Add PWM based audio playback

See
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
to get started.

Fixes #4037
This commit is contained in:
Scott Shawcroft 2021-02-02 17:14:39 -08:00
parent b19c700d4a
commit 191b143e7b
No known key found for this signature in database
GPG Key ID: 0DFD512649C052DA
34 changed files with 929 additions and 8 deletions

1
.gitattributes vendored
View File

@ -18,6 +18,7 @@
*.deb binary
*.zip binary
*.pdf binary
*.wav binary
# These should also not be modified by git.
tests/basics/string_cr_conversion.py -text

View File

@ -196,6 +196,7 @@ SRC_C += \
bindings/rp2pio/__init__.c \
common-hal/rp2pio/StateMachine.c \
common-hal/rp2pio/__init__.c \
audio_dma.c \
background.c \
peripherals/pins.c \
fatfs_port.c \

View File

@ -0,0 +1,383 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "audio_dma.h"
#include "shared-bindings/audiocore/RawSample.h"
#include "shared-bindings/audiocore/WaveFile.h"
#include "supervisor/background_callback.h"
#include "py/mpstate.h"
#include "py/runtime.h"
#include "src/rp2_common/hardware_irq/include/hardware/irq.h"
#if CIRCUITPY_AUDIOPWMIO || CIRCUITPY_AUDIOBUSIO
#define AUDIO_DMA_CHANNEL_COUNT NUM_DMA_CHANNELS
void audio_dma_convert_signed(audio_dma_t* dma, uint8_t* buffer, uint32_t buffer_length,
uint8_t** output_buffer, uint32_t* output_buffer_length) {
if (dma->first_buffer_free) {
*output_buffer = dma->first_buffer;
} else {
*output_buffer = dma->second_buffer;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
if (dma->signed_to_unsigned ||
dma->unsigned_to_signed ||
dma->sample_spacing > 1 ||
(dma->sample_resolution != dma->output_resolution)) {
*output_buffer_length = buffer_length / dma->sample_spacing;
uint32_t out_i = 0;
if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
size_t shift = dma->output_resolution - dma->sample_resolution;
for (uint32_t i = 0; i < buffer_length; i += dma->sample_spacing) {
if (dma->signed_to_unsigned) {
((uint16_t*) *output_buffer)[out_i] = ((uint16_t) ((int8_t*) buffer)[i] + 0x80) << shift;
} else if (dma->unsigned_to_signed) {
((int16_t*) *output_buffer)[out_i] = ((int16_t) ((uint8_t*) buffer)[i] - 0x80) << shift;
} else {
((uint16_t*) *output_buffer)[out_i] = ((uint16_t) ((uint8_t*) buffer)[i]) << shift;
}
out_i += 1;
}
} else if (dma->sample_resolution <= 8 && dma->output_resolution <= 8) {
for (uint32_t i = 0; i < buffer_length; i += dma->sample_spacing) {
if (dma->signed_to_unsigned) {
((uint8_t*) *output_buffer)[out_i] = ((int8_t*) buffer)[i] + 0x80;
} else if (dma->unsigned_to_signed) {
((int8_t*) *output_buffer)[out_i] = ((uint8_t*) buffer)[i] - 0x80;
} else {
((uint8_t*) *output_buffer)[out_i] = ((uint8_t*) buffer)[i];
}
out_i += 1;
}
} else if (dma->sample_resolution > 8 && dma->output_resolution > 8) {
size_t shift = 16 - dma->output_resolution;
for (uint32_t i = 0; i < buffer_length / 2; i += dma->sample_spacing) {
if (dma->signed_to_unsigned) {
((uint16_t*) *output_buffer)[out_i] = ((int16_t*) buffer)[i] + 0x8000;
} else if (dma->unsigned_to_signed) {
((int16_t*) *output_buffer)[out_i] = ((uint16_t*) buffer)[i] - 0x8000;
} else {
((uint16_t*) *output_buffer)[out_i] = ((uint16_t*) buffer)[i];
}
if (dma->output_resolution < 16) {
if (dma->output_signed) {
((int16_t*) *output_buffer)[out_i] = ((int16_t*) *output_buffer)[out_i] >> shift;
} else {
((uint16_t*) *output_buffer)[out_i] = ((uint16_t*) *output_buffer)[out_i] >> shift;
}
}
out_i += 1;
}
}
} else {
*output_buffer = buffer;
*output_buffer_length = buffer_length;
}
#pragma GCC diagnostic pop
dma->first_buffer_free = !dma->first_buffer_free;
}
void audio_dma_load_next_block(audio_dma_t* dma) {
uint8_t dma_channel = dma->channel[1];
if (dma->first_channel_free) {
dma_channel = dma->channel[0];
}
dma->first_channel_free = !dma->first_channel_free;
uint8_t* output_buffer;
uint32_t output_buffer_length;
audioio_get_buffer_result_t get_buffer_result;
uint8_t* buffer;
uint32_t buffer_length;
get_buffer_result = audiosample_get_buffer(dma->sample,
dma->single_channel, dma->audio_channel, &buffer, &buffer_length);
if (get_buffer_result == GET_BUFFER_ERROR) {
audio_dma_stop(dma);
return;
}
audio_dma_convert_signed(dma, buffer, buffer_length, &output_buffer, &output_buffer_length);
// If we don't have an output buffer, save the pointer to first_buffer for use in the single
// buffer special case.
if (dma->first_buffer == NULL) {
dma->first_buffer = output_buffer;
}
dma_channel_set_trans_count(dma_channel, output_buffer_length / dma->output_size, false /* trigger */);
dma_channel_set_read_addr(dma_channel, output_buffer, false /* trigger */);
if (get_buffer_result == GET_BUFFER_DONE) {
if (dma->loop) {
audiosample_reset_buffer(dma->sample, dma->single_channel, dma->audio_channel);
} else {
// Set channel trigger to ourselves so we don't keep going.
dma_channel_hw_t* c = &dma_hw->ch[dma_channel];
c->al1_ctrl = (c->al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) | (dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB);
}
}
}
// Playback should be shutdown before calling this.
audio_dma_result audio_dma_setup_playback(audio_dma_t* dma,
mp_obj_t sample,
bool loop,
bool single_channel,
uint8_t audio_channel,
bool output_signed,
uint8_t output_resolution,
uint32_t output_register_address,
uint8_t dma_trigger_source) {
// Use two DMA channels to because the DMA can't wrap to itself without the
// buffer being power of two aligned.
dma->channel[0] = dma_claim_unused_channel(false);
dma->channel[1] = dma_claim_unused_channel(false);
if (dma->channel[0] == NUM_DMA_CHANNELS || dma->channel[1] == NUM_DMA_CHANNELS) {
if (dma->channel[0] < NUM_DMA_CHANNELS) {
dma_channel_unclaim(dma->channel[0]);
}
return AUDIO_DMA_DMA_BUSY;
}
dma->sample = sample;
dma->loop = loop;
dma->single_channel = single_channel;
dma->audio_channel = audio_channel;
dma->signed_to_unsigned = false;
dma->unsigned_to_signed = false;
dma->output_signed = output_signed;
dma->sample_spacing = 1;
dma->first_channel_free = true;
dma->output_resolution = output_resolution;
dma->sample_resolution = audiosample_bits_per_sample(sample);
audiosample_reset_buffer(sample, single_channel, audio_channel);
bool single_buffer;
bool samples_signed;
uint32_t max_buffer_length;
audiosample_get_buffer_structure(sample, single_channel, &single_buffer, &samples_signed,
&max_buffer_length, &dma->sample_spacing);
// Check to see if we have to scale the resolution up.
if (dma->sample_resolution <= 8 && dma->output_resolution > 8) {
max_buffer_length *= 2;
}
if (output_signed != samples_signed ||
dma->sample_spacing > 1 ||
(dma->sample_resolution != dma->output_resolution)) {
max_buffer_length /= dma->sample_spacing;
dma->first_buffer = (uint8_t*) m_realloc(dma->first_buffer, max_buffer_length);
if (dma->first_buffer == NULL) {
return AUDIO_DMA_MEMORY_ERROR;
}
dma->first_buffer_free = true;
if (!single_buffer) {
dma->second_buffer = (uint8_t*) m_realloc(dma->second_buffer, max_buffer_length);
if (dma->second_buffer == NULL) {
return AUDIO_DMA_MEMORY_ERROR;
}
}
dma->signed_to_unsigned = !output_signed && samples_signed;
dma->unsigned_to_signed = output_signed && !samples_signed;
}
if (output_resolution > 8) {
dma->output_size = 2;
} else {
dma->output_size = 1;
}
// Transfer both channels at once.
if (!single_channel && audiosample_channel_count(sample) == 2) {
dma->output_size *= 2;
}
enum dma_channel_transfer_size dma_size = DMA_SIZE_8;
if (dma->output_size == 2) {
dma_size = DMA_SIZE_16;
} else if (dma->output_size == 4) {
dma_size = DMA_SIZE_32;
}
for (size_t i = 0; i < 2; i++) {
dma_channel_config c = dma_channel_get_default_config(dma->channel[i]);
channel_config_set_transfer_data_size(&c, dma_size);
channel_config_set_dreq(&c, dma_trigger_source);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
// Chain to the other channel by default.
channel_config_set_chain_to(&c, dma->channel[(i + 1) % 2]);
dma_channel_set_config(dma->channel[i], &c, false /* trigger */);
dma_channel_set_write_addr(dma->channel[i], (void*) output_register_address, false /* trigger */);
}
// We keep the audio_dma_t for internal use and the sample as a root pointer because it
// contains the audiodma structure.
MP_STATE_PORT(playing_audio)[dma->channel[0]] = dma;
MP_STATE_PORT(playing_audio)[dma->channel[1]] = dma;
// Load the first two blocks up front.
audio_dma_load_next_block(dma);
if (!single_buffer) {
audio_dma_load_next_block(dma);
}
// Special case the DMA for a single buffer. It's commonly used for a single wave length of sound
// and may be short. Therefore, we use DMA chaining to loop quickly without involving interrupts.
// On the RP2040 we chain by having a second DMA writing to the config registers of the first.
// Read and write addresses change with DMA so we need to reset the read address back to the
// start of the sample.
if (single_buffer) {
dma_channel_config c = dma_channel_get_default_config(dma->channel[1]);
channel_config_set_transfer_data_size(&c, DMA_SIZE_32);
channel_config_set_dreq(&c, 0x3f); // dma as fast as possible
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, false);
channel_config_set_chain_to(&c, dma->channel[1]); // Chain to ourselves so we stop.
dma_channel_configure(dma->channel[1], &c,
&dma_hw->ch[dma->channel[0]].al3_read_addr_trig, // write address
&dma->first_buffer, // read address
1, // transaction count
false); // trigger
} else {
// Enable our DMA channels on DMA0 to the CPU. This will wake us up when
// we're WFI.
dma_hw->inte0 |= (1 << dma->channel[0]) | (1 << dma->channel[1]);
irq_set_mask_enabled(1 << DMA_IRQ_0, true);
}
dma_channel_start(dma->channel[0]);
return AUDIO_DMA_OK;
}
void audio_dma_stop(audio_dma_t* dma) {
// Disable our interrupts.
dma_hw->inte0 &= ~((1 << dma->channel[0]) | (1 << dma->channel[1]));
irq_set_mask_enabled(1 << DMA_IRQ_0, false);
// Run any remaining audio tasks because we remove ourselves from
// playing_audio.
RUN_BACKGROUND_TASKS;
for (size_t i = 0; i < 2; i++) {
size_t channel = dma->channel[i];
if (dma_channel_is_busy(channel)) {
dma_channel_abort(channel);
}
dma_channel_unclaim(channel);
MP_STATE_PORT(playing_audio)[channel] = NULL;
dma->channel[i] = NUM_DMA_CHANNELS;
}
// Hold onto our buffers.
}
// To pause we simply stop the DMA. It is the responsibility of the output peripheral
// to hold the previous value.
void audio_dma_pause(audio_dma_t* dma) {
dma_hw->ch[dma->channel[0]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS;
dma_hw->ch[dma->channel[1]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS;
}
void audio_dma_resume(audio_dma_t* dma) {
// Always re-enable the non-busy channel first so it's ready to continue when the busy channel
// finishes and chains to it. (An interrupt could make the time between enables long.)
size_t first = 0;
size_t second = 1;
if (dma_channel_is_busy(dma->channel[0])) {
first = 1;
second = 0;
}
dma_hw->ch[dma->channel[first]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
dma_hw->ch[dma->channel[second]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS;
}
bool audio_dma_get_paused(audio_dma_t* dma) {
if (dma->channel[0] >= AUDIO_DMA_CHANNEL_COUNT) {
return false;
}
uint32_t control = dma_hw->ch[dma->channel[0]].ctrl_trig;
return (control & DMA_CH0_CTRL_TRIG_EN_BITS) == 0;
}
void audio_dma_init(audio_dma_t* dma) {
dma->first_buffer = NULL;
dma->second_buffer = NULL;
}
void audio_dma_deinit(audio_dma_t* dma) {
m_free(dma->first_buffer);
dma->first_buffer = NULL;
m_free(dma->second_buffer);
dma->second_buffer = NULL;
}
bool audio_dma_get_playing(audio_dma_t* dma) {
if (dma->channel[0] == NUM_DMA_CHANNELS) {
return false;
}
if (!dma_channel_is_busy(dma->channel[0]) &&
!dma_channel_is_busy(dma->channel[1])) {
audio_dma_stop(dma);
return false;
}
return true;
}
// WARN(tannewt): DO NOT print from here, or anything it calls. Printing calls
// background tasks such as this and causes a stack overflow.
STATIC void dma_callback_fun(void *arg) {
audio_dma_t* dma = arg;
if (dma == NULL) {
return;
}
audio_dma_load_next_block(dma);
}
void isr_dma_0(void) {
for (size_t i = 0; i < NUM_DMA_CHANNELS; i++) {
uint32_t mask = 1 << i;
if ((dma_hw->intr & mask) != 0 && MP_STATE_PORT(playing_audio)[i] != NULL) {
audio_dma_t* dma = MP_STATE_PORT(playing_audio)[i];
background_callback_add(&dma->callback, dma_callback_fun, (void*)dma);
dma_hw->ints0 = mask;
}
}
}
#endif

View File

@ -0,0 +1,91 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_RASPBERRYPI_AUDIO_DMA_OUT_H
#define MICROPY_INCLUDED_RASPBERRYPI_AUDIO_DMA_OUT_H
#include "py/obj.h"
#include "supervisor/background_callback.h"
#include "src/rp2_common/hardware_dma/include/hardware/dma.h"
typedef struct {
mp_obj_t sample;
uint8_t channel[2];
uint8_t audio_channel;
uint8_t output_size;
uint8_t sample_spacing;
bool loop;
bool single_channel;
bool signed_to_unsigned;
bool unsigned_to_signed;
bool output_signed;
bool first_channel_free;
bool first_buffer_free;
uint8_t output_resolution; // in bits
uint8_t sample_resolution; // in bits
uint8_t* first_buffer;
uint8_t* second_buffer;
background_callback_t callback;
} audio_dma_t;
typedef enum {
AUDIO_DMA_OK,
AUDIO_DMA_DMA_BUSY,
AUDIO_DMA_MEMORY_ERROR,
} audio_dma_result;
void audio_dma_init(audio_dma_t* dma);
void audio_dma_deinit(audio_dma_t* dma);
void audio_dma_reset(void);
// This sets everything up but doesn't start the timer.
// Sample is the python object for the sample to play.
// loop is true if we should loop the sample.
// single_channel is true if we only output a single channel. When false, all channels will be
// output.
// audio_channel is the index of the channel to dma. single_channel must be false in this case.
// output_signed is true if the dma'd data should be signed. False and it will be unsigned.
// output_register_address is the address to copy data to.
// dma_trigger_source is the DMA trigger source which cause another copy
audio_dma_result audio_dma_setup_playback(audio_dma_t* dma,
mp_obj_t sample,
bool loop,
bool single_channel,
uint8_t audio_channel,
bool output_signed,
uint8_t output_resolution,
uint32_t output_register_address,
uint8_t dma_trigger_source);
void audio_dma_stop(audio_dma_t* dma);
bool audio_dma_get_playing(audio_dma_t* dma);
void audio_dma_pause(audio_dma_t* dma);
void audio_dma_resume(audio_dma_t* dma);
bool audio_dma_get_paused(audio_dma_t* dma);
#endif // MICROPY_INCLUDED_RASPBERRYPI_AUDIO_DMA_OUT_H

View File

@ -0,0 +1,235 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "common-hal/audiopwmio/PWMAudioOut.h"
#include <stdint.h>
#include <string.h>
#include "extmod/vfs_fat.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "shared-bindings/pwmio/PWMOut.h"
#include "shared-bindings/audiopwmio/PWMAudioOut.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/Processor.h"
#include "supervisor/shared/tick.h"
#include "supervisor/shared/translate.h"
#include "src/rp2040/hardware_structs/include/hardware/structs/dma.h"
#include "src/rp2_common/hardware_pwm/include/hardware/pwm.h"
#define NUM_DMA_TIMERS 4
void audiopwmout_reset() {
for (size_t i = 0; i < NUM_DMA_TIMERS; i++) {
dma_hw->timer[i] = 0;
}
}
// Caller validates that pins are free.
void common_hal_audiopwmio_pwmaudioout_construct(audiopwmio_pwmaudioout_obj_t* self,
const mcu_pin_obj_t* left_channel, const mcu_pin_obj_t* right_channel, uint16_t quiescent_value) {
if (left_channel != NULL && right_channel != NULL) {
if (pwm_gpio_to_slice_num(left_channel->number) != pwm_gpio_to_slice_num(right_channel->number)) {
mp_raise_ValueError(translate("Pins must share PWM slice"));
}
if (pwm_gpio_to_channel(left_channel->number) != 0) {
mp_raise_ValueError(translate("Stereo left must be on PWM channel A"));
}
if (pwm_gpio_to_channel(right_channel->number) != 1) {
mp_raise_ValueError(translate("Stereo right must be on PWM channel B"));
}
}
// Typically pwmout doesn't let us change frequency with two objects on the
// same PWM slice. However, we have private access to it so we can do what
// we want. ;-) We mark ourselves variable only if we're a mono output to
// prevent other PWM use on the other channel. If stereo, we say fixed
// frequency so we can allocate with ourselves.
bool mono = right_channel == NULL;
// We don't actually know our frequency yet so just pick one that shouldn't
// match anyone else. (We'll only know the frequency once we play something
// back.)
uint32_t frequency = 12500;
// Make sure the PWMOut's are "deinited" by default.
self->left_pwm.pin = NULL;
self->right_pwm.pin = NULL;
pwmout_result_t result = common_hal_pwmio_pwmout_construct(&self->left_pwm,
left_channel, 0, frequency, mono);
if (result == PWMOUT_OK && right_channel != NULL) {
result = common_hal_pwmio_pwmout_construct(&self->right_pwm,
right_channel, 0, frequency, false);
if (result != PWMOUT_OK) {
common_hal_pwmio_pwmout_deinit(&self->left_pwm);
}
}
if (result != PWMOUT_OK) {
mp_raise_RuntimeError(translate("All timers in use"));
}
claim_pin(left_channel);
if (right_channel != NULL) {
claim_pin(right_channel);
}
audio_dma_init(&self->dma);
self->quiescent_value = quiescent_value;
}
bool common_hal_audiopwmio_pwmaudioout_deinited(audiopwmio_pwmaudioout_obj_t* self) {
return common_hal_pwmio_pwmout_deinited(&self->left_pwm);
}
void common_hal_audiopwmio_pwmaudioout_deinit(audiopwmio_pwmaudioout_obj_t* self) {
if (common_hal_audiopwmio_pwmaudioout_deinited(self)) {
return;
}
if (common_hal_audiopwmio_pwmaudioout_get_playing(self)) {
common_hal_audiopwmio_pwmaudioout_stop(self);
}
// TODO: ramp the pwm down from quiescent value to 0
common_hal_pwmio_pwmout_deinit(&self->left_pwm);
common_hal_pwmio_pwmout_deinit(&self->right_pwm);
audio_dma_deinit(&self->dma);
}
void common_hal_audiopwmio_pwmaudioout_play(audiopwmio_pwmaudioout_obj_t* self, mp_obj_t sample, bool loop) {
if (common_hal_audiopwmio_pwmaudioout_get_playing(self)) {
common_hal_audiopwmio_pwmaudioout_stop(self);
}
// TODO: Share pacing timers based on frequency.
size_t pacing_timer = NUM_DMA_TIMERS;
for (size_t i = 0; i < NUM_DMA_TIMERS; i++) {
if (dma_hw->timer[i] == 0) {
pacing_timer = i;
}
break;
}
if (pacing_timer == NUM_DMA_TIMERS) {
mp_raise_RuntimeError(translate("No DMA pacing timer found"));
}
uint32_t tx_register = (uint32_t) &pwm_hw->slice[self->left_pwm.slice].cc;
if (common_hal_pwmio_pwmout_deinited(&self->right_pwm)) {
// Shift the destination if we are outputting to the second PWM channel.
tx_register += self->left_pwm.channel * sizeof(uint16_t);
}
pwmio_pwmout_set_top(&self->left_pwm, 1023);
audio_dma_result result = audio_dma_setup_playback(
&self->dma,
sample,
loop,
false, // single channel
0, // audio channel
false, // output signed
10,
(uint32_t) tx_register, // output register
0x3b + pacing_timer); // data request line
if (result == AUDIO_DMA_DMA_BUSY) {
// common_hal_audiobusio_i2sout_stop(self);
mp_raise_RuntimeError(translate("No DMA channel found"));
} else if (result == AUDIO_DMA_MEMORY_ERROR) {
// common_hal_audiobusio_i2sout_stop(self);
mp_raise_RuntimeError(translate("Unable to allocate buffers for signed conversion"));
}
// OK! We got all of the resources we need and dma is ready.
self->pacing_timer = pacing_timer;
// Playback with two independent clocks. One is the sample rate which
// determines when we push a new sample to the PWM slice. The second is the
// PWM frequency itself.
// Determine the DMA divisor. The RP2040 has four pacing timers we can use
// to trigger the DMA. Each has a 16 bit fractional divisor system clock * X / Y where X and Y
// are 16-bit.
uint32_t sample_rate = audiosample_sample_rate(sample);
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
uint32_t best_numerator = 0;
uint32_t best_denominator = 0;
uint32_t best_error = system_clock;
for (uint32_t denominator = 0xffff; denominator > 0; denominator--) {
uint32_t numerator = (denominator * sample_rate) / system_clock;
uint32_t remainder = (denominator * sample_rate) % system_clock;
if (remainder > (system_clock / 2)) {
numerator += 1;
remainder = system_clock - remainder;
}
if (remainder < best_error) {
best_denominator = denominator;
best_numerator = numerator;
best_error = remainder;
// Stop early if we can't do better.
if (remainder == 0) {
break;
}
}
}
dma_hw->timer[pacing_timer] = best_numerator << 16 | best_denominator;
}
void common_hal_audiopwmio_pwmaudioout_stop(audiopwmio_pwmaudioout_obj_t* self) {
dma_hw->timer[self->pacing_timer] = 0;
self->pacing_timer = NUM_DMA_TIMERS;
audio_dma_stop(&self->dma);
}
bool common_hal_audiopwmio_pwmaudioout_get_playing(audiopwmio_pwmaudioout_obj_t* self) {
bool playing = audio_dma_get_playing(&self->dma);
if (!playing && self->pacing_timer < NUM_DMA_TIMERS) {
dma_hw->timer[self->pacing_timer] = 0;
self->pacing_timer = NUM_DMA_TIMERS;
}
return playing;
}
void common_hal_audiopwmio_pwmaudioout_pause(audiopwmio_pwmaudioout_obj_t* self) {
audio_dma_pause(&self->dma);
}
void common_hal_audiopwmio_pwmaudioout_resume(audiopwmio_pwmaudioout_obj_t* self) {
audio_dma_resume(&self->dma);
}
bool common_hal_audiopwmio_pwmaudioout_get_paused(audiopwmio_pwmaudioout_obj_t* self) {
return audio_dma_get_paused(&self->dma);
}

View File

@ -0,0 +1,47 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_RASPBERRYPI_COMMON_HAL_AUDIOPWMIO_PWMAUDIOOUT_H
#define MICROPY_INCLUDED_RASPBERRYPI_COMMON_HAL_AUDIOPWMIO_PWMAUDIOOUT_H
#include "common-hal/pwmio/PWMOut.h"
#include "audio_dma.h"
typedef struct {
mp_obj_base_t base;
pwmio_pwmout_obj_t left_pwm;
pwmio_pwmout_obj_t right_pwm;
audio_dma_t dma;
uint16_t quiescent_value;
uint8_t pacing_timer;
} audiopwmio_pwmaudioout_obj_t;
void audiopwmout_reset(void);
void audiopwmout_background(void);
#endif // MICROPY_INCLUDED_RASPBERRYPI_COMMON_HAL_AUDIOPWMIO_PWMAUDIOOUT_H

View File

@ -39,7 +39,7 @@
#include "src/rp2_common/hardware_pwm/include/hardware/pwm.h"
uint32_t target_slice_frequencies[NUM_PWM_SLICES];
uint32_t slice_fixed_frequency;
uint32_t slice_variable_frequency;
#define CHANNELS_PER_SLICE 2
static uint32_t channel_use;
@ -76,7 +76,7 @@ void pwmout_reset(void) {
}
pwm_set_enabled(slice, false);
target_slice_frequencies[slice] = 0;
slice_fixed_frequency &= ~(1 << slice);
slice_variable_frequency &= ~(1 << slice);
}
}
@ -108,7 +108,7 @@ pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t* self,
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// If the other user wants a variable frequency then we can't share either.
if ((slice_fixed_frequency & (1 << slice)) != 0) {
if ((slice_variable_frequency & (1 << slice)) != 0) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// If we're both fixed frequency but we don't match target frequencies then we can't share.
@ -118,9 +118,10 @@ pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t* self,
}
self->slice = slice;
self->channel = channel;
channel_use |= channel_use_mask;
if (variable_frequency) {
slice_fixed_frequency |= 1 << slice;
slice_variable_frequency |= 1 << slice;
}
if (target_slice_frequencies[slice] != frequency) {
@ -153,7 +154,7 @@ void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t* self) {
uint32_t slice_mask = ((1 << CHANNELS_PER_SLICE) - 1) << (self->slice * CHANNELS_PER_SLICE + self->channel);
if ((channel_use & slice_mask) == 0) {
target_slice_frequencies[self->slice] = 0;
slice_fixed_frequency &= ~(1 << self->slice);
slice_variable_frequency &= ~(1 << self->slice);
pwm_set_enabled(self->slice, false);
}
@ -171,6 +172,13 @@ uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t* self) {
return self->duty_cycle;
}
void pwmio_pwmout_set_top(pwmio_pwmout_obj_t* self, uint32_t top) {
self->actual_frequency = common_hal_mcu_processor_get_frequency() / top;
self->top = top;
pwm_set_clkdiv_int_frac(self->slice, 1, 0);
pwm_set_wrap(self->slice, self->top - 1);
}
void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t* self, uint32_t frequency) {
if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) {
mp_raise_ValueError(translate("Invalid PWM frequency"));

View File

@ -43,5 +43,7 @@ typedef struct {
} pwmio_pwmout_obj_t;
void pwmout_reset(void);
// Private API for AudioPWMOut.
void pwmio_pwmout_set_top(pwmio_pwmout_obj_t* self, uint32_t top);
#endif // MICROPY_INCLUDED_ATMEL_SAMD_COMMON_HAL_PWMIO_PWMOUT_H

View File

@ -27,6 +27,8 @@
#ifndef __INCLUDED_MPCONFIGPORT_H
#define __INCLUDED_MPCONFIGPORT_H
#include "src/rp2040/hardware_regs/include/hardware/platform_defs.h"
#define MICROPY_PY_SYS_PLATFORM "RP2040"
#define CIRCUITPY_INTERNAL_NVM_SIZE 0
@ -41,6 +43,7 @@
#include "py/circuitpy_mpconfig.h"
#define MICROPY_PORT_ROOT_POINTERS \
mp_obj_t playing_audio[NUM_DMA_CHANNELS]; \
CIRCUITPY_COMMON_ROOT_POINTERS;
#endif // __INCLUDED_MPCONFIGPORT_H

View File

@ -27,8 +27,6 @@ CIRCUITPY_FULL_BUILD = 1
CIRCUITPY_PWMIO = 1
# Things that need to be implemented.
CIRCUITPY_AUDIOBUSIO = 0 # Use PIO interally for I2S
CIRCUITPY_AUDIOMP3 = 0
CIRCUITPY_COUNTIO = 0 # Use PWM interally
CIRCUITPY_FREQUENCYIO = 0 # Use PWM interally
CIRCUITPY_I2CPERIPHERAL = 0
@ -37,8 +35,15 @@ CIRCUITPY_PULSEIO = 0 # Use PIO interally
CIRCUITPY_ROTARYIO = 0 # Use PIO interally
CIRCUITPY_WATCHDOG = 1
# Things that are unsupported by the hardware.
# Audio via PWM
CIRCUITPY_AUDIOIO = 0
CIRCUITPY_AUDIOBUSIO ?= 0 # add this later
CIRCUITPY_AUDIOCORE ?= 1
CIRCUITPY_AUDIOPWMIO ?= 1
# These libraries require Cortex M4+ for fancy math instructions.
CIRCUITPY_AUDIOMIXER ?= 0
CIRCUITPY_AUDIOMP3 ?= 0
INTERNAL_LIBM = 1

View File

@ -32,6 +32,7 @@
#include "bindings/rp2pio/StateMachine.h"
#include "genhdr/mpversion.h"
#include "shared-bindings/audiopwmio/PWMAudioOut.h"
#include "shared-bindings/busio/I2C.h"
#include "shared-bindings/busio/SPI.h"
#include "shared-bindings/microcontroller/__init__.h"
@ -108,6 +109,10 @@ void reset_port(void) {
rtc_reset();
#endif
#if CIRCUITPY_AUDIOPWMIO
audiopwmout_reset();
#endif
reset_all_pins();
}

View File

@ -0,0 +1,65 @@
import audiocore
import audiopwmio
import board
import digitalio
import array
import time
import math
trigger = digitalio.DigitalInOut(board.D4)
trigger.switch_to_output(True)
# Generate one period of sine wav.
length = 8000 // 440
samples = []
sample_names = [
"unsigned 8 bit",
"signed 8 bit",
"unsigned 16 bit",
"signed 16 bit"
]
# unsigned 8 bit
u8 = array.array("B", [0] * length)
for i in range(length):
u8[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 7) + 2 ** 7)
samples.append(audiocore.RawSample(u8, sample_rate=4000))
# signed 8 bit
s8 = array.array("b", [0] * length)
for i in range(length):
s8[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 7))
samples.append(audiocore.RawSample(s8, sample_rate=16000))
# unsigned 16 bit
u16 = array.array("H", [0] * length)
for i in range(length):
u16[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)
samples.append(audiocore.RawSample(u16, sample_rate=8000))
# signed 16 bit
s16 = array.array("h", [0] * length)
for i in range(length):
s16[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15))
samples.append(audiocore.RawSample(s16, sample_rate=8000))
dac = audiopwmio.PWMAudioOut(board.D13)
for sample, name in zip(samples, sample_names):
print(name)
trigger.value = False
dac.play(sample, loop=True)
time.sleep(1)
dac.stop()
time.sleep(0.1)
trigger.value = True
print()
print("done")

View File

@ -0,0 +1,39 @@
import audiocore
import audiopwmio
import board
import digitalio
import time
import math
import os
trigger = digitalio.DigitalInOut(board.D4)
trigger.switch_to_output(True)
sample_prefix = "jeplayer-splash"
samples = []
for fn in os.listdir("/"):
if fn.startswith(sample_prefix):
samples.append(fn)
dac = audiopwmio.PWMAudioOut(left_channel=board.D12, right_channel=board.D13)
for filename in samples:
print("playing", filename)
with open(filename, "rb") as sample_file:
try:
sample = audiocore.WaveFile(sample_file)
except OSError as e:
print(e)
continue
trigger.value = False
dac.play(sample)
while dac.playing:
time.sleep(0.1)
dac.pause()
time.sleep(0.1)
dac.resume()
trigger.value = True
time.sleep(0.1)
print()
print("done")

View File

@ -0,0 +1,36 @@
import audiocore
import audiopwmio
import board
import digitalio
import time
import math
import os
trigger = digitalio.DigitalInOut(board.D4)
trigger.switch_to_output(True)
sample_prefix = "jeplayer-splash"
samples = []
for fn in os.listdir("/"):
if fn.startswith(sample_prefix):
samples.append(fn)
dac = audiopwmio.PWMAudioOut(left_channel=board.D12, right_channel=board.D13)
for filename in samples:
print("playing", filename)
with open(filename, "rb") as sample_file:
try:
sample = audiocore.WaveFile(sample_file)
except OSError as e:
print(e)
continue
trigger.value = False
dac.play(sample)
while dac.playing:
time.sleep(1)
trigger.value = True
time.sleep(0.1)
print()
print("done")