#define DAC_TriangleAmplitude_4095 ((uint32_t)0x00000B00) /*!< Select max triangle amplitude of 4095 */
#define IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(VALUE) (((VALUE) == DAC_LFSRUnmask_Bit0) || \
((VALUE) == DAC_LFSRUnmask_Bits1_0) || \
((VALUE) == DAC_LFSRUnmask_Bits2_0) || \
((VALUE) == DAC_LFSRUnmask_Bits3_0) || \
((VALUE) == DAC_LFSRUnmask_Bits4_0) || \
((VALUE) == DAC_LFSRUnmask_Bits5_0) || \
((VALUE) == DAC_LFSRUnmask_Bits6_0) || \
((VALUE) == DAC_LFSRUnmask_Bits7_0) || \
((VALUE) == DAC_LFSRUnmask_Bits8_0) || \
((VALUE) == DAC_LFSRUnmask_Bits9_0) || \
((VALUE) == DAC_LFSRUnmask_Bits10_0) || \
((VALUE) == DAC_LFSRUnmask_Bits11_0) || \
((VALUE) == DAC_TriangleAmplitude_1) || \
((VALUE) == DAC_TriangleAmplitude_3) || \
((VALUE) == DAC_TriangleAmplitude_7) || \
((VALUE) == DAC_TriangleAmplitude_15) || \
((VALUE) == DAC_TriangleAmplitude_31) || \
((VALUE) == DAC_TriangleAmplitude_63) || \
((VALUE) == DAC_TriangleAmplitude_127) || \
((VALUE) == DAC_TriangleAmplitude_255) || \
((VALUE) == DAC_TriangleAmplitude_511) || \
((VALUE) == DAC_TriangleAmplitude_1023) || \
((VALUE) == DAC_TriangleAmplitude_2047) || \
((VALUE) == DAC_TriangleAmplitude_4095))
/**
* @}
*/
/** @defgroup DAC_output_buffer
* @{
*/
#define DAC_OutputBuffer_Enable ((uint32_t)0x00000000)
#define DAC_OutputBuffer_Disable ((uint32_t)0x00000002)
#define IS_DAC_OUTPUT_BUFFER_STATE(STATE) (((STATE) == DAC_OutputBuffer_Enable) || \
((STATE) == DAC_OutputBuffer_Disable))
/**
* @}
*/
/** @defgroup DAC_Channel_selection
* @{
*/
#define DAC_Channel_1 ((uint32_t)0x00000000)
#define DAC_Channel_2 ((uint32_t)0x00000010)
#define IS_DAC_CHANNEL(CHANNEL) (((CHANNEL) == DAC_Channel_1) || \
((CHANNEL) == DAC_Channel_2))
/**
* @}
*/
/** @defgroup DAC_data_alignement
* @{
*/
#define DAC_Align_12b_R ((uint32_t)0x00000000)
#define DAC_Align_12b_L ((uint32_t)0x00000004)
#define DAC_Align_8b_R ((uint32_t)0x00000008)
#define IS_DAC_ALIGN(ALIGN) (((ALIGN) == DAC_Align_12b_R) || \
((ALIGN) == DAC_Align_12b_L) || \
((ALIGN) == DAC_Align_8b_R))
/**
* @}
*/
/** @defgroup DAC_wave_generation
* @{
*/
#define DAC_Wave_Noise ((uint32_t)0x00000040)
#define DAC_Wave_Triangle ((uint32_t)0x00000080)
#define IS_DAC_WAVE(WAVE) (((WAVE) == DAC_Wave_Noise) || \
((WAVE) == DAC_Wave_Triangle))
/**
* @}
*/
/** @defgroup DAC_data
* @{
*/
#define IS_DAC_DATA(DATA) ((DATA) <= 0xFFF0)
/**
* @}
*/
/** @defgroup DAC_interrupts_definition
* @{
*/
#define DAC_IT_DMAUDR ((uint32_t)0x00002000)
#define IS_DAC_IT(IT) (((IT) == DAC_IT_DMAUDR))
/**
* @}
*/
/** @defgroup DAC_flags_definition
* @{
*/
#define DAC_FLAG_DMAUDR ((uint32_t)0x00002000)
#define IS_DAC_FLAG(FLAG) (((FLAG) == DAC_FLAG_DMAUDR))
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/* Function used to set the DAC configuration to the default reset state *****/
void DAC_DeInit(void);
/* DAC channels configuration: trigger, output buffer, data format functions */
void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct);
void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct);
void DAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState);
void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState);
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState);
void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState);
void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data);
void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data);
void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1);
uint16_t DAC_GetDataOutputValue(uint32_t DAC_Channel);
/* DMA management functions ***************************************************/
void DAC_DMACmd(uint32_t DAC_Channel, FunctionalState NewState);
/* Interrupts and flags management functions **********************************/
void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState);
FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG);
void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG);
ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT);
void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT);
#ifdef __cplusplus
}
#endif
#endif /*__STM32F4xx_DAC_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -20,6 +20,7 @@
#include "usart.h" #include "usart.h"
#include "usb.h" #include "usb.h"
#include "ff.h" #include "ff.h"
#include "audio.h"
static FATFS fatfs0; static FATFS fatfs0;
@ -745,6 +746,9 @@ soft_reset:
// servo // servo
servo_init(); servo_init();
// audio
audio_init();
// add some functions to the python namespace // add some functions to the python namespace
{ {
py_obj_t m = py_module_new(); py_obj_t m = py_module_new();

View File

@ -14,6 +14,9 @@ void sys_tick_init(void) {
// called on SysTick interrupt // called on SysTick interrupt
void SysTick_Handler(void) { void SysTick_Handler(void) {
sys_tick_counter++; sys_tick_counter++;
// hack!
void audio_drain(void);
audio_drain();
} }
void sys_tick_delay_ms(uint32_t delay_ms) { void sys_tick_delay_ms(uint32_t delay_ms) {