esp32/esp32_rmt: Enhance RMT with idle_level and write_pulses modes.

This change allows specification of the idle level and TX carrier output
level (through changed initialisation API), and more flexible specification
of pulses for write_pulses.

This is a breaking change for the esp32.RMT constructor API.  Previous code
of this form:

    esp32.RMT(..., carrier_duty_percent=D, carrier_freq=F)

will now raise an exception and should be changed to:

    esp32.RMT(..., tx_carrier=(F, D, 1))
This commit is contained in:
Jonathan Hogg 2021-06-30 19:00:50 +01:00 committed by Damien George
parent 58e4d72338
commit 18e48a71ee

View File

@ -52,8 +52,6 @@ typedef struct _esp32_rmt_obj_t {
uint8_t channel_id; uint8_t channel_id;
gpio_num_t pin; gpio_num_t pin;
uint8_t clock_div; uint8_t clock_div;
uint16_t carrier_duty_percent;
uint32_t carrier_freq;
mp_uint_t num_items; mp_uint_t num_items;
rmt_item32_t *items; rmt_item32_t *items;
bool loop_en; bool loop_en;
@ -64,24 +62,16 @@ STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, siz
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution { MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, // 100ns resolution
{ MP_QSTR_carrier_duty_percent, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 50} }, { MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage
{ MP_QSTR_carrier_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier
}; };
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_uint_t channel_id = args[0].u_int; mp_uint_t channel_id = args[0].u_int;
gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj); gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj);
mp_uint_t clock_div = args[2].u_int; mp_uint_t clock_div = args[2].u_int;
mp_uint_t idle_level = args[3].u_bool;
bool carrier_en = false; mp_obj_t tx_carrier_obj = args[4].u_obj;
mp_uint_t carrier_duty_percent = 0;
mp_uint_t carrier_freq = 0;
if (args[4].u_int > 0) {
carrier_en = true;
carrier_duty_percent = args[3].u_int;
carrier_freq = args[4].u_int;
}
if (clock_div < 1 || clock_div > 255) { if (clock_div < 1 || clock_div > 255) {
mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255")); mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255"));
@ -92,8 +82,6 @@ STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, siz
self->channel_id = channel_id; self->channel_id = channel_id;
self->pin = pin_id; self->pin = pin_id;
self->clock_div = clock_div; self->clock_div = clock_div;
self->carrier_duty_percent = carrier_duty_percent;
self->carrier_freq = carrier_freq;
self->loop_en = false; self->loop_en = false;
rmt_config_t config = {0}; rmt_config_t config = {0};
@ -103,12 +91,30 @@ STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, siz
config.mem_block_num = 1; config.mem_block_num = 1;
config.tx_config.loop_en = 0; config.tx_config.loop_en = 0;
config.tx_config.carrier_en = carrier_en; if (tx_carrier_obj != mp_const_none) {
mp_obj_t *tx_carrier_details = NULL;
mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details);
mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]);
mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]);
mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]);
if (frequency == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0"));
}
if (duty > 100) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100"));
}
config.tx_config.carrier_en = 1;
config.tx_config.carrier_freq_hz = frequency;
config.tx_config.carrier_duty_percent = duty;
config.tx_config.carrier_level = level;
} else {
config.tx_config.carrier_en = 0;
}
config.tx_config.idle_output_en = 1; config.tx_config.idle_output_en = 1;
config.tx_config.idle_level = 0; config.tx_config.idle_level = idle_level;
config.tx_config.carrier_duty_percent = self->carrier_duty_percent;
config.tx_config.carrier_freq_hz = self->carrier_freq;
config.tx_config.carrier_level = 1;
config.clk_div = self->clock_div; config.clk_div = self->clock_div;
@ -121,14 +127,11 @@ STATIC mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, siz
STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { STATIC void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in); esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin != -1) { if (self->pin != -1) {
mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u", bool idle_output_en;
self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div); rmt_idle_level_t idle_level;
if (self->carrier_freq > 0) { check_esp_err(rmt_get_idle_level(self->channel_id, &idle_output_en, &idle_level));
mp_printf(print, ", carrier_freq=%u, carrier_duty_percent=%u)", mp_printf(print, "RMT(channel=%u, pin=%u, source_freq=%u, clock_div=%u, idle_level=%u)",
self->carrier_freq, self->carrier_duty_percent); self->channel_id, self->pin, APB_CLK_FREQ, self->clock_div, idle_level);
} else {
mp_printf(print, ")");
}
} else { } else {
mp_printf(print, "RMT()"); mp_printf(print, "RMT()");
} }
@ -162,7 +165,7 @@ STATIC mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div); STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div);
// Query whether the channel has finished sending pulses. Takes an optional // Query whether the channel has finished sending pulses. Takes an optional
// timeout (in ticks of the 80MHz clock), returning true if the pulse stream has // timeout (in milliseconds), returning true if the pulse stream has
// completed or false if they are still transmitting (or timeout is reached). // completed or false if they are still transmitting (or timeout is reached).
STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = { static const mp_arg_t allowed_args[] = {
@ -175,7 +178,7 @@ STATIC mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj);
esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int); esp_err_t err = rmt_wait_tx_done(self->channel_id, args[1].u_int / portTICK_PERIOD_MS);
return err == ESP_OK ? mp_const_true : mp_const_false; return err == ESP_OK ? mp_const_true : mp_const_false;
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done); STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done);
@ -195,45 +198,63 @@ STATIC mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) {
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop); STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop);
STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) {
static const mp_arg_t allowed_args[] = { esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
{ MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, mp_obj_t duration_obj = args[1];
{ MP_QSTR_pulses, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} }, mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true;
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_uint_t duration = 0;
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); size_t duration_length = 0;
mp_obj_t *duration_ptr = NULL;
mp_uint_t data = 0;
size_t data_length = 0;
mp_obj_t *data_ptr = NULL;
mp_uint_t num_pulses = 0;
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj); if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) {
mp_obj_t pulses = args[1].u_obj; // Mode 1: array of durations, toggle initial data value
mp_uint_t start = args[2].u_int; mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
data = mp_obj_is_true(data_obj);
if (start > 1) { num_pulses = duration_length;
mp_raise_ValueError(MP_ERROR_TEXT("start must be 0 or 1")); } else if (mp_obj_is_int(duration_obj)) {
// Mode 2: constant duration, array of data values
duration = mp_obj_get_int(duration_obj);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
num_pulses = data_length;
} else {
// Mode 3: arrays of durations and data values
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
if (duration_length != data_length) {
mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length"));
}
num_pulses = duration_length;
} }
size_t pulses_length = 0; if (num_pulses == 0) {
mp_obj_t *pulses_ptr = NULL; mp_raise_ValueError(MP_ERROR_TEXT("No pulses"));
mp_obj_get_array(pulses, &pulses_length, &pulses_ptr); }
if (self->loop_en && num_pulses > 126) {
mp_uint_t num_items = (pulses_length / 2) + (pulses_length % 2); mp_raise_ValueError(MP_ERROR_TEXT("Too many pulses for loop"));
if (self->loop_en && num_items > 63) {
mp_raise_ValueError(MP_ERROR_TEXT("too many pulses for loop"));
} }
mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2);
if (num_items > self->num_items) { if (num_items > self->num_items) {
self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *)); self->items = (rmt_item32_t *)m_realloc(self->items, num_items * sizeof(rmt_item32_t *));
self->num_items = num_items; self->num_items = num_items;
} }
for (mp_uint_t item_index = 0; item_index < num_items; item_index++) { for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) {
mp_uint_t pulse_index = item_index * 2; self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].duration0 = mp_obj_get_int(pulses_ptr[pulse_index++]); self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
self->items[item_index].level0 = start++; // Note that start _could_ wrap. pulse_index++;
if (pulse_index < pulses_length) { if (pulse_index < num_pulses) {
self->items[item_index].duration1 = mp_obj_get_int(pulses_ptr[pulse_index]); self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].level1 = start++; self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
pulse_index++;
} else {
self->items[item_index].duration1 = 0;
self->items[item_index].level1 = 0;
} }
} }
@ -247,7 +268,7 @@ STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *pos_args,
check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY)); check_esp_err(rmt_wait_tx_done(self->channel_id, portMAX_DELAY));
} }
check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false /* non-blocking */)); check_esp_err(rmt_write_items(self->channel_id, self->items, num_items, false));
if (self->loop_en) { if (self->loop_en) {
check_esp_err(rmt_set_tx_intr_en(self->channel_id, false)); check_esp_err(rmt_set_tx_intr_en(self->channel_id, false));
@ -256,7 +277,7 @@ STATIC mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *pos_args,
return mp_const_none; return mp_const_none;
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_write_pulses_obj, 2, esp32_rmt_write_pulses); STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses);
STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = { STATIC const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) },