Merge MicroPython 1.10 into CircuitPython

This commit is contained in:
Scott Shawcroft 2021-04-20 18:04:23 -07:00
commit 09f7b43c64
No known key found for this signature in database
GPG Key ID: 0DFD512649C052DA
360 changed files with 5008 additions and 16806 deletions

View File

@ -14,6 +14,33 @@ hold/accumulate various objects.
Classes Classes
------- -------
.. function:: deque(iterable, maxlen[, flags])
Deques (double-ended queues) are a list-like container that support O(1)
appends and pops from either side of the deque. New deques are created
using the following arguments:
- *iterable* must be the empty tuple, and the new deque is created empty.
- *maxlen* must be specified and the deque will be bounded to this
maximum length. Once the deque is full, any new items added will
discard items from the opposite end.
- The optional *flags* can be 1 to check for overflow when adding items.
As well as supporting `bool` and `len`, deque objects have the following
methods:
.. method:: deque.append(x)
Add *x* to the right side of the deque.
Raises IndexError if overflow checking is enabled and there is no more room left.
.. method:: deque.popleft()
Remove and return an item from the left side of the deque.
Raises IndexError if no items are present.
.. function:: namedtuple(name, fields) .. function:: namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific This is factory function to create a new namedtuple type with a specific

View File

@ -39,8 +39,6 @@ with the ``u`` prefix dropped:
sys.rst sys.rst
uctypes.rst uctypes.rst
uselect.rst uselect.rst
usocket.rst
ussl.rst
uzlib.rst uzlib.rst
Omitted functions in the ``string`` library Omitted functions in the ``string`` library

View File

@ -81,6 +81,9 @@ Functions
in a row and the lock-depth will increase, and then `heap_unlock()` must be in a row and the lock-depth will increase, and then `heap_unlock()` must be
called the same number of times to make the heap available again. called the same number of times to make the heap available again.
If the REPL becomes active with the heap locked then it will be forcefully
unlocked.
.. function:: kbd_intr(chr) .. function:: kbd_intr(chr)
Set the character that will raise a `KeyboardInterrupt` exception. By Set the character that will raise a `KeyboardInterrupt` exception. By

View File

@ -10,41 +10,101 @@ This module implements regular expression operations. Regular expression
syntax supported is a subset of CPython ``re`` module (and actually is syntax supported is a subset of CPython ``re`` module (and actually is
a subset of POSIX extended regular expressions). a subset of POSIX extended regular expressions).
Supported operators are: Supported operators and special sequences are:
``'.'`` ``.``
Match any character. Match any character.
``'[...]'`` ``[...]``
Match set of characters. Individual characters and ranges are supported, Match set of characters. Individual characters and ranges are supported,
including negated sets (e.g. ``[^a-c]``). including negated sets (e.g. ``[^a-c]``).
``'^'`` ``^``
Match the start of the string.
``'$'`` ``$``
Match the end of the string.
``'?'`` ``?``
Match zero or one of the previous sub-pattern.
``'*'`` ``*``
Match zero or more of the previous sub-pattern.
``'+'`` ``+``
Match one or more of the previous sub-pattern.
``'??'`` ``??``
Non-greedy version of ``?``, match zero or one, with the preference
for zero.
``'*?'`` ``*?``
Non-greedy version of ``*``, match zero or more, with the preference
for the shortest match.
``'+?'`` ``+?``
Non-greedy version of ``+``, match one or more, with the preference
for the shortest match.
``'|'`` ``|``
Match either the left-hand side or the right-hand side sub-patterns of
this operator.
``'(...)'`` ``(...)``
Grouping. Each group is capturing (a substring it captures can be accessed Grouping. Each group is capturing (a substring it captures can be accessed
with `match.group()` method). with `match.group()` method).
**NOT SUPPORTED**: Counted repetitions (``{m,n}``), more advanced assertions ``\d``
(``\b``, ``\B``), named groups (``(?P<name>...)``), non-capturing groups Matches digit. Equivalent to ``[0-9]``.
(``(?:...)``), etc.
``\D``
Matches non-digit. Equivalent to ``[^0-9]``.
``\s``
Matches whitespace. Equivalent to ``[ \t-\r]``.
``\S``
Matches non-whitespace. Equivalent to ``[^ \t-\r]``.
``\w``
Matches "word characters" (ASCII only). Equivalent to ``[A-Za-z0-9_]``.
``\W``
Matches non "word characters" (ASCII only). Equivalent to ``[^A-Za-z0-9_]``.
``\``
Escape character. Any other character following the backslash, except
for those listed above, is taken literally. For example, ``\*`` is
equivalent to literal ``*`` (not treated as the ``*`` operator).
Note that ``\r``, ``\n``, etc. are not handled specially, and will be
equivalent to literal letters ``r``, ``n``, etc. Due to this, it's
not recommended to use raw Python strings (``r""``) for regular
expressions. For example, ``r"\r\n"`` when used as the regular
expression is equivalent to ``"rn"``. To match CR character followed
by LF, use ``"\r\n"``.
**NOT SUPPORTED**:
* counted repetitions (``{m,n}``)
* named groups (``(?P<name>...)``)
* non-capturing groups (``(?:...)``)
* more advanced assertions (``\b``, ``\B``)
* special character escapes like ``\r``, ``\n`` - use Python's own escaping
instead
* etc.
Example::
import ure
# As ure doesn't support escapes itself, use of r"" strings is not
# recommended.
regex = ure.compile("[\r\n]")
regex.split("line1\rline2\nline3\r\n")
# Result:
# ['line1', 'line2', 'line3', '', '']
Functions Functions
--------- ---------
@ -64,6 +124,22 @@ Functions
string for first position which matches regex (which still may be string for first position which matches regex (which still may be
0 if regex is anchored). 0 if regex is anchored).
.. function:: sub(regex_str, replace, string, count=0, flags=0)
Compile *regex_str* and search for it in *string*, replacing all matches
with *replace*, and returning the new string.
*replace* can be a string or a function. If it is a string then escape
sequences of the form ``\<number>`` and ``\g<number>`` can be used to
expand to the corresponding group (or an empty string for unmatched groups).
If *replace* is a function then it must take a single argument (the match)
and should return a replacement string.
If *count* is specified and non-zero then substitution will stop after
this many substitutions are made. The *flags* argument is ignored.
Note: availability of this function depends on MicroPython port.
.. data:: DEBUG .. data:: DEBUG
Flag value, display debug information about compiled expression. Flag value, display debug information about compiled expression.
@ -79,8 +155,10 @@ Compiled regular expression. Instances of this class are created using
.. method:: regex.match(string) .. method:: regex.match(string)
regex.search(string) regex.search(string)
regex.sub(replace, string, count=0, flags=0)
Similar to the module-level functions :meth:`match` and :meth:`search`. Similar to the module-level functions :meth:`match`, :meth:`search`
and :meth:`sub`.
Using methods is (much) more efficient if the same regex is applied to Using methods is (much) more efficient if the same regex is applied to
multiple strings. multiple strings.
@ -93,9 +171,31 @@ Compiled regular expression. Instances of this class are created using
Match objects Match objects
------------- -------------
Match objects as returned by `match()` and `search()` methods. Match objects as returned by `match()` and `search()` methods, and passed
to the replacement function in `sub()`.
.. method:: match.group([index]) .. method:: match.group([index])
Return matching (sub)string. *index* is 0 for entire match, Return matching (sub)string. *index* is 0 for entire match,
1 and above for each capturing group. Only numeric groups are supported. 1 and above for each capturing group. Only numeric groups are supported.
.. method:: match.groups()
Return a tuple containing all the substrings of the groups of the match.
Note: availability of this method depends on MicroPython port.
.. method:: match.start([index])
match.end([index])
Return the index in the original string of the start or end of the
substring group that was matched. *index* defaults to the entire
group, otherwise it will select a group.
Note: availability of these methods depends on MicroPython port.
.. method:: match.span([index])
Returns the 2-tuple ``(match.start(index), match.end(index))``.
Note: availability of this method depends on MicroPython port.

View File

@ -13,19 +13,91 @@ module is to define data structure layout with about the same power as the
C language allows, and then access it using familiar dot-syntax to reference C language allows, and then access it using familiar dot-syntax to reference
sub-fields. sub-fields.
.. warning::
``uctypes`` module allows access to arbitrary memory addresses of the
machine (including I/O and control registers). Uncareful usage of it
may lead to crashes, data loss, and even hardware malfunction.
.. seealso:: .. seealso::
Module :mod:`struct` Module :mod:`struct`
Standard Python way to access binary data structures (doesn't scale Standard Python way to access binary data structures (doesn't scale
well to large and complex structures). well to large and complex structures).
Usage examples::
import uctypes
# Example 1: Subset of ELF file header
# https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {
"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,
}
# "f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN."
print("machine:", hex(header.e_machine))
# Example 2: In-memory data structure, with pointers
COORD = {
"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,
}
STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),
}
# Suppose you have address of a structure of type STRUCT1 in "addr"
# uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)
# Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {
"WWDG_CR": (0, {
# BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
}),
"WWDG_CFR": (4, {
"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
}),
}
WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)
WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)
Defining structure layout Defining structure layout
------------------------- -------------------------
Structure layout is defined by a "descriptor" - a Python dictionary which Structure layout is defined by a "descriptor" - a Python dictionary which
encodes field names as keys and other properties required to access them as encodes field names as keys and other properties required to access them as
associated values. Currently, uctypes requires explicit specification of associated values::
offsets for each field. Offset are given in bytes from a structure start.
{
"field1": <properties>,
"field2": <properties>,
...
}
Currently, ``uctypes`` requires explicit specification of offsets for each
field. Offset are given in bytes from the structure start.
Following are encoding examples for various field types: Following are encoding examples for various field types:
@ -33,7 +105,7 @@ Following are encoding examples for various field types:
"field_name": offset | uctypes.UINT32 "field_name": offset | uctypes.UINT32
in other words, value is scalar type identifier ORed with field offset in other words, the value is a scalar type identifier ORed with a field offset
(in bytes) from the start of the structure. (in bytes) from the start of the structure.
* Recursive structures:: * Recursive structures::
@ -43,9 +115,11 @@ Following are encoding examples for various field types:
"b1": 1 | uctypes.UINT8, "b1": 1 | uctypes.UINT8,
}) })
i.e. value is a 2-tuple, first element of which is offset, and second is i.e. value is a 2-tuple, first element of which is an offset, and second is
a structure descriptor dictionary (note: offsets in recursive descriptors a structure descriptor dictionary (note: offsets in recursive descriptors
are relative to the structure it defines). are relative to the structure it defines). Of course, recursive structures
can be specified not just by a literal dictionary, but by referring to a
structure descriptor dictionary (defined earlier) by name.
* Arrays of primitive types:: * Arrays of primitive types::
@ -53,42 +127,42 @@ Following are encoding examples for various field types:
i.e. value is a 2-tuple, first element of which is ARRAY flag ORed i.e. value is a 2-tuple, first element of which is ARRAY flag ORed
with offset, and second is scalar element type ORed number of elements with offset, and second is scalar element type ORed number of elements
in array. in the array.
* Arrays of aggregate types:: * Arrays of aggregate types::
"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}), "arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),
i.e. value is a 3-tuple, first element of which is ARRAY flag ORed i.e. value is a 3-tuple, first element of which is ARRAY flag ORed
with offset, second is a number of elements in array, and third is with offset, second is a number of elements in the array, and third is
descriptor of element type. a descriptor of element type.
* Pointer to a primitive type:: * Pointer to a primitive type::
"ptr": (offset | uctypes.PTR, uctypes.UINT8), "ptr": (offset | uctypes.PTR, uctypes.UINT8),
i.e. value is a 2-tuple, first element of which is PTR flag ORed i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, and second is scalar element type. with offset, and second is a scalar element type.
* Pointer to an aggregate type:: * Pointer to an aggregate type::
"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}), "ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),
i.e. value is a 2-tuple, first element of which is PTR flag ORed i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, second is descriptor of type pointed to. with offset, second is a descriptor of type pointed to.
* Bitfields:: * Bitfields::
"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.BF_LEN, "bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.BF_LEN,
i.e. value is type of scalar value containing given bitfield (typenames are i.e. value is a type of scalar value containing given bitfield (typenames are
similar to scalar types, but prefixes with "BF"), ORed with offset for similar to scalar types, but prefixes with ``BF``), ORed with offset for
scalar value containing the bitfield, and further ORed with values for scalar value containing the bitfield, and further ORed with values for
bit offset and bit length of the bitfield within scalar value, shifted by bit position and bit length of the bitfield within the scalar value, shifted by
BF_POS and BF_LEN positions, respectively. Bitfield position is counted BF_POS and BF_LEN bits, respectively. A bitfield position is counted
from the least significant bit, and is the number of right-most bit of a from the least significant bit of the scalar (having position of 0), and
field (in other words, it's a number of bits a scalar needs to be shifted is the number of right-most bit of a field (in other words, it's a number
right to extract the bitfield). of bits a scalar needs to be shifted right to extract the bitfield).
In the example above, first a UINT16 value will be extracted at offset 0 In the example above, first a UINT16 value will be extracted at offset 0
(this detail may be important when accessing hardware registers, where (this detail may be important when accessing hardware registers, where
@ -128,10 +202,11 @@ Module contents
Layout type for a native structure - with data endianness and alignment Layout type for a native structure - with data endianness and alignment
conforming to the ABI of the system on which MicroPython runs. conforming to the ABI of the system on which MicroPython runs.
.. function:: sizeof(struct) .. function:: sizeof(struct, layout_type=NATIVE)
Return size of data structure in bytes. Argument can be either structure Return size of data structure in bytes. The *struct* argument can be
class or specific instantiated structure object (or its aggregate field). either a structure class or a specific instantiated structure object
(or its aggregate field).
.. function:: addressof(obj) .. function:: addressof(obj)
@ -153,6 +228,35 @@ Module contents
so it can be both written too, and you will access current value so it can be both written too, and you will access current value
at the given memory address. at the given memory address.
.. data:: UINT8
INT8
UINT16
INT16
UINT32
INT32
UINT64
INT64
Integer types for structure descriptors. Constants for 8, 16, 32,
and 64 bit types are provided, both signed and unsigned.
.. data:: FLOAT32
FLOAT64
Floating-point types for structure descriptors.
.. data:: VOID
``VOID`` is an alias for ``UINT8``, and is provided to conviniently define
C's void pointers: ``(uctypes.PTR, uctypes.VOID)``.
.. data:: PTR
ARRAY
Type constants for pointers and arrays. Note that there is no explicit
constant for structures, it's implicit: an aggregate type without ``PTR``
or ``ARRAY`` flags is a structure.
Structure descriptors and instantiating structure objects Structure descriptors and instantiating structure objects
--------------------------------------------------------- ---------------------------------------------------------
@ -165,7 +269,7 @@ following sources:
system. Lookup these addresses in datasheet for a particular MCU/SoC. system. Lookup these addresses in datasheet for a particular MCU/SoC.
* As a return value from a call to some FFI (Foreign Function Interface) * As a return value from a call to some FFI (Foreign Function Interface)
function. function.
* From uctypes.addressof(), when you want to pass arguments to an FFI * From `uctypes.addressof()`, when you want to pass arguments to an FFI
function, or alternatively, to access some data for I/O (for example, function, or alternatively, to access some data for I/O (for example,
data read from a file or network socket). data read from a file or network socket).
@ -183,30 +287,41 @@ the standard subscript operator ``[]`` - both read and assigned to.
If a field is a pointer, it can be dereferenced using ``[0]`` syntax If a field is a pointer, it can be dereferenced using ``[0]`` syntax
(corresponding to C ``*`` operator, though ``[0]`` works in C too). (corresponding to C ``*`` operator, though ``[0]`` works in C too).
Subscripting a pointer with other integer values but 0 are supported too, Subscripting a pointer with other integer values but 0 are also supported,
with the same semantics as in C. with the same semantics as in C.
Summing up, accessing structure fields generally follows C syntax, Summing up, accessing structure fields generally follows the C syntax,
except for pointer dereference, when you need to use ``[0]`` operator except for pointer dereference, when you need to use ``[0]`` operator
instead of ``*``. instead of ``*``.
Limitations Limitations
----------- -----------
Accessing non-scalar fields leads to allocation of intermediate objects 1. Accessing non-scalar fields leads to allocation of intermediate objects
to represent them. This means that special care should be taken to to represent them. This means that special care should be taken to
layout a structure which needs to be accessed when memory allocation layout a structure which needs to be accessed when memory allocation
is disabled (e.g. from an interrupt). The recommendations are: is disabled (e.g. from an interrupt). The recommendations are:
* Avoid nested structures. For example, instead of * Avoid accessing nested structures. For example, instead of
``mcu_registers.peripheral_a.register1``, define separate layout ``mcu_registers.peripheral_a.register1``, define separate layout
descriptors for each peripheral, to be accessed as descriptors for each peripheral, to be accessed as
``peripheral_a.register1``. ``peripheral_a.register1``. Or just cache a particular peripheral:
* Avoid other non-scalar data, like array. For example, instead of ``peripheral_a = mcu_registers.peripheral_a``. If a register
``peripheral_a.register[0]`` use ``peripheral_a.register0``. consists of multiple bitfields, you would need to cache references
to a particular register: ``reg_a = mcu_registers.peripheral_a.reg_a``.
* Avoid other non-scalar data, like arrays. For example, instead of
``peripheral_a.register[0]`` use ``peripheral_a.register0``. Again,
an alternative is to cache intermediate values, e.g.
``register0 = peripheral_a.register[0]``.
Note that these recommendations will lead to decreased readability 2. Range of offsets supported by the ``uctypes`` module is limited.
and conciseness of layouts, so they should be used only if the need The exact range supported is considered an implementation detail,
to access structure fields without allocation is anticipated (it's and the general suggestion is to split structure definitions to
even possible to define 2 parallel layouts - one for normal usage, cover from a few kilobytes to a few dozen of kilobytes maximum.
and a restricted one to use when memory allocation is prohibited). In most cases, this is a natural situation anyway, e.g. it doesn't make
sense to define all registers of an MCU (spread over 32-bit address
space) in one structure, but rather a peripheral block by peripheral
block. In some extreme cases, you may need to split a structure in
several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very
synthetic case).

View File

@ -47,13 +47,18 @@ Methods
*eventmask* defaults to ``uselect.POLLIN | uselect.POLLOUT``. *eventmask* defaults to ``uselect.POLLIN | uselect.POLLOUT``.
It is OK to call this function multiple times for the same *obj*.
Successive calls will update *obj*'s eventmask to the value of
*eventmask* (i.e. will behave as `modify()`).
.. method:: poll.unregister(obj) .. method:: poll.unregister(obj)
Unregister *obj* from polling. Unregister *obj* from polling.
.. method:: poll.modify(obj, eventmask) .. method:: poll.modify(obj, eventmask)
Modify the *eventmask* for *obj*. Modify the *eventmask* for *obj*. If *obj* is not registered, `OSError`
is raised with error of ENOENT.
.. method:: poll.poll(timeout=-1) .. method:: poll.poll(timeout=-1)

View File

@ -1,336 +0,0 @@
*******************************
:mod:`usocket` -- socket module
*******************************
.. include:: ../templates/unsupported_in_circuitpython.inc
.. module:: usocket
:synopsis: socket module
|see_cpython_module| :mod:`cpython:socket`.
This module provides access to the BSD socket interface.
.. admonition:: Difference to CPython
:class: attention
For efficiency and consistency, socket objects in MicroPython implement a ``stream``
(file-like) interface directly. In CPython, you need to convert a socket to
a file-like object using `makefile()` method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters,
be sure to use it.
Socket address format(s)
------------------------
The native socket address format of the ``usocket`` module is an opaque data type
returned by `getaddrinfo` function, which must be used to resolve textual address
(including numeric addresses)::
sockaddr = usocket.getaddrinfo('www.micropython.org', 80)[0][-1]
# You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1', 80)[0][-1]
# Now you can use that address
sock.connect(addr)
Using `getaddrinfo` is the most efficient (both in terms of memory and processing
power) and portable way to work with addresses.
However, ``socket`` module (note the difference with native MicroPython
``usocket`` module described here) provides CPython-compatible way to specify
addresses using tuples, as described below.
Summing up:
* Always use `getaddrinfo` when writing portable applications.
* Tuple addresses described below can be used as a shortcut for
quick hacks and interactive use, if your port supports them.
Tuple address format for ``socket`` module:
* IPv4: *(ipv4_address, port)*, where *ipv4_address* is a string with
dot-notation numeric IPv4 address, e.g. ``"8.8.8.8"``, and *port* is and
integer port number in the range 1-65535. Note the domain names are not
accepted as *ipv4_address*, they should be resolved first using
`usocket.getaddrinfo()`.
* IPv6: *(ipv6_address, port, flowinfo, scopeid)*, where *ipv6_address*
is a string with colon-notation numeric IPv6 address, e.g. ``"2001:db8::1"``,
and *port* is an integer port number in the range 1-65535. *flowinfo*
must be 0. *scopeid* is the interface scope identifier for link-local
addresses. Note the domain names are not accepted as *ipv6_address*,
they should be resolved first using `usocket.getaddrinfo()`.
Functions
---------
.. function:: socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP)
Create a new socket using the given address family, socket type and
protocol number. Note that specifying *proto* in most cases is not
required (and not recommended, as some MicroPython ports may omit
``IPPROTO_*`` constants). Instead, *type* argument will select needed
protocol automatically::
# Create STREAM TCP socket
socket(AF_INET, SOCK_STREAM)
# Create DGRAM UDP socket
socket(AF_INET, SOCK_DGRAM)
.. function:: getaddrinfo(host, port)
Translate the host/port argument into a sequence of 5-tuples that contain all the
necessary arguments for creating a socket connected to that service. The list of
5-tuples has following structure::
(family, type, proto, canonname, sockaddr)
The following example shows how to connect to a given url::
s = usocket.socket()
s.connect(usocket.getaddrinfo('www.micropython.org', 80)[0][-1])
.. admonition:: Difference to CPython
:class: attention
CPython raises a ``socket.gaierror`` exception (`OSError` subclass) in case
of error in this function. MicroPython doesn't have ``socket.gaierror``
and raises OSError directly. Note that error numbers of `getaddrinfo()`
form a separate namespace and may not match error numbers from
:py:mod:`uerrno` module. To distinguish `getaddrinfo()` errors, they are
represented by negative numbers, whereas standard system errors are
positive numbers (error numbers are accessible using ``e.args[0]`` property
from an exception object). The use of negative values is a provisional
detail which may change in the future.
.. function:: inet_ntop(af, bin_addr)
Convert a binary network address *bin_addr* of the given address family *af*
to a textual representation::
>>> usocket.inet_ntop(usocket.AF_INET, b"\x7f\0\0\1")
'127.0.0.1'
.. function:: inet_pton(af, txt_addr)
Convert a textual network address *txt_addr* of the given address family *af*
to a binary representation::
>>> usocket.inet_pton(usocket.AF_INET, "1.2.3.4")
b'\x01\x02\x03\x04'
Constants
---------
.. data:: AF_INET
AF_INET6
Address family types. Availability depends on a particular ``MicroPython port``.
.. data:: SOCK_STREAM
SOCK_DGRAM
Socket types.
.. data:: IPPROTO_UDP
IPPROTO_TCP
IP protocol numbers. Availability depends on a particular ``MicroPython port``.
Note that you don't need to specify these in a call to `usocket.socket()`,
because `SOCK_STREAM` socket type automatically selects `IPPROTO_TCP`, and
`SOCK_DGRAM` - `IPPROTO_UDP`. Thus, the only real use of these constants
is as an argument to `usocket.socket.setsockopt()`.
.. data:: usocket.SOL_*
Socket option levels (an argument to `usocket.socket.setsockopt()`). The exact
inventory depends on a ``MicroPython port``.
.. data:: usocket.SO_*
Socket options (an argument to `usocket.socket.setsockopt()`). The exact
inventory depends on a ``MicroPython port``.
Constants specific to WiPy:
.. data:: IPPROTO_SEC
Special protocol value to create SSL-compatible socket.
class socket
============
Methods
-------
.. method:: socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations
on the socket object will fail. The remote end will receive EOF indication if
supported by protocol.
Sockets are automatically closed when they are garbage-collected, but it is recommended
to `close()` them explicitly as soon you finished working with them.
.. method:: socket.bind(address)
Bind the socket to *address*. The socket must not already be bound.
.. method:: socket.listen([backlog])
Enable a server to accept connections. If *backlog* is specified, it must be at least 0
(if it's lower, it will be set to 0); and specifies the number of unaccepted connections
that the system will allow before refusing new connections. If not specified, a default
reasonable value is chosen.
.. method:: socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections.
The return value is a pair (conn, address) where conn is a new socket object usable to send
and receive data on the connection, and address is the address bound to the socket on the
other end of the connection.
.. method:: socket.connect(address)
Connect to a remote socket at *address*.
.. method:: socket.send(bytes)
Send data to the socket. The socket must be connected to a remote socket.
Returns number of bytes sent, which may be smaller than the length of data
("short write").
.. method:: socket.sendall(bytes)
Send all data to the socket. The socket must be connected to a remote socket.
Unlike `send()`, this method will try to send all of data, by sending data
chunk by chunk consecutively.
The behavior of this method on non-blocking sockets is undefined. Due to this,
on MicroPython, it's recommended to use `write()` method instead, which
has the same "no short writes" policy for blocking sockets, and will return
number of bytes sent on non-blocking sockets.
.. method:: socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data
received. The maximum amount of data to be received at once is specified by bufsize.
.. method:: socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the
destination socket is specified by *address*.
.. method:: socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair *(bytes, address)* where *bytes* is a
bytes object representing the data received and *address* is the address of the socket sending
the data.
.. method:: socket.setsockopt(level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the
socket module (SO_* etc.). The *value* can be an integer or a bytes-like object representing
a buffer.
.. method:: socket.settimeout(value)
**Note**: Not every port supports this method, see below.
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating
point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations
will raise an `OSError` exception if the timeout period value has elapsed before the operation has
completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket
is put in blocking mode.
Not every ``MicroPython port`` supports this method. A more portable and
generic solution is to use `uselect.poll` object. This allows to wait on
multiple objects at the same time (and not just on sockets, but on generic
``stream`` objects which support polling). Example::
# Instead of:
s.settimeout(1.0) # time in seconds
s.read(10) # may timeout
# Use:
poller = uselect.poll()
poller.register(s, uselect.POLLIN)
res = poller.poll(1000) # time in milliseconds
if not res:
# s is still not ready for input, i.e. operation timed out
.. admonition:: Difference to CPython
:class: attention
CPython raises a ``socket.timeout`` exception in case of timeout,
which is an `OSError` subclass. MicroPython raises an OSError directly
instead. If you use ``except OSError:`` to catch the exception,
your code will work both in MicroPython and CPython.
.. method:: socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking,
else to blocking mode.
This method is a shorthand for certain `settimeout()` calls:
* ``sock.setblocking(True)`` is equivalent to ``sock.settimeout(None)``
* ``sock.setblocking(False)`` is equivalent to ``sock.settimeout(0)``
.. method:: socket.makefile(mode='rb', buffering=0)
Return a file object associated with the socket. The exact returned type depends on the arguments
given to makefile(). The support is limited to binary modes only ('rb', 'wb', and 'rwb').
CPython's arguments: *encoding*, *errors* and *newline* are not supported.
.. admonition:: Difference to CPython
:class: attention
As MicroPython doesn't support buffered streams, values of *buffering*
parameter is ignored and treated as if it was 0 (unbuffered).
.. admonition:: Difference to CPython
:class: attention
Closing the file object returned by makefile() WILL close the
original socket as well.
.. method:: socket.read([size])
Read up to size bytes from the socket. Return a bytes object. If *size* is not given, it
reads all data available from the socket until EOF; as such the method will not return until
the socket is closed. This function tries to read as much data as
requested (no "short reads"). This may be not possible with
non-blocking socket though, and then less data will be returned.
.. method:: socket.readinto(buf[, nbytes])
Read bytes into the *buf*. If *nbytes* is specified then read at most
that many bytes. Otherwise, read at most *len(buf)* bytes. Just as
`read()`, this method follows "no short reads" policy.
Return value: number of bytes read and stored into *buf*.
.. method:: socket.readline()
Read a line, ending in a newline character.
Return value: the line read.
.. method:: socket.write(buf)
Write the buffer of bytes to the socket. This function will try to
write all data to a socket (no "short writes"). This may be not possible
with a non-blocking socket though, and returned value will be less than
the length of *buf*.
Return value: number of bytes written.
.. exception:: usocket.error
MicroPython does NOT have this exception.
.. admonition:: Difference to CPython
:class: attention
CPython used to have a ``socket.error`` exception which is now deprecated,
and is an alias of `OSError`. In MicroPython, use `OSError` directly.

View File

@ -1,50 +0,0 @@
:mod:`ussl` -- SSL/TLS module
=============================
.. include:: ../templates/unsupported_in_circuitpython.inc
.. module:: ussl
:synopsis: TLS/SSL wrapper for socket objects
|see_cpython_module| :mod:`cpython:ssl`.
This module provides access to Transport Layer Security (previously and
widely known as “Secure Sockets Layer”) encryption and peer authentication
facilities for network sockets, both client-side and server-side.
Functions
---------
.. function:: ussl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE, ca_certs=None)
Takes a ``stream`` *sock* (usually usocket.socket instance of ``SOCK_STREAM`` type),
and returns an instance of ssl.SSLSocket, which wraps the underlying stream in
an SSL context. Returned object has the usual ``stream`` interface methods like
``read()``, ``write()``, etc. In MicroPython, the returned object does not expose
socket interface and methods like ``recv()``, ``send()``. In particular, a
server-side SSL socket should be created from a normal socket returned from
:meth:`~usocket.socket.accept()` on a non-SSL listening server socket.
Depending on the underlying module implementation in a particular
``MicroPython port``, some or all keyword arguments above may be not supported.
.. warning::
Some implementations of ``ussl`` module do NOT validate server certificates,
which makes an SSL connection established prone to man-in-the-middle attacks.
Exceptions
----------
.. data:: ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.
Constants
---------
.. data:: ussl.CERT_NONE
ussl.CERT_OPTIONAL
ussl.CERT_REQUIRED
Supported values for *cert_reqs* parameter.

View File

@ -1,57 +0,0 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2017-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_DRIVERS_BUS_QSPI_H
#define MICROPY_INCLUDED_DRIVERS_BUS_QSPI_H
#include "py/mphal.h"
enum {
MP_QSPI_IOCTL_INIT,
MP_QSPI_IOCTL_DEINIT,
MP_QSPI_IOCTL_BUS_ACQUIRE,
MP_QSPI_IOCTL_BUS_RELEASE,
};
typedef struct _mp_qspi_proto_t {
int (*ioctl)(void *self, uint32_t cmd);
void (*write_cmd_data)(void *self, uint8_t cmd, size_t len, uint32_t data);
void (*write_cmd_addr_data)(void *self, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src);
uint32_t (*read_cmd)(void *self, uint8_t cmd, size_t len);
void (*read_cmd_qaddr_qdata)(void *self, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest);
} mp_qspi_proto_t;
typedef struct _mp_soft_qspi_obj_t {
mp_hal_pin_obj_t cs;
mp_hal_pin_obj_t clk;
mp_hal_pin_obj_t io0;
mp_hal_pin_obj_t io1;
mp_hal_pin_obj_t io2;
mp_hal_pin_obj_t io3;
} mp_soft_qspi_obj_t;
extern const mp_qspi_proto_t mp_soft_qspi_proto;
#endif // MICROPY_INCLUDED_DRIVERS_BUS_QSPI_H

View File

@ -1,203 +0,0 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2017-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "drivers/bus/qspi.h"
#define CS_LOW(self) mp_hal_pin_write(self->cs, 0)
#define CS_HIGH(self) mp_hal_pin_write(self->cs, 1)
#ifdef MICROPY_HW_SOFTQSPI_SCK_LOW
// Use externally provided functions for SCK control and IO reading
#define SCK_LOW(self) MICROPY_HW_SOFTQSPI_SCK_LOW(self)
#define SCK_HIGH(self) MICROPY_HW_SOFTQSPI_SCK_HIGH(self)
#define NIBBLE_READ(self) MICROPY_HW_SOFTQSPI_NIBBLE_READ(self)
#else
// Use generic pin functions for SCK control and IO reading
#define SCK_LOW(self) mp_hal_pin_write(self->clk, 0)
#define SCK_HIGH(self) mp_hal_pin_write(self->clk, 1)
#define NIBBLE_READ(self) ( \
mp_hal_pin_read(self->io0) \
| (mp_hal_pin_read(self->io1) << 1) \
| (mp_hal_pin_read(self->io2) << 2) \
| (mp_hal_pin_read(self->io3) << 3))
#endif
STATIC void nibble_write(mp_soft_qspi_obj_t *self, uint8_t v) {
mp_hal_pin_write(self->io0, v & 1);
mp_hal_pin_write(self->io1, (v >> 1) & 1);
mp_hal_pin_write(self->io2, (v >> 2) & 1);
mp_hal_pin_write(self->io3, (v >> 3) & 1);
}
STATIC int mp_soft_qspi_ioctl(void *self_in, uint32_t cmd) {
mp_soft_qspi_obj_t *self = (mp_soft_qspi_obj_t *)self_in;
switch (cmd) {
case MP_QSPI_IOCTL_INIT:
mp_hal_pin_high(self->cs);
mp_hal_pin_output(self->cs);
// Configure pins
mp_hal_pin_write(self->clk, 0);
mp_hal_pin_output(self->clk);
// mp_hal_pin_write(self->clk, 1);
mp_hal_pin_output(self->io0);
mp_hal_pin_input(self->io1);
mp_hal_pin_write(self->io2, 1);
mp_hal_pin_output(self->io2);
mp_hal_pin_write(self->io3, 1);
mp_hal_pin_output(self->io3);
break;
}
return 0; // success
}
STATIC void mp_soft_qspi_transfer(mp_soft_qspi_obj_t *self, size_t len, const uint8_t *src, uint8_t *dest) {
// Will run as fast as possible, limited only by CPU speed and GPIO time
mp_hal_pin_input(self->io1);
mp_hal_pin_output(self->io0);
if (self->io3) {
mp_hal_pin_write(self->io2, 1);
mp_hal_pin_output(self->io2);
mp_hal_pin_write(self->io3, 1);
mp_hal_pin_output(self->io3);
}
if (src) {
for (size_t i = 0; i < len; ++i) {
uint8_t data_out = src[i];
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j, data_out <<= 1) {
mp_hal_pin_write(self->io0, (data_out >> 7) & 1);
mp_hal_pin_write(self->clk, 1);
data_in = (data_in << 1) | mp_hal_pin_read(self->io1);
mp_hal_pin_write(self->clk, 0);
}
if (dest != NULL) {
dest[i] = data_in;
}
}
} else {
for (size_t i = 0; i < len; ++i) {
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j) {
mp_hal_pin_write(self->clk, 1);
data_in = (data_in << 1) | mp_hal_pin_read(self->io1);
mp_hal_pin_write(self->clk, 0);
}
if (dest != NULL) {
dest[i] = data_in;
}
}
}
}
STATIC void mp_soft_qspi_qread(mp_soft_qspi_obj_t *self, size_t len, uint8_t *buf) {
// Make all IO lines input
mp_hal_pin_input(self->io2);
mp_hal_pin_input(self->io3);
mp_hal_pin_input(self->io0);
mp_hal_pin_input(self->io1);
// Will run as fast as possible, limited only by CPU speed and GPIO time
while (len--) {
SCK_HIGH(self);
uint8_t data_in = NIBBLE_READ(self);
SCK_LOW(self);
SCK_HIGH(self);
*buf++ = (data_in << 4) | NIBBLE_READ(self);
SCK_LOW(self);
}
}
STATIC void mp_soft_qspi_qwrite(mp_soft_qspi_obj_t *self, size_t len, const uint8_t *buf) {
// Make all IO lines output
mp_hal_pin_output(self->io2);
mp_hal_pin_output(self->io3);
mp_hal_pin_output(self->io0);
mp_hal_pin_output(self->io1);
// Will run as fast as possible, limited only by CPU speed and GPIO time
for (size_t i = 0; i < len; ++i) {
nibble_write(self, buf[i] >> 4);
SCK_HIGH(self);
SCK_LOW(self);
nibble_write(self, buf[i]);
SCK_HIGH(self);
SCK_LOW(self);
}
// mp_hal_pin_input(self->io1);
}
STATIC void mp_soft_qspi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) {
mp_soft_qspi_obj_t *self = (mp_soft_qspi_obj_t *)self_in;
uint32_t cmd_buf = cmd | data << 8;
CS_LOW(self);
mp_soft_qspi_transfer(self, 1 + len, (uint8_t *)&cmd_buf, NULL);
CS_HIGH(self);
}
STATIC void mp_soft_qspi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) {
mp_soft_qspi_obj_t *self = (mp_soft_qspi_obj_t *)self_in;
uint8_t cmd_buf[4] = {cmd, addr >> 16, addr >> 8, addr};
CS_LOW(self);
mp_soft_qspi_transfer(self, 4, cmd_buf, NULL);
mp_soft_qspi_transfer(self, len, src, NULL);
CS_HIGH(self);
}
STATIC uint32_t mp_soft_qspi_read_cmd(void *self_in, uint8_t cmd, size_t len) {
mp_soft_qspi_obj_t *self = (mp_soft_qspi_obj_t *)self_in;
uint32_t cmd_buf = cmd;
CS_LOW(self);
mp_soft_qspi_transfer(self, 1 + len, (uint8_t *)&cmd_buf, (uint8_t *)&cmd_buf);
CS_HIGH(self);
return cmd_buf >> 8;
}
STATIC void mp_soft_qspi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) {
mp_soft_qspi_obj_t *self = (mp_soft_qspi_obj_t *)self_in;
uint8_t cmd_buf[7] = {cmd, addr >> 16, addr >> 8, addr};
CS_LOW(self);
mp_soft_qspi_transfer(self, 1, cmd_buf, NULL);
mp_soft_qspi_qwrite(self, 6, &cmd_buf[1]); // 3 addr bytes, 1 extra byte (0), 2 dummy bytes (4 dummy cycles)
mp_soft_qspi_qread(self, len, dest);
CS_HIGH(self);
}
const mp_qspi_proto_t mp_soft_qspi_proto = {
.ioctl = mp_soft_qspi_ioctl,
.write_cmd_data = mp_soft_qspi_write_cmd_data,
.write_cmd_addr_data = mp_soft_qspi_write_cmd_addr_data,
.read_cmd = mp_soft_qspi_read_cmd,
.read_cmd_qaddr_qdata = mp_soft_qspi_read_cmd_qaddr_qdata,
};

View File

@ -1,105 +0,0 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2016-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "drivers/bus/spi.h"
int mp_soft_spi_ioctl(void *self_in, uint32_t cmd) {
mp_soft_spi_obj_t *self = (mp_soft_spi_obj_t *)self_in;
switch (cmd) {
case MP_SPI_IOCTL_INIT:
mp_hal_pin_write(self->sck, self->polarity);
mp_hal_pin_output(self->sck);
mp_hal_pin_output(self->mosi);
mp_hal_pin_input(self->miso);
break;
case MP_SPI_IOCTL_DEINIT:
break;
}
return 0;
}
void mp_soft_spi_transfer(void *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
mp_soft_spi_obj_t *self = (mp_soft_spi_obj_t *)self_in;
uint32_t delay_half = self->delay_half;
// only MSB transfer is implemented
// If a port defines MICROPY_HW_SOFTSPI_MIN_DELAY, and the configured
// delay_half is equal to this value, then the software SPI implementation
// will run as fast as possible, limited only by CPU speed and GPIO time.
#ifdef MICROPY_HW_SOFTSPI_MIN_DELAY
if (delay_half == MICROPY_HW_SOFTSPI_MIN_DELAY) {
for (size_t i = 0; i < len; ++i) {
uint8_t data_out = src[i];
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j, data_out <<= 1) {
mp_hal_pin_write(self->mosi, (data_out >> 7) & 1);
mp_hal_pin_write(self->sck, 1 - self->polarity);
data_in = (data_in << 1) | mp_hal_pin_read(self->miso);
mp_hal_pin_write(self->sck, self->polarity);
}
if (dest != NULL) {
dest[i] = data_in;
}
}
return;
}
#endif
for (size_t i = 0; i < len; ++i) {
uint8_t data_out = src[i];
uint8_t data_in = 0;
for (int j = 0; j < 8; ++j, data_out <<= 1) {
mp_hal_pin_write(self->mosi, (data_out >> 7) & 1);
if (self->phase == 0) {
mp_hal_delay_us_fast(delay_half);
mp_hal_pin_write(self->sck, 1 - self->polarity);
} else {
mp_hal_pin_write(self->sck, 1 - self->polarity);
mp_hal_delay_us_fast(delay_half);
}
data_in = (data_in << 1) | mp_hal_pin_read(self->miso);
if (self->phase == 0) {
mp_hal_delay_us_fast(delay_half);
mp_hal_pin_write(self->sck, self->polarity);
} else {
mp_hal_pin_write(self->sck, self->polarity);
mp_hal_delay_us_fast(delay_half);
}
}
if (dest != NULL) {
dest[i] = data_in;
}
}
}
const mp_spi_proto_t mp_soft_spi_proto = {
.ioctl = mp_soft_spi_ioctl,
.transfer = mp_soft_spi_transfer,
};

View File

@ -1,6 +0,0 @@
This is the driver for the WIZnet5x00 series of Ethernet controllers.
Adapted for MicroPython.
Original source: https://github.com/Wiznet/W5500_EVB/tree/master/ioLibrary
Taken on: 30 August 2014

View File

@ -1,718 +0,0 @@
//*****************************************************************************
//
//! \file socket.c
//! \brief SOCKET APIs Implements file.
//! \details SOCKET APIs like as Berkeley Socket APIs.
//! \version 1.0.3
//! \date 2013/10/21
//! \par Revision history
//! <2018/10/09> Nick Moore fixes for CircuitPython
//! <2014/05/01> V1.0.3. Refer to M20140501
//! 1. Implicit type casting -> Explicit type casting.
//! 2. replace 0x01 with PACK_REMAINED in recvfrom()
//! 3. Validation a destination ip in connect() & sendto():
//! It occurs a fatal error on converting unint32 address if uint8* addr parameter is not aligned by 4byte address.
//! Copy 4 byte addr value into temporary uint32 variable and then compares it.
//! <2013/12/20> V1.0.2 Refer to M20131220
//! Remove Warning.
//! <2013/11/04> V1.0.1 2nd Release. Refer to "20131104".
//! In sendto(), Add to clear timeout interrupt status (Sn_IR_TIMEOUT)
//! <2013/10/21> 1st Release
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#include <string.h>
#include "py/mpthread.h"
#include "socket.h"
#define SOCK_ANY_PORT_NUM 0xC000;
static uint16_t sock_any_port = SOCK_ANY_PORT_NUM;
static uint16_t sock_io_mode = 0;
static uint16_t sock_is_sending = 0;
static uint16_t sock_remained_size[_WIZCHIP_SOCK_NUM_] = {0,0,};
static uint8_t sock_pack_info[_WIZCHIP_SOCK_NUM_] = {0,};
#if _WIZCHIP_ == 5200
static uint16_t sock_next_rd[_WIZCHIP_SOCK_NUM_] ={0,};
#endif
#define CHECK_SOCKNUM() \
do{ \
if(sn > _WIZCHIP_SOCK_NUM_) return SOCKERR_SOCKNUM; \
}while(0); \
#define CHECK_SOCKMODE(mode) \
do{ \
if((getSn_MR(sn) & 0x0F) != mode) return SOCKERR_SOCKMODE; \
}while(0); \
#define CHECK_SOCKINIT() \
do{ \
if((getSn_SR(sn) != SOCK_INIT)) return SOCKERR_SOCKINIT; \
}while(0); \
#define CHECK_SOCKDATA() \
do{ \
if(len == 0) return SOCKERR_DATALEN; \
}while(0); \
void WIZCHIP_EXPORT(socket_reset)(void) {
sock_any_port = SOCK_ANY_PORT_NUM;
sock_io_mode = 0;
sock_is_sending = 0;
/*
memset(sock_remained_size, 0, _WIZCHIP_SOCK_NUM_ * sizeof(uint16_t));
memset(sock_pack_info, 0, _WIZCHIP_SOCK_NUM_ * sizeof(uint8_t));
*/
#if _WIZCHIP_ == 5200
memset(sock_next_rd, 0, _WIZCHIP_SOCK_NUM_ * sizeof(uint16_t));
#endif
}
int8_t WIZCHIP_EXPORT(socket)(uint8_t sn, uint8_t protocol, uint16_t port, uint8_t flag)
{
CHECK_SOCKNUM();
switch(protocol)
{
case Sn_MR_TCP :
case Sn_MR_UDP :
case Sn_MR_MACRAW :
break;
#if ( _WIZCHIP_ < 5200 )
case Sn_MR_IPRAW :
case Sn_MR_PPPoE :
break;
#endif
default :
return SOCKERR_SOCKMODE;
}
if((flag & 0x06) != 0) return SOCKERR_SOCKFLAG;
#if _WIZCHIP_ == 5200
if(flag & 0x10) return SOCKERR_SOCKFLAG;
#endif
if(flag != 0)
{
switch(protocol)
{
case Sn_MR_TCP:
if((flag & (SF_TCP_NODELAY|SF_IO_NONBLOCK))==0) return SOCKERR_SOCKFLAG;
break;
case Sn_MR_UDP:
if(flag & SF_IGMP_VER2)
{
if((flag & SF_MULTI_ENABLE)==0) return SOCKERR_SOCKFLAG;
}
#if _WIZCHIP_ == 5500
if(flag & SF_UNI_BLOCK)
{
if((flag & SF_MULTI_ENABLE) == 0) return SOCKERR_SOCKFLAG;
}
#endif
break;
default:
break;
}
}
WIZCHIP_EXPORT(close)(sn);
setSn_MR(sn, (protocol | (flag & 0xF0)));
if(!port)
{
port = sock_any_port++;
if(sock_any_port == 0xFFF0) sock_any_port = SOCK_ANY_PORT_NUM;
}
setSn_PORT(sn,port);
setSn_CR(sn,Sn_CR_OPEN);
while(getSn_CR(sn));
sock_io_mode |= ((flag & SF_IO_NONBLOCK) << sn);
sock_is_sending &= ~(1<<sn);
sock_remained_size[sn] = 0;
sock_pack_info[sn] = 0;
while(getSn_SR(sn) == SOCK_CLOSED);
return (int8_t)sn;
}
int8_t WIZCHIP_EXPORT(close)(uint8_t sn)
{
CHECK_SOCKNUM();
setSn_CR(sn,Sn_CR_CLOSE);
/* wait to process the command... */
while( getSn_CR(sn) );
/* clear all interrupt of the socket. */
setSn_IR(sn, 0xFF);
sock_is_sending &= ~(1<<sn);
sock_remained_size[sn] = 0;
sock_pack_info[sn] = 0;
while(getSn_SR(sn) != SOCK_CLOSED);
return SOCK_OK;
}
int8_t WIZCHIP_EXPORT(listen)(uint8_t sn)
{
CHECK_SOCKNUM();
CHECK_SOCKMODE(Sn_MR_TCP);
CHECK_SOCKINIT();
setSn_CR(sn,Sn_CR_LISTEN);
while(getSn_CR(sn));
while(getSn_SR(sn) != SOCK_LISTEN)
{
if(getSn_CR(sn) == SOCK_CLOSED)
{
WIZCHIP_EXPORT(close)(sn);
return SOCKERR_SOCKCLOSED;
}
}
return SOCK_OK;
}
int8_t WIZCHIP_EXPORT(connect)(uint8_t sn, uint8_t * addr, uint16_t port)
{
CHECK_SOCKNUM();
CHECK_SOCKMODE(Sn_MR_TCP);
CHECK_SOCKINIT();
//M20140501 : For avoiding fatal error on memory align mismatched
//if( *((uint32_t*)addr) == 0xFFFFFFFF || *((uint32_t*)addr) == 0) return SOCKERR_IPINVALID;
{
uint32_t taddr;
taddr = ((uint32_t)addr[0] & 0x000000FF);
taddr = (taddr << 8) + ((uint32_t)addr[1] & 0x000000FF);
taddr = (taddr << 8) + ((uint32_t)addr[2] & 0x000000FF);
taddr = (taddr << 8) + ((uint32_t)addr[3] & 0x000000FF);
if (taddr == 0xFFFFFFFF || taddr == 0) return SOCKERR_IPINVALID;
}
//
if(port == 0) return SOCKERR_PORTZERO;
setSn_DIPR(sn,addr);
setSn_DPORT(sn,port);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR(wizchip_getsubn());
#endif
setSn_CR(sn,Sn_CR_CONNECT);
while(getSn_CR(sn));
if(sock_io_mode & (1<<sn)) return SOCK_BUSY;
while(getSn_SR(sn) != SOCK_ESTABLISHED)
{
if (getSn_SR(sn) == SOCK_CLOSED) {
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR((uint8_t*)"\x00\x00\x00\x00");
#endif
return SOCKERR_SOCKCLOSED;
}
if (getSn_IR(sn) & Sn_IR_TIMEOUT)
{
setSn_IR(sn, Sn_IR_TIMEOUT);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR((uint8_t*)"\x00\x00\x00\x00");
#endif
return SOCKERR_TIMEOUT;
}
MICROPY_THREAD_YIELD();
}
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR((uint8_t*)"\x00\x00\x00\x00");
#endif
return SOCK_OK;
}
int8_t WIZCHIP_EXPORT(disconnect)(uint8_t sn)
{
CHECK_SOCKNUM();
CHECK_SOCKMODE(Sn_MR_TCP);
setSn_CR(sn,Sn_CR_DISCON);
/* wait to process the command... */
while(getSn_CR(sn));
sock_is_sending &= ~(1<<sn);
if(sock_io_mode & (1<<sn)) return SOCK_BUSY;
while(getSn_SR(sn) != SOCK_CLOSED)
{
if(getSn_IR(sn) & Sn_IR_TIMEOUT)
{
WIZCHIP_EXPORT(close)(sn);
return SOCKERR_TIMEOUT;
}
}
return SOCK_OK;
}
int32_t WIZCHIP_EXPORT(send)(uint8_t sn, uint8_t * buf, uint16_t len)
{
uint8_t tmp=0;
uint16_t freesize=0;
CHECK_SOCKNUM();
CHECK_SOCKMODE(Sn_MR_TCP);
CHECK_SOCKDATA();
tmp = getSn_SR(sn);
if(tmp != SOCK_ESTABLISHED && tmp != SOCK_CLOSE_WAIT) return SOCKERR_SOCKSTATUS;
if( sock_is_sending & (1<<sn) )
{
tmp = getSn_IR(sn);
if(tmp & Sn_IR_SENDOK)
{
setSn_IR(sn, Sn_IR_SENDOK);
#if _WIZCHIP_ == 5200
if(getSn_TX_RD(sn) != sock_next_rd[sn])
{
setSn_CR(sn,Sn_CR_SEND);
while(getSn_CR(sn));
return SOCKERR_BUSY;
}
#endif
sock_is_sending &= ~(1<<sn);
}
else if(tmp & Sn_IR_TIMEOUT)
{
WIZCHIP_EXPORT(close)(sn);
return SOCKERR_TIMEOUT;
}
else return SOCK_BUSY;
}
freesize = getSn_TxMAX(sn);
if (len > freesize) len = freesize; // check size not to exceed MAX size.
while(1)
{
freesize = getSn_TX_FSR(sn);
tmp = getSn_SR(sn);
if ((tmp != SOCK_ESTABLISHED) && (tmp != SOCK_CLOSE_WAIT))
{
WIZCHIP_EXPORT(close)(sn);
return SOCKERR_SOCKSTATUS;
}
if( (sock_io_mode & (1<<sn)) && (len > freesize) ) return SOCK_BUSY;
if(len <= freesize) break;
MICROPY_THREAD_YIELD();
}
wiz_send_data(sn, buf, len);
#if _WIZCHIP_ == 5200
sock_next_rd[sn] = getSn_TX_RD(sn) + len;
#endif
setSn_CR(sn,Sn_CR_SEND);
/* wait to process the command... */
while(getSn_CR(sn));
sock_is_sending |= (1 << sn);
return len;
}
int32_t WIZCHIP_EXPORT(recv)(uint8_t sn, uint8_t * buf, uint16_t len)
{
uint8_t tmp = 0;
uint16_t recvsize = 0;
CHECK_SOCKNUM();
CHECK_SOCKMODE(Sn_MR_TCP);
CHECK_SOCKDATA();
recvsize = getSn_RxMAX(sn);
if(recvsize < len) len = recvsize;
while(1)
{
recvsize = getSn_RX_RSR(sn);
tmp = getSn_SR(sn);
if (tmp != SOCK_ESTABLISHED)
{
if(tmp == SOCK_CLOSE_WAIT)
{
if(recvsize != 0) break;
else if(getSn_TX_FSR(sn) == getSn_TxMAX(sn))
{
// dpgeorge: Getting here seems to be an orderly shutdown of the
// socket, and trying to get POSIX behaviour we return 0 because:
// "If no messages are available to be received and the peer has per
// formed an orderly shutdown, recv() shall return 0".
// TODO this return value clashes with SOCK_BUSY in non-blocking mode.
WIZCHIP_EXPORT(close)(sn);
return 0;
}
}
else
{
WIZCHIP_EXPORT(close)(sn);
return SOCKERR_SOCKSTATUS;
}
}
if((sock_io_mode & (1<<sn)) && (recvsize == 0)) return SOCK_BUSY;
if(recvsize != 0) break;
MICROPY_THREAD_YIELD();
};
if(recvsize < len) len = recvsize;
wiz_recv_data(sn, buf, len);
setSn_CR(sn,Sn_CR_RECV);
while(getSn_CR(sn));
return len;
}
int32_t WIZCHIP_EXPORT(sendto)(uint8_t sn, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t port)
{
uint8_t tmp = 0;
uint16_t freesize = 0;
CHECK_SOCKNUM();
switch(getSn_MR(sn) & 0x0F)
{
case Sn_MR_UDP:
case Sn_MR_MACRAW:
break;
default:
return SOCKERR_SOCKMODE;
}
CHECK_SOCKDATA();
//M20140501 : For avoiding fatal error on memory align mismatched
//if(*((uint32_t*)addr) == 0) return SOCKERR_IPINVALID;
if ((addr[0] | addr[1] | addr[2] | addr[3]) == 0) return SOCKERR_IPINVALID;
if(port == 0) return SOCKERR_PORTZERO;
tmp = getSn_SR(sn);
if(tmp != SOCK_MACRAW && tmp != SOCK_UDP) return SOCKERR_SOCKSTATUS;
setSn_DIPR(sn,addr);
setSn_DPORT(sn,port);
freesize = getSn_TxMAX(sn);
if (len > freesize) len = freesize; // check size not to exceed MAX size.
while(1)
{
freesize = getSn_TX_FSR(sn);
if(getSn_SR(sn) == SOCK_CLOSED) return SOCKERR_SOCKCLOSED;
if( (sock_io_mode & (1<<sn)) && (len > freesize) ) return SOCK_BUSY;
if(len <= freesize) break;
MICROPY_THREAD_YIELD();
};
wiz_send_data(sn, buf, len);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR(wizchip_getsubn());
#endif
setSn_CR(sn,Sn_CR_SEND);
/* wait to process the command... */
while(getSn_CR(sn));
while(1)
{
tmp = getSn_IR(sn);
if(tmp & Sn_IR_SENDOK)
{
setSn_IR(sn, Sn_IR_SENDOK);
break;
}
//M:20131104
//else if(tmp & Sn_IR_TIMEOUT) return SOCKERR_TIMEOUT;
else if(tmp & Sn_IR_TIMEOUT)
{
setSn_IR(sn, Sn_IR_TIMEOUT);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR((uint8_t*)"\x00\x00\x00\x00");
#endif
return SOCKERR_TIMEOUT;
}
////////////
MICROPY_THREAD_YIELD();
}
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
setSUBR((uint8_t*)"\x00\x00\x00\x00");
#endif
return len;
}
int32_t WIZCHIP_EXPORT(recvfrom)(uint8_t sn, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t *port)
{
uint8_t mr;
uint8_t head[8];
uint16_t pack_len=0;
CHECK_SOCKNUM();
//CHECK_SOCKMODE(Sn_MR_UDP);
switch((mr=getSn_MR(sn)) & 0x0F)
{
case Sn_MR_UDP:
case Sn_MR_MACRAW:
break;
#if ( _WIZCHIP_ < 5200 )
case Sn_MR_IPRAW:
case Sn_MR_PPPoE:
break;
#endif
default:
return SOCKERR_SOCKMODE;
}
CHECK_SOCKDATA();
if(sock_remained_size[sn] == 0)
{
while(1)
{
pack_len = getSn_RX_RSR(sn);
if(getSn_SR(sn) == SOCK_CLOSED) return SOCKERR_SOCKCLOSED;
if( (sock_io_mode & (1<<sn)) && (pack_len == 0) ) return SOCK_BUSY;
if(pack_len != 0) break;
MICROPY_THREAD_YIELD();
};
}
sock_pack_info[sn] = PACK_COMPLETED;
switch (mr & 0x07)
{
case Sn_MR_UDP :
if(sock_remained_size[sn] == 0)
{
wiz_recv_data(sn, head, 8);
setSn_CR(sn,Sn_CR_RECV);
while(getSn_CR(sn));
// read peer's IP address, port number & packet length
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
*port = head[4];
*port = (*port << 8) + head[5];
sock_remained_size[sn] = head[6];
sock_remained_size[sn] = (sock_remained_size[sn] << 8) + head[7];
sock_pack_info[sn] = PACK_FIRST;
}
if(len < sock_remained_size[sn]) pack_len = len;
else pack_len = sock_remained_size[sn];
//
// Need to packet length check (default 1472)
//
wiz_recv_data(sn, buf, pack_len); // data copy.
break;
case Sn_MR_MACRAW :
if(sock_remained_size[sn] == 0)
{
wiz_recv_data(sn, head, 2);
setSn_CR(sn,Sn_CR_RECV);
while(getSn_CR(sn));
// read peer's IP address, port number & packet length
sock_remained_size[sn] = head[0];
sock_remained_size[sn] = (sock_remained_size[sn] <<8) + head[1];
sock_remained_size[sn] -= 2; // len includes 2 len bytes
if(sock_remained_size[sn] > 1514)
{
WIZCHIP_EXPORT(close)(sn);
return SOCKFATAL_PACKLEN;
}
sock_pack_info[sn] = PACK_FIRST;
}
if(len < sock_remained_size[sn]) pack_len = len;
else pack_len = sock_remained_size[sn];
wiz_recv_data(sn,buf,pack_len);
break;
#if ( _WIZCHIP_ < 5200 )
case Sn_MR_IPRAW:
if(sock_remained_size[sn] == 0)
{
wiz_recv_data(sn, head, 6);
setSn_CR(sn,Sn_CR_RECV);
while(getSn_CR(sn));
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
sock_remained_size[sn] = head[4];
sock_remaiend_size[sn] = (sock_remained_size[sn] << 8) + head[5];
sock_pack_info[sn] = PACK_FIRST;
}
//
// Need to packet length check
//
if(len < sock_remained_size[sn]) pack_len = len;
else pack_len = sock_remained_size[sn];
wiz_recv_data(sn, buf, pack_len); // data copy.
break;
#endif
default:
wiz_recv_ignore(sn, pack_len); // data copy.
sock_remained_size[sn] = pack_len;
break;
}
setSn_CR(sn,Sn_CR_RECV);
/* wait to process the command... */
while(getSn_CR(sn)) ;
sock_remained_size[sn] -= pack_len;
//M20140501 : replace 0x01 with PACK_REMAINED
//if(sock_remained_size[sn] != 0) sock_pack_info[sn] |= 0x01;
if(sock_remained_size[sn] != 0) sock_pack_info[sn] |= PACK_REMAINED;
//
return pack_len;
}
int8_t WIZCHIP_EXPORT(ctlsocket)(uint8_t sn, ctlsock_type cstype, void* arg)
{
uint8_t tmp = 0;
CHECK_SOCKNUM();
switch(cstype)
{
case CS_SET_IOMODE:
tmp = *((uint8_t*)arg);
if(tmp == SOCK_IO_NONBLOCK) sock_io_mode |= (1<<sn);
else if(tmp == SOCK_IO_BLOCK) sock_io_mode &= ~(1<<sn);
else return SOCKERR_ARG;
break;
case CS_GET_IOMODE:
//M20140501 : implict type casting -> explict type casting
//*((uint8_t*)arg) = (sock_io_mode >> sn) & 0x0001;
*((uint8_t*)arg) = (uint8_t)((sock_io_mode >> sn) & 0x0001);
//
break;
case CS_GET_MAXTXBUF:
*((uint16_t*)arg) = getSn_TxMAX(sn);
break;
case CS_GET_MAXRXBUF:
*((uint16_t*)arg) = getSn_RxMAX(sn);
break;
case CS_CLR_INTERRUPT:
if( (*(uint8_t*)arg) > SIK_ALL) return SOCKERR_ARG;
setSn_IR(sn,*(uint8_t*)arg);
break;
case CS_GET_INTERRUPT:
*((uint8_t*)arg) = getSn_IR(sn);
break;
case CS_SET_INTMASK:
if( (*(uint8_t*)arg) > SIK_ALL) return SOCKERR_ARG;
setSn_IMR(sn,*(uint8_t*)arg);
break;
case CS_GET_INTMASK:
*((uint8_t*)arg) = getSn_IMR(sn);
default:
return SOCKERR_ARG;
}
return SOCK_OK;
}
int8_t WIZCHIP_EXPORT(setsockopt)(uint8_t sn, sockopt_type sotype, void* arg)
{
// M20131220 : Remove warning
//uint8_t tmp;
CHECK_SOCKNUM();
switch(sotype)
{
case SO_TTL:
setSn_TTL(sn,*(uint8_t*)arg);
break;
case SO_TOS:
setSn_TOS(sn,*(uint8_t*)arg);
break;
case SO_MSS:
setSn_MSSR(sn,*(uint16_t*)arg);
break;
case SO_DESTIP:
setSn_DIPR(sn, (uint8_t*)arg);
break;
case SO_DESTPORT:
setSn_DPORT(sn, *(uint16_t*)arg);
break;
#if _WIZCHIP_ != 5100
case SO_KEEPALIVESEND:
CHECK_SOCKMODE(Sn_MR_TCP);
#if _WIZCHIP_ > 5200
if(getSn_KPALVTR(sn) != 0) return SOCKERR_SOCKOPT;
#endif
setSn_CR(sn,Sn_CR_SEND_KEEP);
while(getSn_CR(sn) != 0)
{
// M20131220
//if ((tmp = getSn_IR(sn)) & Sn_IR_TIMEOUT)
if (getSn_IR(sn) & Sn_IR_TIMEOUT)
{
setSn_IR(sn, Sn_IR_TIMEOUT);
return SOCKERR_TIMEOUT;
}
}
break;
#if _WIZCHIP_ > 5200
case SO_KEEPALIVEAUTO:
CHECK_SOCKMODE(Sn_MR_TCP);
setSn_KPALVTR(sn,*(uint8_t*)arg);
break;
#endif
#endif
default:
return SOCKERR_ARG;
}
return SOCK_OK;
}
int8_t WIZCHIP_EXPORT(getsockopt)(uint8_t sn, sockopt_type sotype, void* arg)
{
CHECK_SOCKNUM();
switch(sotype)
{
case SO_FLAG:
*(uint8_t*)arg = getSn_MR(sn) & 0xF0;
break;
case SO_TTL:
*(uint8_t*) arg = getSn_TTL(sn);
break;
case SO_TOS:
*(uint8_t*) arg = getSn_TOS(sn);
break;
case SO_MSS:
*(uint8_t*) arg = getSn_MSSR(sn);
case SO_DESTIP:
getSn_DIPR(sn, (uint8_t*)arg);
break;
case SO_DESTPORT:
*(uint16_t*) arg = getSn_DPORT(sn);
break;
#if _WIZCHIP_ > 5200
case SO_KEEPALIVEAUTO:
CHECK_SOCKMODE(Sn_MR_TCP);
*(uint16_t*) arg = getSn_KPALVTR(sn);
break;
#endif
case SO_SENDBUF:
*(uint16_t*) arg = getSn_TX_FSR(sn);
case SO_RECVBUF:
*(uint16_t*) arg = getSn_RX_RSR(sn);
case SO_STATUS:
*(uint8_t*) arg = getSn_SR(sn);
break;
case SO_REMAINSIZE:
if(getSn_MR(sn) == Sn_MR_TCP)
*(uint16_t*)arg = getSn_RX_RSR(sn);
else
*(uint16_t*)arg = sock_remained_size[sn];
break;
case SO_PACKINFO:
CHECK_SOCKMODE(Sn_MR_TCP);
*(uint8_t*)arg = sock_pack_info[sn];
break;
default:
return SOCKERR_SOCKOPT;
}
return SOCK_OK;
}

View File

@ -1,472 +0,0 @@
//*****************************************************************************
//
//! \file socket.h
//! \brief SOCKET APIs Header file.
//! \details SOCKET APIs like as berkeley socket api.
//! \version 1.0.2
//! \date 2013/10/21
//! \par Revision history
//! <2014/05/01> V1.0.2. Refer to M20140501
//! 1. Modify the comment : SO_REMAINED -> PACK_REMAINED
//! 2. Add the comment as zero byte udp data reception in getsockopt().
//! <2013/10/21> 1st Release
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
/**
* @defgroup WIZnet_socket_APIs 1. WIZnet socket APIs
* @brief WIZnet socket APIs are based on Berkeley socket APIs, thus it has much similar name and interface.
* But there is a little bit of difference.
* @details
* <b> Comparison between WIZnet and Berkeley SOCKET APIs </b>
* <table>
* <tr> <td><b>API</b></td> <td><b>WIZnet</b></td> <td><b>Berkeley</b></td> </tr>
* <tr> <td>socket()</td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>bind()</b></td> <td>X</td> <td>O</td> </tr>
* <tr> <td><b>listen()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>connect()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>accept()</b></td> <td>X</td> <td>O</td> </tr>
* <tr> <td><b>recv()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>send()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>recvfrom()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>sendto()</b></td> <td>O</td> <td>O</td> </tr>
* <tr> <td><b>closesocket()</b></td> <td>O<br>close() & disconnect()</td> <td>O</td> </tr>
* </table>
* There are @b bind() and @b accept() functions in @b Berkeley SOCKET API but,
* not in @b WIZnet SOCKET API. Because socket() of WIZnet is not only creating a SOCKET but also binding a local port number,
* and listen() of WIZnet is not only listening to connection request from client but also accepting the connection request. \n
* When you program "TCP SERVER" with Berkeley SOCKET API, you can use only one listen port.
* When the listen SOCKET accepts a connection request from a client, it keeps listening.
* After accepting the connection request, a new SOCKET is created and the new SOCKET is used in communication with the client. \n
* Following figure shows network flow diagram by Berkeley SOCKET API.
* @image html Berkeley_SOCKET.jpg "<Berkeley SOCKET API>"
* But, When you program "TCP SERVER" with WIZnet SOCKET API, you can use as many as 8 listen SOCKET with same port number. \n
* Because there's no accept() in WIZnet SOCKET APIs, when the listen SOCKET accepts a connection request from a client,
* it is changed in order to communicate with the client.
* And the changed SOCKET is not listening any more and is dedicated for communicating with the client. \n
* If there're many listen SOCKET with same listen port number and a client requests a connection,
* the SOCKET which has the smallest SOCKET number accepts the request and is changed as communication SOCKET. \n
* Following figure shows network flow diagram by WIZnet SOCKET API.
* @image html WIZnet_SOCKET.jpg "<WIZnet SOCKET API>"
*/
#ifndef _WIZCHIP_SOCKET_H_
#define _WIZCHIP_SOCKET_H_
// use this macro for exported names to avoid name clashes
#define WIZCHIP_EXPORT(name) wizchip_ ## name
#include "wizchip_conf.h"
#define SOCKET uint8_t ///< SOCKET type define for legacy driver
#define SOCK_OK 1 ///< Result is OK about socket process.
#define SOCK_BUSY 0 ///< Socket is busy on processing the operation. Valid only Non-block IO Mode.
#define SOCK_FATAL -1000 ///< Result is fatal error about socket process.
#define SOCK_ERROR 0
#define SOCKERR_SOCKNUM (SOCK_ERROR - 1) ///< Invalid socket number
#define SOCKERR_SOCKOPT (SOCK_ERROR - 2) ///< Invalid socket option
#define SOCKERR_SOCKINIT (SOCK_ERROR - 3) ///< Socket is not initialized
#define SOCKERR_SOCKCLOSED (SOCK_ERROR - 4) ///< Socket unexpectedly closed.
#define SOCKERR_SOCKMODE (SOCK_ERROR - 5) ///< Invalid socket mode for socket operation.
#define SOCKERR_SOCKFLAG (SOCK_ERROR - 6) ///< Invalid socket flag
#define SOCKERR_SOCKSTATUS (SOCK_ERROR - 7) ///< Invalid socket status for socket operation.
#define SOCKERR_ARG (SOCK_ERROR - 10) ///< Invalid argument.
#define SOCKERR_PORTZERO (SOCK_ERROR - 11) ///< Port number is zero
#define SOCKERR_IPINVALID (SOCK_ERROR - 12) ///< Invalid IP address
#define SOCKERR_TIMEOUT (SOCK_ERROR - 13) ///< Timeout occurred
#define SOCKERR_DATALEN (SOCK_ERROR - 14) ///< Data length is zero or greater than buffer max size.
#define SOCKERR_BUFFER (SOCK_ERROR - 15) ///< Socket buffer is not enough for data communication.
#define SOCKFATAL_PACKLEN (SOCK_FATAL - 1) ///< Invalid packet length. Fatal Error.
/*
* SOCKET FLAG
*/
#define SF_ETHER_OWN (Sn_MR_MFEN) ///< In \ref Sn_MR_MACRAW, Receive only the packet as broadcast, multicast and own packet
#define SF_IGMP_VER2 (Sn_MR_MC) ///< In \ref Sn_MR_UDP with \ref SF_MULTI_ENABLE, Select IGMP version 2.
#define SF_TCP_NODELAY (Sn_MR_ND) ///< In \ref Sn_MR_TCP, Use to nodelayed ack.
#define SF_MULTI_ENABLE (Sn_MR_MULTI) ///< In \ref Sn_MR_UDP, Enable multicast mode.
#if _WIZCHIP_ == 5500
#define SF_BROAD_BLOCK (Sn_MR_BCASTB) ///< In \ref Sn_MR_UDP or \ref Sn_MR_MACRAW, Block broadcast packet. Valid only in W5500
#define SF_MULTI_BLOCK (Sn_MR_MMB) ///< In \ref Sn_MR_MACRAW, Block multicast packet. Valid only in W5500
#define SF_IPv6_BLOCK (Sn_MR_MIP6B) ///< In \ref Sn_MR_MACRAW, Block IPv6 packet. Valid only in W5500
#define SF_UNI_BLOCK (Sn_MR_UCASTB) ///< In \ref Sn_MR_UDP with \ref SF_MULTI_ENABLE. Valid only in W5500
#endif
#define SF_IO_NONBLOCK 0x01 ///< Socket nonblock io mode. It used parameter in \ref socket().
/*
* UDP & MACRAW Packet Infomation
*/
#define PACK_FIRST 0x80 ///< In Non-TCP packet, It indicates to start receiving a packet.
#define PACK_REMAINED 0x01 ///< In Non-TCP packet, It indicates to remain a packet to be received.
#define PACK_COMPLETED 0x00 ///< In Non-TCP packet, It indicates to complete to receive a packet.
// resets all global state associated with the socket interface
void WIZCHIP_EXPORT(socket_reset)(void);
/**
* @ingroup WIZnet_socket_APIs
* @brief Open a socket.
* @details Initializes the socket with 'sn' passed as parameter and open.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param protocol Protocol type to operate such as TCP, UDP and MACRAW.
* @param port Port number to be bined.
* @param flag Socket flags as \ref SF_ETHER_OWN, \ref SF_IGMP_VER2, \ref SF_TCP_NODELAY, \ref SF_MULTI_ENABLE, \ref SF_IO_NONBLOCK and so on.\n
* Valid flags only in W5500 : @ref SF_BROAD_BLOCK, @ref SF_MULTI_BLOCK, @ref SF_IPv6_BLOCK, and @ref SF_UNI_BLOCK.
* @sa Sn_MR
*
* @return @b Success : The socket number @b 'sn' passed as parameter\n
* @b Fail :\n @ref SOCKERR_SOCKNUM - Invalid socket number\n
* @ref SOCKERR_SOCKMODE - Not support socket mode as TCP, UDP, and so on. \n
* @ref SOCKERR_SOCKFLAG - Invaild socket flag.
*/
int8_t WIZCHIP_EXPORT(socket)(uint8_t sn, uint8_t protocol, uint16_t port, uint8_t flag);
/**
* @ingroup WIZnet_socket_APIs
* @brief Close a socket.
* @details It closes the socket with @b'sn' passed as parameter.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
*
* @return @b Success : @ref SOCK_OK \n
* @b Fail : @ref SOCKERR_SOCKNUM - Invalid socket number
*/
int8_t WIZCHIP_EXPORT(close)(uint8_t sn);
/**
* @ingroup WIZnet_socket_APIs
* @brief Listen to a connection request from a client.
* @details It is listening to a connection request from a client.
* If connection request is accepted successfully, the connection is established. Socket sn is used in passive(server) mode.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @return @b Success : @ref SOCK_OK \n
* @b Fail :\n @ref SOCKERR_SOCKINIT - Socket is not initialized \n
* @ref SOCKERR_SOCKCLOSED - Socket closed unexpectedly.
*/
int8_t WIZCHIP_EXPORT(listen)(uint8_t sn);
/**
* @ingroup WIZnet_socket_APIs
* @brief Try to connect a server.
* @details It requests connection to the server with destination IP address and port number passed as parameter.\n
* @note It is valid only in TCP client mode.
* In block io mode, it does not return until connection is completed.
* In Non-block io mode, it return @ref SOCK_BUSY immediately.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param addr Pointer variable of destination IP address. It should be allocated 4 bytes.
* @param port Destination port number.
*
* @return @b Success : @ref SOCK_OK \n
* @b Fail :\n @ref SOCKERR_SOCKNUM - Invalid socket number\n
* @ref SOCKERR_SOCKMODE - Invalid socket mode\n
* @ref SOCKERR_SOCKINIT - Socket is not initialized\n
* @ref SOCKERR_IPINVALID - Wrong server IP address\n
* @ref SOCKERR_PORTZERO - Server port zero\n
* @ref SOCKERR_TIMEOUT - Timeout occurred during request connection\n
* @ref SOCK_BUSY - In non-block io mode, it returned immediately\n
*/
int8_t WIZCHIP_EXPORT(connect)(uint8_t sn, uint8_t * addr, uint16_t port);
/**
* @ingroup WIZnet_socket_APIs
* @brief Try to disconnect a connection socket.
* @details It sends request message to disconnect the TCP socket 'sn' passed as parameter to the server or client.
* @note It is valid only in TCP server or client mode. \n
* In block io mode, it does not return until disconnection is completed. \n
* In Non-block io mode, it return @ref SOCK_BUSY immediately. \n
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @return @b Success : @ref SOCK_OK \n
* @b Fail :\n @ref SOCKERR_SOCKNUM - Invalid socket number \n
* @ref SOCKERR_SOCKMODE - Invalid operation in the socket \n
* @ref SOCKERR_TIMEOUT - Timeout occurred \n
* @ref SOCK_BUSY - Socket is busy.
*/
int8_t WIZCHIP_EXPORT(disconnect)(uint8_t sn);
/**
* @ingroup WIZnet_socket_APIs
* @brief Send data to the connected peer in TCP socket.
* @details It is used to send outgoing data to the connected socket.
* @note It is valid only in TCP server or client mode. It can't send data greater than socket buffer size. \n
* In block io mode, It doesn't return until data send is completed - socket buffer size is greater than data. \n
* In non-block io mode, It return @ref SOCK_BUSY immediately when socket buffer is not enough. \n
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param buf Pointer buffer containing data to be sent.
* @param len The byte length of data in buf.
* @return @b Success : The sent data size \n
* @b Fail : \n @ref SOCKERR_SOCKSTATUS - Invalid socket status for socket operation \n
* @ref SOCKERR_TIMEOUT - Timeout occurred \n
* @ref SOCKERR_SOCKMODE - Invalid operation in the socket \n
* @ref SOCKERR_SOCKNUM - Invalid socket number \n
* @ref SOCKERR_DATALEN - zero data length \n
* @ref SOCK_BUSY - Socket is busy.
*/
int32_t WIZCHIP_EXPORT(send)(uint8_t sn, uint8_t * buf, uint16_t len);
/**
* @ingroup WIZnet_socket_APIs
* @brief Receive data from the connected peer.
* @details It is used to read incoming data from the connected socket.\n
* It waits for data as much as the application wants to receive.
* @note It is valid only in TCP server or client mode. It can't receive data greater than socket buffer size. \n
* In block io mode, it doesn't return until data reception is completed - data is filled as <I>len</I> in socket buffer. \n
* In non-block io mode, it return @ref SOCK_BUSY immediately when <I>len</I> is greater than data size in socket buffer. \n
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param buf Pointer buffer to read incoming data.
* @param len The max data length of data in buf.
* @return @b Success : The real received data size \n
* @b Fail :\n
* @ref SOCKERR_SOCKSTATUS - Invalid socket status for socket operation \n
* @ref SOCKERR_SOCKMODE - Invalid operation in the socket \n
* @ref SOCKERR_SOCKNUM - Invalid socket number \n
* @ref SOCKERR_DATALEN - zero data length \n
* @ref SOCK_BUSY - Socket is busy.
*/
int32_t WIZCHIP_EXPORT(recv)(uint8_t sn, uint8_t * buf, uint16_t len);
/**
* @ingroup WIZnet_socket_APIs
* @brief Sends datagram to the peer with destination IP address and port number passed as parameter.
* @details It sends datagram of UDP or MACRAW to the peer with destination IP address and port number passed as parameter.\n
* Even if the connectionless socket has been previously connected to a specific address,
* the address and port number parameters override the destination address for that particular datagram only.
* @note In block io mode, It doesn't return until data send is completed - socket buffer size is greater than <I>len</I>.
* In non-block io mode, It return @ref SOCK_BUSY immediately when socket buffer is not enough.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param buf Pointer buffer to send outgoing data.
* @param len The byte length of data in buf.
* @param addr Pointer variable of destination IP address. It should be allocated 4 bytes.
* @param port Destination port number.
*
* @return @b Success : The sent data size \n
* @b Fail :\n @ref SOCKERR_SOCKNUM - Invalid socket number \n
* @ref SOCKERR_SOCKMODE - Invalid operation in the socket \n
* @ref SOCKERR_SOCKSTATUS - Invalid socket status for socket operation \n
* @ref SOCKERR_DATALEN - zero data length \n
* @ref SOCKERR_IPINVALID - Wrong server IP address\n
* @ref SOCKERR_PORTZERO - Server port zero\n
* @ref SOCKERR_SOCKCLOSED - Socket unexpectedly closed \n
* @ref SOCKERR_TIMEOUT - Timeout occurred \n
* @ref SOCK_BUSY - Socket is busy.
*/
int32_t WIZCHIP_EXPORT(sendto)(uint8_t sn, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t port);
/**
* @ingroup WIZnet_socket_APIs
* @brief Receive datagram of UDP or MACRAW
* @details This function is an application I/F function which is used to receive the data in other then TCP mode. \n
* This function is used to receive UDP and MAC_RAW mode, and handle the header as well.
* This function can divide to received the packet data.
* On the MACRAW SOCKET, the addr and port parameters are ignored.
* @note In block io mode, it doesn't return until data reception is completed - data is filled as <I>len</I> in socket buffer
* In non-block io mode, it return @ref SOCK_BUSY immediately when <I>len</I> is greater than data size in socket buffer.
*
* @param sn Socket number. It should be <b>0 ~ @ref \_WIZCHIP_SOCK_NUM_</b>.
* @param buf Pointer buffer to read incoming data.
* @param len The max data length of data in buf.
* When the received packet size <= len, receives data as packet sized.
* When others, receives data as len.
* @param addr Pointer variable of destination IP address. It should be allocated 4 bytes.
* It is valid only when the first call recvfrom for receiving the packet.
* When it is valid, @ref packinfo[7] should be set as '1' after call @ref getsockopt(sn, SO_PACKINFO, &packinfo).
* @param port Pointer variable of destination port number.
* It is valid only when the first call recvform for receiving the packet.
* When it is valid, @ref packinfo[7] should be set as '1' after call @ref getsockopt(sn, SO_PACKINFO, &packinfo).
*
* @return @b Success : This function return real received data size for success.\n
* @b Fail : @ref SOCKERR_DATALEN - zero data length \n
* @ref SOCKERR_SOCKMODE - Invalid operation in the socket \n
* @ref SOCKERR_SOCKNUM - Invalid socket number \n
* @ref SOCKBUSY - Socket is busy.
*/
int32_t WIZCHIP_EXPORT(recvfrom)(uint8_t sn, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t *port);
/////////////////////////////
// SOCKET CONTROL & OPTION //
/////////////////////////////
#define SOCK_IO_BLOCK 0 ///< Socket Block IO Mode in @ref setsockopt().
#define SOCK_IO_NONBLOCK 1 ///< Socket Non-block IO Mode in @ref setsockopt().
/**
* @defgroup DATA_TYPE DATA TYPE
*/
/**
* @ingroup DATA_TYPE
* @brief The kind of Socket Interrupt.
* @sa Sn_IR, Sn_IMR, setSn_IR(), getSn_IR(), setSn_IMR(), getSn_IMR()
*/
typedef enum
{
SIK_CONNECTED = (1 << 0), ///< connected
SIK_DISCONNECTED = (1 << 1), ///< disconnected
SIK_RECEIVED = (1 << 2), ///< data received
SIK_TIMEOUT = (1 << 3), ///< timeout occurred
SIK_SENT = (1 << 4), ///< send ok
SIK_ALL = 0x1F, ///< all interrupt
}sockint_kind;
/**
* @ingroup DATA_TYPE
* @brief The type of @ref ctlsocket().
*/
typedef enum
{
CS_SET_IOMODE, ///< set socket IO mode with @ref SOCK_IO_BLOCK or @ref SOCK_IO_NONBLOCK
CS_GET_IOMODE, ///< get socket IO mode
CS_GET_MAXTXBUF, ///< get the size of socket buffer allocated in TX memory
CS_GET_MAXRXBUF, ///< get the size of socket buffer allocated in RX memory
CS_CLR_INTERRUPT, ///< clear the interrupt of socket with @ref sockint_kind
CS_GET_INTERRUPT, ///< get the socket interrupt. refer to @ref sockint_kind
CS_SET_INTMASK, ///< set the interrupt mask of socket with @ref sockint_kind
CS_GET_INTMASK ///< get the masked interrupt of socket. refer to @ref sockint_kind
}ctlsock_type;
/**
* @ingroup DATA_TYPE
* @brief The type of socket option in @ref setsockopt() or @ref getsockopt()
*/
typedef enum
{
SO_FLAG, ///< Valid only in getsockopt(), For set flag of socket refer to <I>flag</I> in @ref socket().
SO_TTL, ///< Set/Get TTL. @ref Sn_TTL ( @ref setSn_TTL(), @ref getSn_TTL() )
SO_TOS, ///< Set/Get TOS. @ref Sn_TOS ( @ref setSn_TOS(), @ref getSn_TOS() )
SO_MSS, ///< Set/Get MSS. @ref Sn_MSSR ( @ref setSn_MSSR(), @ref getSn_MSSR() )
SO_DESTIP, ///< Set/Get the destination IP address. @ref Sn_DIPR ( @ref setSn_DIPR(), @ref getSn_DIPR() )
SO_DESTPORT, ///< Set/Get the destination Port number. @ref Sn_DPORT ( @ref setSn_DPORT(), @ref getSn_DPORT() )
#if _WIZCHIP_ != 5100
SO_KEEPALIVESEND, ///< Valid only in setsockopt. Manually send keep-alive packet in TCP mode
#if _WIZCHIP_ > 5200
SO_KEEPALIVEAUTO, ///< Set/Get keep-alive auto transmission timer in TCP mode
#endif
#endif
SO_SENDBUF, ///< Valid only in getsockopt. Get the free data size of Socekt TX buffer. @ref Sn_TX_FSR, @ref getSn_TX_FSR()
SO_RECVBUF, ///< Valid only in getsockopt. Get the received data size in socket RX buffer. @ref Sn_RX_RSR, @ref getSn_RX_RSR()
SO_STATUS, ///< Valid only in getsockopt. Get the socket status. @ref Sn_SR, @ref getSn_SR()
SO_REMAINSIZE, ///< Valid only in getsockopt. Get the remained packet size in other then TCP mode.
SO_PACKINFO ///< Valid only in getsockopt. Get the packet information as @ref PACK_FIRST, @ref PACK_REMAINED, and @ref PACK_COMPLETED in other then TCP mode.
}sockopt_type;
/**
* @ingroup WIZnet_socket_APIs
* @brief Control socket.
* @details Control IO mode, Interrupt & Mask of socket and get the socket buffer information.
* Refer to @ref ctlsock_type.
* @param sn socket number
* @param cstype type of control socket. refer to @ref ctlsock_type.
* @param arg Data type and value is determined according to @ref ctlsock_type. \n
* <table>
* <tr> <td> @b cstype </td> <td> @b data type</td><td>@b value</td></tr>
* <tr> <td> @ref CS_SET_IOMODE \n @ref CS_GET_IOMODE </td> <td> uint8_t </td><td>@ref SOCK_IO_BLOCK @ref SOCK_IO_NONBLOCK</td></tr>
* <tr> <td> @ref CS_GET_MAXTXBUF \n @ref CS_GET_MAXRXBUF </td> <td> uint16_t </td><td> 0 ~ 16K </td></tr>
* <tr> <td> @ref CS_CLR_INTERRUPT \n @ref CS_GET_INTERRUPT \n @ref CS_SET_INTMASK \n @ref CS_GET_INTMASK </td> <td> @ref sockint_kind </td><td> @ref SIK_CONNECTED, etc. </td></tr>
* </table>
* @return @b Success @ref SOCK_OK \n
* @b fail @ref SOCKERR_ARG - Invalid argument\n
*/
int8_t WIZCHIP_EXPORT(ctlsocket)(uint8_t sn, ctlsock_type cstype, void* arg);
/**
* @ingroup WIZnet_socket_APIs
* @brief set socket options
* @details Set socket option like as TTL, MSS, TOS, and so on. Refer to @ref sockopt_type.
*
* @param sn socket number
* @param sotype socket option type. refer to @ref sockopt_type
* @param arg Data type and value is determined according to <I>sotype</I>. \n
* <table>
* <tr> <td> @b sotype </td> <td> @b data type</td><td>@b value</td></tr>
* <tr> <td> @ref SO_TTL </td> <td> uint8_t </td><td> 0 ~ 255 </td> </tr>
* <tr> <td> @ref SO_TOS </td> <td> uint8_t </td><td> 0 ~ 255 </td> </tr>
* <tr> <td> @ref SO_MSS </td> <td> uint16_t </td><td> 0 ~ 65535 </td> </tr>
* <tr> <td> @ref SO_DESTIP </td> <td> uint8_t[4] </td><td> </td></tr>
* <tr> <td> @ref SO_DESTPORT </td> <td> uint16_t </td><td> 0 ~ 65535 </td></tr>
* <tr> <td> @ref SO_KEEPALIVESEND </td> <td> null </td><td> null </td></tr>
* <tr> <td> @ref SO_KEEPALIVEAUTO </td> <td> uint8_t </td><td> 0 ~ 255 </td></tr>
* </table>
* @return
* - @b Success : @ref SOCK_OK \n
* - @b Fail
* - @ref SOCKERR_SOCKNUM - Invalid Socket number \n
* - @ref SOCKERR_SOCKMODE - Invalid socket mode \n
* - @ref SOCKERR_SOCKOPT - Invalid socket option or its value \n
* - @ref SOCKERR_TIMEOUT - Timeout occurred when sending keep-alive packet \n
*/
int8_t WIZCHIP_EXPORT(setsockopt)(uint8_t sn, sockopt_type sotype, void* arg);
/**
* @ingroup WIZnet_socket_APIs
* @brief get socket options
* @details Get socket option like as FLAG, TTL, MSS, and so on. Refer to @ref sockopt_type
* @param sn socket number
* @param sotype socket option type. refer to @ref sockopt_type
* @param arg Data type and value is determined according to <I>sotype</I>. \n
* <table>
* <tr> <td> @b sotype </td> <td>@b data type</td><td>@b value</td></tr>
* <tr> <td> @ref SO_FLAG </td> <td> uint8_t </td><td> @ref SF_ETHER_OWN, etc... </td> </tr>
* <tr> <td> @ref SO_TOS </td> <td> uint8_t </td><td> 0 ~ 255 </td> </tr>
* <tr> <td> @ref SO_MSS </td> <td> uint16_t </td><td> 0 ~ 65535 </td> </tr>
* <tr> <td> @ref SO_DESTIP </td> <td> uint8_t[4] </td><td> </td></tr>
* <tr> <td> @ref SO_DESTPORT </td> <td> uint16_t </td><td> </td></tr>
* <tr> <td> @ref SO_KEEPALIVEAUTO </td> <td> uint8_t </td><td> 0 ~ 255 </td></tr>
* <tr> <td> @ref SO_SENDBUF </td> <td> uint16_t </td><td> 0 ~ 65535 </td></tr>
* <tr> <td> @ref SO_RECVBUF </td> <td> uint16_t </td><td> 0 ~ 65535 </td></tr>
* <tr> <td> @ref SO_STATUS </td> <td> uint8_t </td><td> @ref SOCK_ESTABLISHED, etc.. </td></tr>
* <tr> <td> @ref SO_REMAINSIZE </td> <td> uint16_t </td><td> 0~ 65535 </td></tr>
* <tr> <td> @ref SO_PACKINFO </td> <td> uint8_t </td><td> @ref PACK_FIRST, etc... </td></tr>
* </table>
* @return
* - @b Success : @ref SOCK_OK \n
* - @b Fail
* - @ref SOCKERR_SOCKNUM - Invalid Socket number \n
* - @ref SOCKERR_SOCKOPT - Invalid socket option or its value \n
* - @ref SOCKERR_SOCKMODE - Invalid socket mode \n
* @note
* The option as PACK_REMAINED and SO_PACKINFO is valid only in NON-TCP mode and after call @ref recvfrom(). \n
* When SO_PACKINFO value is PACK_FIRST and the return value of recvfrom() is zero,
* This means the zero byte UDP data(UDP Header only) received.
*/
int8_t WIZCHIP_EXPORT(getsockopt)(uint8_t sn, sockopt_type sotype, void* arg);
#endif // _WIZCHIP_SOCKET_H_

View File

@ -1,206 +0,0 @@
// dpgeorge: this file taken from w5500/w5500.c and adapted to W5200
//*****************************************************************************
//
//! \file w5500.c
//! \brief W5500 HAL Interface.
//! \version 1.0.1
//! \date 2013/10/21
//! \par Revision history
//! <2014/05/01> V1.0.2
//! 1. Implicit type casting -> Explicit type casting. Refer to M20140501
//! Fixed the problem on porting into under 32bit MCU
//! Issued by Mathias ClauBen, wizwiki forum ID Think01 and bobh
//! Thank for your interesting and serious advices.
//! <2013/10/21> 1st Release
//! <2013/12/20> V1.0.1
//! 1. Remove warning
//! 2. WIZCHIP_READ_BUF WIZCHIP_WRITE_BUF in case _WIZCHIP_IO_MODE_SPI_FDM_
//! for loop optimized(removed). refer to M20131220
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#include "w5200.h"
#define SMASK (0x7ff) /* tx buffer mask */
#define RMASK (0x7ff) /* rx buffer mask */
#define SSIZE (2048) /* max tx buffer size */
#define RSIZE (2048) /* max rx buffer size */
#define TXBUF_BASE (0x8000)
#define RXBUF_BASE (0xc000)
#define SBASE(sn) (TXBUF_BASE + SSIZE * (sn)) /* tx buffer base for socket sn */
#define RBASE(sn) (RXBUF_BASE + RSIZE * (sn)) /* rx buffer base for socket sn */
uint8_t WIZCHIP_READ(uint32_t AddrSel) {
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
uint8_t spi_data[4] = {
AddrSel >> 8,
AddrSel,
0x00,
0x01,
};
WIZCHIP.IF.SPI._write_bytes(spi_data, 4);
uint8_t ret;
WIZCHIP.IF.SPI._read_bytes(&ret, 1);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
return ret;
}
void WIZCHIP_WRITE(uint32_t AddrSel, uint8_t wb) {
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
uint8_t spi_data[5] = {
AddrSel >> 8,
AddrSel,
0x80,
0x01,
wb,
};
WIZCHIP.IF.SPI._write_bytes(spi_data, 5);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_READ_BUF(uint32_t AddrSel, uint8_t* pBuf, uint16_t len) {
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
uint8_t spi_data[4] = {
AddrSel >> 8,
AddrSel,
0x00 | ((len >> 8) & 0x7f),
len & 0xff,
};
WIZCHIP.IF.SPI._write_bytes(spi_data, 4);
WIZCHIP.IF.SPI._read_bytes(pBuf, len);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_WRITE_BUF(uint32_t AddrSel, uint8_t* pBuf, uint16_t len) {
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
uint8_t spi_data[4] = {
AddrSel >> 8,
AddrSel,
0x80 | ((len >> 8) & 0x7f),
len & 0xff,
};
WIZCHIP.IF.SPI._write_bytes(spi_data, 4);
WIZCHIP.IF.SPI._write_bytes(pBuf, len);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
uint16_t getSn_TX_FSR(uint8_t sn) {
uint16_t val = 0, val1 = 0;
do {
val1 = (WIZCHIP_READ(Sn_TX_FSR(sn)) << 8) | WIZCHIP_READ(Sn_TX_FSR(sn) + 1);
if (val1 != 0) {
val = (WIZCHIP_READ(Sn_TX_FSR(sn)) << 8) | WIZCHIP_READ(Sn_TX_FSR(sn) + 1);
}
} while (val != val1);
return val;
}
uint16_t getSn_RX_RSR(uint8_t sn) {
uint16_t val = 0, val1 = 0;
do {
val1 = (WIZCHIP_READ(Sn_RX_RSR(sn)) << 8) | WIZCHIP_READ(Sn_RX_RSR(sn) + 1);
if (val1 != 0) {
val = (WIZCHIP_READ(Sn_RX_RSR(sn)) << 8) | WIZCHIP_READ(Sn_RX_RSR(sn) + 1);
}
} while (val != val1);
return val;
}
void wiz_send_data(uint8_t sn, uint8_t *wizdata, uint16_t len) {
if (len == 0) {
return;
}
uint16_t ptr = getSn_TX_WR(sn);
uint16_t offset = ptr & SMASK;
uint32_t addr = offset + SBASE(sn);
if (offset + len > SSIZE) {
// implement wrap-around circular buffer
uint16_t size = SSIZE - offset;
WIZCHIP_WRITE_BUF(addr, wizdata, size);
WIZCHIP_WRITE_BUF(SBASE(sn), wizdata + size, len - size);
} else {
WIZCHIP_WRITE_BUF(addr, wizdata, len);
}
ptr += len;
setSn_TX_WR(sn, ptr);
}
void wiz_recv_data(uint8_t sn, uint8_t *wizdata, uint16_t len) {
if (len == 0) {
return;
}
uint16_t ptr = getSn_RX_RD(sn);
uint16_t offset = ptr & RMASK;
uint16_t addr = RBASE(sn) + offset;
if (offset + len > RSIZE) {
// implement wrap-around circular buffer
uint16_t size = RSIZE - offset;
WIZCHIP_READ_BUF(addr, wizdata, size);
WIZCHIP_READ_BUF(RBASE(sn), wizdata + size, len - size);
} else {
WIZCHIP_READ_BUF(addr, wizdata, len);
}
ptr += len;
setSn_RX_RD(sn, ptr);
}
void wiz_recv_ignore(uint8_t sn, uint16_t len) {
uint16_t ptr = getSn_RX_RD(sn);
ptr += len;
setSn_RX_RD(sn, ptr);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,246 +0,0 @@
//*****************************************************************************
//
//! \file w5500.c
//! \brief W5500 HAL Interface.
//! \version 1.0.1
//! \date 2013/10/21
//! \par Revision history
//! <2014/05/01> V1.0.2
//! 1. Implicit type casting -> Explicit type casting. Refer to M20140501
//! Fixed the problem on porting into under 32bit MCU
//! Issued by Mathias ClauBen, wizwiki forum ID Think01 and bobh
//! Thank for your interesting and serious advices.
//! <2013/10/21> 1st Release
//! <2013/12/20> V1.0.1
//! 1. Remove warning
//! 2. WIZCHIP_READ_BUF WIZCHIP_WRITE_BUF in case _WIZCHIP_IO_MODE_SPI_FDM_
//! for loop optimized(removed). refer to M20131220
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
//#include <stdio.h>
#include "w5500.h"
#define _W5500_SPI_VDM_OP_ 0x00
#define _W5500_SPI_FDM_OP_LEN1_ 0x01
#define _W5500_SPI_FDM_OP_LEN2_ 0x02
#define _W5500_SPI_FDM_OP_LEN4_ 0x03
////////////////////////////////////////////////////
#define LPC_SSP0 (0)
static void Chip_SSP_ReadFrames_Blocking(int dummy, uint8_t *buf, uint32_t len) {
WIZCHIP.IF.SPI._read_bytes(buf, len);
}
static void Chip_SSP_WriteFrames_Blocking(int dummy, const uint8_t *buf, uint32_t len) {
WIZCHIP.IF.SPI._write_bytes(buf, len);
}
uint8_t WIZCHIP_READ(uint32_t AddrSel)
{
uint8_t ret;
uint8_t spi_data[3];
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
//ret = WIZCHIP.IF.SPI._read_byte();
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
Chip_SSP_WriteFrames_Blocking(LPC_SSP0, spi_data, 3);
Chip_SSP_ReadFrames_Blocking(LPC_SSP0, &ret, 1);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
return ret;
}
void WIZCHIP_WRITE(uint32_t AddrSel, uint8_t wb )
{
uint8_t spi_data[4];
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
//WIZCHIP.IF.SPI._write_byte(wb);
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
spi_data[3] = wb;
Chip_SSP_WriteFrames_Blocking(LPC_SSP0, spi_data, 4);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_READ_BUF (uint32_t AddrSel, uint8_t* pBuf, uint16_t len)
{
uint8_t spi_data[3];
//uint16_t i;
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_READ_ | _W5500_SPI_VDM_OP_);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
//for(i = 0; i < len; i++)
// pBuf[i] = WIZCHIP.IF.SPI._read_byte();
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
Chip_SSP_WriteFrames_Blocking(LPC_SSP0, spi_data, 3);
Chip_SSP_ReadFrames_Blocking(LPC_SSP0, pBuf, len);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
void WIZCHIP_WRITE_BUF(uint32_t AddrSel, uint8_t* pBuf, uint16_t len)
{
uint8_t spi_data[3];
//uint16_t i;
WIZCHIP_CRITICAL_ENTER();
WIZCHIP.CS._select();
AddrSel |= (_W5500_SPI_WRITE_ | _W5500_SPI_VDM_OP_);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x00FF0000) >> 16);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x0000FF00) >> 8);
//WIZCHIP.IF.SPI._write_byte((AddrSel & 0x000000FF) >> 0);
//for(i = 0; i < len; i++)
// WIZCHIP.IF.SPI._write_byte(pBuf[i]);
spi_data[0] = (AddrSel & 0x00FF0000) >> 16;
spi_data[1] = (AddrSel & 0x0000FF00) >> 8;
spi_data[2] = (AddrSel & 0x000000FF) >> 0;
Chip_SSP_WriteFrames_Blocking(LPC_SSP0, spi_data, 3);
Chip_SSP_WriteFrames_Blocking(LPC_SSP0, pBuf, len);
WIZCHIP.CS._deselect();
WIZCHIP_CRITICAL_EXIT();
}
uint16_t getSn_TX_FSR(uint8_t sn)
{
uint16_t val=0,val1=0;
do
{
val1 = WIZCHIP_READ(Sn_TX_FSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn),1));
if (val1 != 0)
{
val = WIZCHIP_READ(Sn_TX_FSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_TX_FSR(sn),1));
}
}while (val != val1);
return val;
}
uint16_t getSn_RX_RSR(uint8_t sn)
{
uint16_t val=0,val1=0;
do
{
val1 = WIZCHIP_READ(Sn_RX_RSR(sn));
val1 = (val1 << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn),1));
if (val1 != 0)
{
val = WIZCHIP_READ(Sn_RX_RSR(sn));
val = (val << 8) + WIZCHIP_READ(WIZCHIP_OFFSET_INC(Sn_RX_RSR(sn),1));
}
}while (val != val1);
return val;
}
void wiz_send_data(uint8_t sn, uint8_t *wizdata, uint16_t len)
{
uint16_t ptr = 0;
uint32_t addrsel = 0;
if(len == 0) return;
ptr = getSn_TX_WR(sn);
//M20140501 : implict type casting -> explict type casting
//addrsel = (ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_TXBUF_BLOCK(sn) << 3);
//
WIZCHIP_WRITE_BUF(addrsel,wizdata, len);
ptr += len;
setSn_TX_WR(sn,ptr);
}
void wiz_recv_data(uint8_t sn, uint8_t *wizdata, uint16_t len)
{
uint16_t ptr = 0;
uint32_t addrsel = 0;
if(len == 0) return;
ptr = getSn_RX_RD(sn);
//M20140501 : implict type casting -> explict type casting
//addrsel = ((ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
addrsel = ((uint32_t)ptr << 8) + (WIZCHIP_RXBUF_BLOCK(sn) << 3);
//
WIZCHIP_READ_BUF(addrsel, wizdata, len);
ptr += len;
setSn_RX_RD(sn,ptr);
}
void wiz_recv_ignore(uint8_t sn, uint16_t len)
{
uint16_t ptr = 0;
ptr = getSn_RX_RD(sn);
ptr += len;
setSn_RX_RD(sn,ptr);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,662 +0,0 @@
//****************************************************************************/
//!
//! \file wizchip_conf.c
//! \brief WIZCHIP Config Header File.
//! \version 1.0.1
//! \date 2013/10/21
//! \par Revision history
//! <2014/05/01> V1.0.1 Refer to M20140501
//! 1. Explicit type casting in wizchip_bus_readbyte() & wizchip_bus_writebyte()
// Issued by Mathias ClauBen.
//! uint32_t type converts into ptrdiff_t first. And then recoverting it into uint8_t*
//! For remove the warning when pointer type size is not 32bit.
//! If ptrdiff_t doesn't support in your complier, You should must replace ptrdiff_t into your suitable pointer type.
//! <2013/10/21> 1st Release
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************/
//A20140501 : for use the type - ptrdiff_t
#include <stddef.h>
//
#include "wizchip_conf.h"
#include "socket.h"
/**
* @brief Default function to enable interrupt.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_cris_enter(void) {};
/**
* @brief Default function to disable interrupt.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_cris_exit(void) {};
/**
* @brief Default function to select chip.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_cs_select(void) {};
/**
* @brief Default function to deselect chip.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_cs_deselect(void) {};
/**
* @brief Default function to read in direct or indirect interface.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
//M20140501 : Explict pointer type casting
//uint8_t wizchip_bus_readbyte(uint32_t AddrSel) { return * ((volatile uint8_t *) AddrSel); };
uint8_t wizchip_bus_readbyte(uint32_t AddrSel) { return * ((volatile uint8_t *)((ptrdiff_t) AddrSel)); };
/**
* @brief Default function to write in direct or indirect interface.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
//M20140501 : Explict pointer type casting
//void wizchip_bus_writebyte(uint32_t AddrSel, uint8_t wb) { *((volatile uint8_t*) AddrSel) = wb; };
void wizchip_bus_writebyte(uint32_t AddrSel, uint8_t wb) { *((volatile uint8_t*)((ptrdiff_t)AddrSel)) = wb; };
/**
* @brief Default function to read in SPI interface.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_spi_readbytes(uint8_t *buf, uint32_t len) {}
/**
* @brief Default function to write in SPI interface.
* @note This function help not to access wrong address. If you do not describe this function or register any functions,
* null function is called.
*/
void wizchip_spi_writebytes(const uint8_t *buf, uint32_t len) {}
/**
* @\ref _WIZCHIP instance
*/
_WIZCHIP WIZCHIP =
{
.id = _WIZCHIP_ID_,
.if_mode = _WIZCHIP_IO_MODE_,
.CRIS._enter = wizchip_cris_enter,
.CRIS._exit = wizchip_cris_exit,
.CS._select = wizchip_cs_select,
.CS._deselect = wizchip_cs_deselect,
.IF.BUS._read_byte = wizchip_bus_readbyte,
.IF.BUS._write_byte = wizchip_bus_writebyte
// .IF.SPI._read_byte = wizchip_spi_readbyte,
// .IF.SPI._write_byte = wizchip_spi_writebyte
};
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
static uint8_t _SUBN_[4]; // subnet
#endif
static uint8_t _DNS_[4]; // DNS server ip address
static dhcp_mode _DHCP_; // DHCP mode
void reg_wizchip_cris_cbfunc(void(*cris_en)(void), void(*cris_ex)(void))
{
if(!cris_en || !cris_ex)
{
WIZCHIP.CRIS._enter = wizchip_cris_enter;
WIZCHIP.CRIS._exit = wizchip_cris_exit;
}
else
{
WIZCHIP.CRIS._enter = cris_en;
WIZCHIP.CRIS._exit = cris_ex;
}
}
void reg_wizchip_cs_cbfunc(void(*cs_sel)(void), void(*cs_desel)(void))
{
if(!cs_sel || !cs_desel)
{
WIZCHIP.CS._select = wizchip_cs_select;
WIZCHIP.CS._deselect = wizchip_cs_deselect;
}
else
{
WIZCHIP.CS._select = cs_sel;
WIZCHIP.CS._deselect = cs_desel;
}
}
void reg_wizchip_bus_cbfunc(uint8_t(*bus_rb)(uint32_t addr), void (*bus_wb)(uint32_t addr, uint8_t wb))
{
while(!(WIZCHIP.if_mode & _WIZCHIP_IO_MODE_BUS_));
if(!bus_rb || !bus_wb)
{
WIZCHIP.IF.BUS._read_byte = wizchip_bus_readbyte;
WIZCHIP.IF.BUS._write_byte = wizchip_bus_writebyte;
}
else
{
WIZCHIP.IF.BUS._read_byte = bus_rb;
WIZCHIP.IF.BUS._write_byte = bus_wb;
}
}
void reg_wizchip_spi_cbfunc(void (*spi_rb)(uint8_t *, uint32_t), void (*spi_wb)(const uint8_t *, uint32_t))
{
while(!(WIZCHIP.if_mode & _WIZCHIP_IO_MODE_SPI_));
if(!spi_rb || !spi_wb)
{
WIZCHIP.IF.SPI._read_bytes = wizchip_spi_readbytes;
WIZCHIP.IF.SPI._write_bytes = wizchip_spi_writebytes;
}
else
{
WIZCHIP.IF.SPI._read_bytes = spi_rb;
WIZCHIP.IF.SPI._write_bytes = spi_wb;
}
}
int8_t ctlwizchip(ctlwizchip_type cwtype, void* arg)
{
uint8_t tmp = 0;
uint8_t* ptmp[2] = {0,0};
switch(cwtype)
{
case CW_RESET_WIZCHIP:
wizchip_sw_reset();
break;
case CW_INIT_WIZCHIP:
if(arg != 0)
{
ptmp[0] = (uint8_t*)arg;
ptmp[1] = ptmp[0] + _WIZCHIP_SOCK_NUM_;
}
return wizchip_init(ptmp[0], ptmp[1]);
case CW_CLR_INTERRUPT:
wizchip_clrinterrupt(*((intr_kind*)arg));
break;
case CW_GET_INTERRUPT:
*((intr_kind*)arg) = wizchip_getinterrupt();
break;
case CW_SET_INTRMASK:
wizchip_setinterruptmask(*((intr_kind*)arg));
break;
case CW_GET_INTRMASK:
*((intr_kind*)arg) = wizchip_getinterruptmask();
break;
#if _WIZCHIP_ > 5100
case CW_SET_INTRTIME:
setINTLEVEL(*(uint16_t*)arg);
break;
case CW_GET_INTRTIME:
*(uint16_t*)arg = getINTLEVEL();
break;
#endif
case CW_GET_ID:
((uint8_t*)arg)[0] = WIZCHIP.id[0];
((uint8_t*)arg)[1] = WIZCHIP.id[1];
((uint8_t*)arg)[2] = WIZCHIP.id[2];
((uint8_t*)arg)[3] = WIZCHIP.id[3];
((uint8_t*)arg)[4] = WIZCHIP.id[4];
((uint8_t*)arg)[5] = 0;
break;
#if _WIZCHIP_ == 5500
case CW_RESET_PHY:
wizphy_reset();
break;
case CW_SET_PHYCONF:
wizphy_setphyconf((wiz_PhyConf*)arg);
break;
case CW_GET_PHYCONF:
wizphy_getphyconf((wiz_PhyConf*)arg);
break;
case CW_GET_PHYSTATUS:
break;
case CW_SET_PHYPOWMODE:
return wizphy_setphypmode(*(uint8_t*)arg);
#endif
case CW_GET_PHYPOWMODE:
tmp = wizphy_getphypmode();
if((int8_t)tmp == -1) return -1;
*(uint8_t*)arg = tmp;
break;
case CW_GET_PHYLINK:
tmp = wizphy_getphylink();
if((int8_t)tmp == -1) return -1;
*(uint8_t*)arg = tmp;
break;
default:
return -1;
}
return 0;
}
int8_t ctlnetwork(ctlnetwork_type cntype, void* arg)
{
switch(cntype)
{
case CN_SET_NETINFO:
wizchip_setnetinfo((wiz_NetInfo*)arg);
break;
case CN_GET_NETINFO:
wizchip_getnetinfo((wiz_NetInfo*)arg);
break;
case CN_SET_NETMODE:
return wizchip_setnetmode(*(netmode_type*)arg);
case CN_GET_NETMODE:
*(netmode_type*)arg = wizchip_getnetmode();
break;
case CN_SET_TIMEOUT:
wizchip_settimeout((wiz_NetTimeout*)arg);
break;
case CN_GET_TIMEOUT:
wizchip_gettimeout((wiz_NetTimeout*)arg);
break;
default:
return -1;
}
return 0;
}
void wizchip_sw_reset(void)
{
uint8_t gw[4], sn[4], sip[4];
uint8_t mac[6];
getSHAR(mac);
getGAR(gw); getSUBR(sn); getSIPR(sip);
setMR(MR_RST);
getMR(); // for delay
setSHAR(mac);
setGAR(gw);
setSUBR(sn);
setSIPR(sip);
}
int8_t wizchip_init(uint8_t* txsize, uint8_t* rxsize)
{
int8_t i;
int8_t tmp = 0;
wizchip_sw_reset();
if(txsize)
{
tmp = 0;
for(i = 0 ; i < _WIZCHIP_SOCK_NUM_; i++)
tmp += txsize[i];
if(tmp > 16) return -1;
for(i = 0 ; i < _WIZCHIP_SOCK_NUM_; i++)
setSn_TXBUF_SIZE(i, txsize[i]);
}
if(rxsize)
{
tmp = 0;
for(i = 0 ; i < _WIZCHIP_SOCK_NUM_; i++)
tmp += rxsize[i];
if(tmp > 16) return -1;
for(i = 0 ; i < _WIZCHIP_SOCK_NUM_; i++)
setSn_RXBUF_SIZE(i, rxsize[i]);
}
WIZCHIP_EXPORT(socket_reset)();
return 0;
}
void wizchip_clrinterrupt(intr_kind intr)
{
uint8_t ir = (uint8_t)intr;
uint8_t sir = (uint8_t)((uint16_t)intr >> 8);
#if _WIZCHIP_ < 5500
ir |= (1<<4); // IK_WOL
#endif
#if _WIZCHIP_ == 5200
ir |= (1 << 6);
#endif
#if _WIZCHIP_ < 5200
sir &= 0x0F;
#endif
#if _WIZCHIP_ == 5100
ir |= sir;
setIR(ir);
#else
setIR(ir);
setSIR(sir);
#endif
}
intr_kind wizchip_getinterrupt(void)
{
uint8_t ir = 0;
uint8_t sir = 0;
uint16_t ret = 0;
#if _WIZCHIP_ == 5100
ir = getIR();
sir = ir 0x0F;
#else
ir = getIR();
sir = getSIR();
#endif
#if _WIZCHIP_ < 5500
ir &= ~(1<<4); // IK_WOL
#endif
#if _WIZCHIP_ == 5200
ir &= ~(1 << 6);
#endif
ret = sir;
ret = (ret << 8) + ir;
return (intr_kind)ret;
}
void wizchip_setinterruptmask(intr_kind intr)
{
uint8_t imr = (uint8_t)intr;
uint8_t simr = (uint8_t)((uint16_t)intr >> 8);
#if _WIZCHIP_ < 5500
imr &= ~(1<<4); // IK_WOL
#endif
#if _WIZCHIP_ == 5200
imr &= ~(1 << 6);
#endif
#if _WIZCHIP_ < 5200
simr &= 0x0F;
#endif
#if _WIZCHIP_ == 5100
imr |= simr;
setIMR(imr);
#else
setIMR(imr);
setSIMR(simr);
#endif
}
intr_kind wizchip_getinterruptmask(void)
{
uint8_t imr = 0;
uint8_t simr = 0;
uint16_t ret = 0;
#if _WIZCHIP_ == 5100
imr = getIMR();
simr = imr 0x0F;
#else
imr = getIMR();
simr = getSIMR();
#endif
#if _WIZCHIP_ < 5500
imr &= ~(1<<4); // IK_WOL
#endif
#if _WIZCHIP_ == 5200
imr &= ~(1 << 6); // IK_DEST_UNREACH
#endif
ret = simr;
ret = (ret << 8) + imr;
return (intr_kind)ret;
}
int8_t wizphy_getphylink(void)
{
int8_t tmp;
#if _WIZCHIP_ == 5200
if(getPHYSTATUS() & PHYSTATUS_LINK)
tmp = PHY_LINK_ON;
else
tmp = PHY_LINK_OFF;
#elif _WIZCHIP_ == 5500
if(getPHYCFGR() & PHYCFGR_LNK_ON)
tmp = PHY_LINK_ON;
else
tmp = PHY_LINK_OFF;
#else
tmp = -1;
#endif
return tmp;
}
#if _WIZCHIP_ > 5100
int8_t wizphy_getphypmode(void)
{
int8_t tmp = 0;
#if _WIZCHIP_ == 5200
if(getPHYSTATUS() & PHYSTATUS_POWERDOWN)
tmp = PHY_POWER_DOWN;
else
tmp = PHY_POWER_NORM;
#elif _WIZCHIP_ == 5500
if(getPHYCFGR() & PHYCFGR_OPMDC_PDOWN)
tmp = PHY_POWER_DOWN;
else
tmp = PHY_POWER_NORM;
#else
tmp = -1;
#endif
return tmp;
}
#endif
#if _WIZCHIP_ == 5500
void wizphy_reset(void)
{
uint8_t tmp = getPHYCFGR();
tmp &= PHYCFGR_RST;
setPHYCFGR(tmp);
tmp = getPHYCFGR();
tmp |= ~PHYCFGR_RST;
setPHYCFGR(tmp);
}
void wizphy_setphyconf(wiz_PhyConf* phyconf)
{
uint8_t tmp = 0;
if(phyconf->by == PHY_CONFBY_SW)
tmp |= PHYCFGR_OPMD;
else
tmp &= ~PHYCFGR_OPMD;
if(phyconf->mode == PHY_MODE_AUTONEGO)
tmp |= PHYCFGR_OPMDC_ALLA;
else
{
if(phyconf->duplex == PHY_DUPLEX_FULL)
{
if(phyconf->speed == PHY_SPEED_100)
tmp |= PHYCFGR_OPMDC_100F;
else
tmp |= PHYCFGR_OPMDC_10F;
}
else
{
if(phyconf->speed == PHY_SPEED_100)
tmp |= PHYCFGR_OPMDC_100H;
else
tmp |= PHYCFGR_OPMDC_10H;
}
}
setPHYCFGR(tmp);
wizphy_reset();
}
void wizphy_getphyconf(wiz_PhyConf* phyconf)
{
uint8_t tmp = 0;
tmp = getPHYCFGR();
phyconf->by = (tmp & PHYCFGR_OPMD) ? PHY_CONFBY_SW : PHY_CONFBY_HW;
switch(tmp & PHYCFGR_OPMDC_ALLA)
{
case PHYCFGR_OPMDC_ALLA:
case PHYCFGR_OPMDC_100FA:
phyconf->mode = PHY_MODE_AUTONEGO;
break;
default:
phyconf->mode = PHY_MODE_MANUAL;
break;
}
switch(tmp & PHYCFGR_OPMDC_ALLA)
{
case PHYCFGR_OPMDC_100FA:
case PHYCFGR_OPMDC_100F:
case PHYCFGR_OPMDC_100H:
phyconf->speed = PHY_SPEED_100;
break;
default:
phyconf->speed = PHY_SPEED_10;
break;
}
switch(tmp & PHYCFGR_OPMDC_ALLA)
{
case PHYCFGR_OPMDC_100FA:
case PHYCFGR_OPMDC_100F:
case PHYCFGR_OPMDC_10F:
phyconf->duplex = PHY_DUPLEX_FULL;
break;
default:
phyconf->duplex = PHY_DUPLEX_HALF;
break;
}
}
void wizphy_getphystat(wiz_PhyConf* phyconf)
{
uint8_t tmp = getPHYCFGR();
phyconf->duplex = (tmp & PHYCFGR_DPX_FULL) ? PHY_DUPLEX_FULL : PHY_DUPLEX_HALF;
phyconf->speed = (tmp & PHYCFGR_SPD_100) ? PHY_SPEED_100 : PHY_SPEED_10;
}
int8_t wizphy_setphypmode(uint8_t pmode)
{
uint8_t tmp = 0;
tmp = getPHYCFGR();
if((tmp & PHYCFGR_OPMD)== 0) return -1;
tmp &= ~PHYCFGR_OPMDC_ALLA;
if( pmode == PHY_POWER_DOWN)
tmp |= PHYCFGR_OPMDC_PDOWN;
else
tmp |= PHYCFGR_OPMDC_ALLA;
setPHYCFGR(tmp);
wizphy_reset();
tmp = getPHYCFGR();
if( pmode == PHY_POWER_DOWN)
{
if(tmp & PHYCFGR_OPMDC_PDOWN) return 0;
}
else
{
if(tmp & PHYCFGR_OPMDC_ALLA) return 0;
}
return -1;
}
#endif
void wizchip_setnetinfo(wiz_NetInfo* pnetinfo)
{
setSHAR(pnetinfo->mac);
setGAR(pnetinfo->gw);
setSUBR(pnetinfo->sn);
setSIPR(pnetinfo->ip);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
_SUBN_[0] = pnetinfo->sn[0];
_SUBN_[1] = pnetinfo->sn[1];
_SUBN_[2] = pnetinfo->sn[2];
_SUBN_[3] = pnetinfo->sn[3];
#endif
_DNS_[0] = pnetinfo->dns[0];
_DNS_[1] = pnetinfo->dns[1];
_DNS_[2] = pnetinfo->dns[2];
_DNS_[3] = pnetinfo->dns[3];
_DHCP_ = pnetinfo->dhcp;
}
void wizchip_getnetinfo(wiz_NetInfo* pnetinfo)
{
getSHAR(pnetinfo->mac);
getGAR(pnetinfo->gw);
getSUBR(pnetinfo->sn);
getSIPR(pnetinfo->ip);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
pnetinfo->sn[0] = _SUBN_[0];
pnetinfo->sn[1] = _SUBN_[1];
pnetinfo->sn[2] = _SUBN_[2];
pnetinfo->sn[3] = _SUBN_[3];
#endif
pnetinfo->dns[0]= _DNS_[0];
pnetinfo->dns[1]= _DNS_[1];
pnetinfo->dns[2]= _DNS_[2];
pnetinfo->dns[3]= _DNS_[3];
pnetinfo->dhcp = _DHCP_;
}
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
uint8_t *wizchip_getsubn(void) {
return _SUBN_;
}
#endif
int8_t wizchip_setnetmode(netmode_type netmode)
{
uint8_t tmp = 0;
#if _WIZCHIP_ != 5500
if(netmode & ~(NM_WAKEONLAN | NM_PPPOE | NM_PINGBLOCK)) return -1;
#else
if(netmode & ~(NM_WAKEONLAN | NM_PPPOE | NM_PINGBLOCK | NM_FORCEARP)) return -1;
#endif
tmp = getMR();
tmp |= (uint8_t)netmode;
setMR(tmp);
return 0;
}
netmode_type wizchip_getnetmode(void)
{
return (netmode_type) getMR();
}
void wizchip_settimeout(wiz_NetTimeout* nettime)
{
setRCR(nettime->retry_cnt);
setRTR(nettime->time_100us);
}
void wizchip_gettimeout(wiz_NetTimeout* nettime)
{
nettime->retry_cnt = getRCR();
nettime->time_100us = getRTR();
}

View File

@ -1,554 +0,0 @@
//*****************************************************************************
//
//! \file wizchip_conf.h
//! \brief WIZCHIP Config Header File.
//! \version 1.0.0
//! \date 2013/10/21
//! \par Revision history
//! <2013/10/21> 1st Release
//! \author MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
/**
* @defgroup extra_functions 2. WIZnet Extra Functions
*
* @brief These functions is optional function. It could be replaced at WIZCHIP I/O function because they were made by WIZCHIP I/O functions.
* @details There are functions of configuring WIZCHIP, network, interrupt, phy, network information and timer. \n
*
*/
#ifndef _WIZCHIP_CONF_H_
#define _WIZCHIP_CONF_H_
#include <stdint.h>
/**
* @brief Select WIZCHIP.
* @todo You should select one, \b 5100, \b 5200 ,\b 5500 or etc. \n\n
* ex> <code> #define \_WIZCHIP_ 5500 </code>
*/
#ifndef _WIZCHIP_
#define _WIZCHIP_ 5200 // 5100, 5200, 5500
#endif
#define _WIZCHIP_IO_MODE_NONE_ 0x0000
#define _WIZCHIP_IO_MODE_BUS_ 0x0100 /**< Bus interface mode */
#define _WIZCHIP_IO_MODE_SPI_ 0x0200 /**< SPI interface mode */
//#define _WIZCHIP_IO_MODE_IIC_ 0x0400
//#define _WIZCHIP_IO_MODE_SDIO_ 0x0800
// Add to
//
#define _WIZCHIP_IO_MODE_BUS_DIR_ (_WIZCHIP_IO_MODE_BUS_ + 1) /**< BUS interface mode for direct */
#define _WIZCHIP_IO_MODE_BUS_INDIR_ (_WIZCHIP_IO_MODE_BUS_ + 2) /**< BUS interface mode for indirect */
#define _WIZCHIP_IO_MODE_SPI_VDM_ (_WIZCHIP_IO_MODE_SPI_ + 1) /**< SPI interface mode for variable length data*/
#define _WIZCHIP_IO_MODE_SPI_FDM_ (_WIZCHIP_IO_MODE_SPI_ + 2) /**< SPI interface mode for fixed length data mode*/
#if (_WIZCHIP_ == 5100)
#define _WIZCHIP_ID_ "W5100\0"
/**
* @brief Define interface mode.
* @todo you should select interface mode as chip. Select one of @ref \_WIZCHIP_IO_MODE_SPI_ , @ref \_WIZCHIP_IO_MODE_BUS_DIR_ or @ref \_WIZCHIP_IO_MODE_BUS_INDIR_
*/
// #define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_BUS_DIR_
// #define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_BUS_INDIR_
#define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_SPI_
#elif (_WIZCHIP_ == 5200)
#define _WIZCHIP_ID_ "W5200\0"
/**
* @brief Define interface mode.
* @todo you should select interface mode as chip. Select one of @ref \_WIZCHIP_IO_MODE_SPI_ or @ref \_WIZCHIP_IO_MODE_BUS_INDIR_
*/
// #define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_BUS_INDIR_
#define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_SPI_
#include "w5200/w5200.h"
#elif (_WIZCHIP_ == 5500)
#define _WIZCHIP_ID_ "W5500\0"
/**
* @brief Define interface mode. \n
* @todo Should select interface mode as chip.
* - @ref \_WIZCHIP_IO_MODE_SPI_ \n
* -@ref \_WIZCHIP_IO_MODE_SPI_VDM_ : Valid only in @ref \_WIZCHIP_ == 5500 \n
* -@ref \_WIZCHIP_IO_MODE_SPI_FDM_ : Valid only in @ref \_WIZCHIP_ == 5500 \n
* - @ref \_WIZCHIP_IO_MODE_BUS_ \n
* - @ref \_WIZCHIP_IO_MODE_BUS_DIR_ \n
* - @ref \_WIZCHIP_IO_MODE_BUS_INDIR_ \n
* - Others will be defined in future. \n\n
* ex> <code> #define \_WIZCHIP_IO_MODE_ \_WIZCHIP_IO_MODE_SPI_VDM_ </code>
*
*/
//#define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_SPI_FDM_
#define _WIZCHIP_IO_MODE_ _WIZCHIP_IO_MODE_SPI_VDM_
#include "w5500/w5500.h"
#else
#error "Unknown defined _WIZCHIP_. You should define one of 5100, 5200, and 5500 !!!"
#endif
#ifndef _WIZCHIP_IO_MODE_
#error "Undefined _WIZCHIP_IO_MODE_. You should define it !!!"
#endif
/**
* @brief Define I/O base address when BUS IF mode.
* @todo Should re-define it to fit your system when BUS IF Mode (@ref \_WIZCHIP_IO_MODE_BUS_,
* @ref \_WIZCHIP_IO_MODE_BUS_DIR_, @ref \_WIZCHIP_IO_MODE_BUS_INDIR_). \n\n
* ex> <code> #define \_WIZCHIP_IO_BASE_ 0x00008000 </code>
*/
#define _WIZCHIP_IO_BASE_ 0x00000000 //
#if _WIZCHIP_IO_MODE_ & _WIZCHIP_IO_MODE_BUS_
#ifndef _WIZCHIP_IO_BASE_
#error "You should be define _WIZCHIP_IO_BASE to fit your system memory map."
#endif
#endif
#if _WIZCHIP_ > 5100
#define _WIZCHIP_SOCK_NUM_ 8 ///< The count of independant socket of @b WIZCHIP
#else
#define _WIZCHIP_SOCK_NUM_ 4 ///< The count of independant socket of @b WIZCHIP
#endif
/********************************************************
* WIZCHIP BASIC IF functions for SPI, SDIO, I2C , ETC.
*********************************************************/
/**
* @ingroup DATA_TYPE
* @brief The set of callback functions for W5500:@ref WIZCHIP_IO_Functions W5200:@ref WIZCHIP_IO_Functions_W5200
*/
typedef struct __WIZCHIP
{
uint16_t if_mode; ///< host interface mode
uint8_t id[6]; ///< @b WIZCHIP ID such as @b 5100, @b 5200, @b 5500, and so on.
/**
* The set of critical section callback func.
*/
struct _CRIS
{
void (*_enter) (void); ///< crtical section enter
void (*_exit) (void); ///< critial section exit
}CRIS;
/**
* The set of @ref\_WIZCHIP_ select control callback func.
*/
struct _CS
{
void (*_select) (void); ///< @ref \_WIZCHIP_ selected
void (*_deselect)(void); ///< @ref \_WIZCHIP_ deselected
}CS;
/**
* The set of interface IO callback func.
*/
union _IF
{
/**
* For BUS interface IO
*/
struct
{
uint8_t (*_read_byte) (uint32_t AddrSel);
void (*_write_byte) (uint32_t AddrSel, uint8_t wb);
}BUS;
/**
* For SPI interface IO
*/
struct
{
void (*_read_bytes) (uint8_t *buf, uint32_t len);
void (*_write_bytes) (const uint8_t *buf, uint32_t len);
}SPI;
// To be added
//
}IF;
}_WIZCHIP;
extern _WIZCHIP WIZCHIP;
/**
* @ingroup DATA_TYPE
* WIZCHIP control type enumration used in @ref ctlwizchip().
*/
typedef enum
{
CW_RESET_WIZCHIP, ///< Resets WIZCHIP by softly
CW_INIT_WIZCHIP, ///< Inializes to WIZCHIP with SOCKET buffer size 2 or 1 dimension array typed uint8_t.
CW_GET_INTERRUPT, ///< Get Interrupt status of WIZCHIP
CW_CLR_INTERRUPT, ///< Clears interrupt
CW_SET_INTRMASK, ///< Masks interrupt
CW_GET_INTRMASK, ///< Get interrupt mask
CW_SET_INTRTIME, ///< Set interval time between the current and next interrupt.
CW_GET_INTRTIME, ///< Set interval time between the current and next interrupt.
CW_GET_ID, ///< Gets WIZCHIP name.
#if _WIZCHIP_ == 5500
CW_RESET_PHY, ///< Resets internal PHY. Valid Only W5000
CW_SET_PHYCONF, ///< When PHY configured by interal register, PHY operation mode (Manual/Auto, 10/100, Half/Full). Valid Only W5000
CW_GET_PHYCONF, ///< Get PHY operation mode in interal register. Valid Only W5000
CW_GET_PHYSTATUS, ///< Get real PHY status on operating. Valid Only W5000
CW_SET_PHYPOWMODE, ///< Set PHY power mode as noraml and down when PHYSTATUS.OPMD == 1. Valid Only W5000
#endif
CW_GET_PHYPOWMODE, ///< Get PHY Power mode as down or normal
CW_GET_PHYLINK ///< Get PHY Link status
}ctlwizchip_type;
/**
* @ingroup DATA_TYPE
* Network control type enumration used in @ref ctlnetwork().
*/
typedef enum
{
CN_SET_NETINFO, ///< Set Network with @ref wiz_NetInfo
CN_GET_NETINFO, ///< Get Network with @ref wiz_NetInfo
CN_SET_NETMODE, ///< Set network mode as WOL, PPPoE, Ping Block, and Force ARP mode
CN_GET_NETMODE, ///< Get network mode as WOL, PPPoE, Ping Block, and Force ARP mode
CN_SET_TIMEOUT, ///< Set network timeout as retry count and time.
CN_GET_TIMEOUT, ///< Get network timeout as retry count and time.
}ctlnetwork_type;
/**
* @ingroup DATA_TYPE
* Interrupt kind when CW_SET_INTRRUPT, CW_GET_INTERRUPT, CW_SET_INTRMASK
* and CW_GET_INTRMASK is used in @ref ctlnetwork().
* It can be used with OR operation.
*/
typedef enum
{
#if _WIZCHIP_ > 5200
IK_WOL = (1 << 4), ///< Wake On Lan by receiving the magic packet. Valid in W500.
#endif
IK_PPPOE_TERMINATED = (1 << 5), ///< PPPoE Disconnected
#if _WIZCHIP_ != 5200
IK_DEST_UNREACH = (1 << 6), ///< Destination IP & Port Unreable, No use in W5200
#endif
IK_IP_CONFLICT = (1 << 7), ///< IP conflict occurred
IK_SOCK_0 = (1 << 8), ///< Socket 0 interrupt
IK_SOCK_1 = (1 << 9), ///< Socket 1 interrupt
IK_SOCK_2 = (1 << 10), ///< Socket 2 interrupt
IK_SOCK_3 = (1 << 11), ///< Socket 3 interrupt
#if _WIZCHIP_ > 5100
IK_SOCK_4 = (1 << 12), ///< Socket 4 interrupt, No use in 5100
IK_SOCK_5 = (1 << 13), ///< Socket 5 interrupt, No use in 5100
IK_SOCK_6 = (1 << 14), ///< Socket 6 interrupt, No use in 5100
IK_SOCK_7 = (1 << 15), ///< Socket 7 interrupt, No use in 5100
#endif
#if _WIZCHIP_ > 5100
IK_SOCK_ALL = (0xFF << 8) ///< All Socket interrpt
#else
IK_SOCK_ALL = (0x0F << 8) ///< All Socket interrpt
#endif
}intr_kind;
#define PHY_CONFBY_HW 0 ///< Configured PHY operation mode by HW pin
#define PHY_CONFBY_SW 1 ///< Configured PHY operation mode by SW register
#define PHY_MODE_MANUAL 0 ///< Configured PHY operation mode with user setting.
#define PHY_MODE_AUTONEGO 1 ///< Configured PHY operation mode with auto-negotiation
#define PHY_SPEED_10 0 ///< Link Speed 10
#define PHY_SPEED_100 1 ///< Link Speed 100
#define PHY_DUPLEX_HALF 0 ///< Link Half-Duplex
#define PHY_DUPLEX_FULL 1 ///< Link Full-Duplex
#define PHY_LINK_OFF 0 ///< Link Off
#define PHY_LINK_ON 1 ///< Link On
#define PHY_POWER_NORM 0 ///< PHY power normal mode
#define PHY_POWER_DOWN 1 ///< PHY power down mode
#if _WIZCHIP_ == 5500
/**
* @ingroup DATA_TYPE
* It configures PHY configuration when CW_SET PHYCONF or CW_GET_PHYCONF in W5500,
* and it indicates the real PHY status configured by HW or SW in all WIZCHIP. \n
* Valid only in W5500.
*/
typedef struct wiz_PhyConf_t
{
uint8_t by; ///< set by @ref PHY_CONFBY_HW or @ref PHY_CONFBY_SW
uint8_t mode; ///< set by @ref PHY_MODE_MANUAL or @ref PHY_MODE_AUTONEGO
uint8_t speed; ///< set by @ref PHY_SPEED_10 or @ref PHY_SPEED_100
uint8_t duplex; ///< set by @ref PHY_DUPLEX_HALF @ref PHY_DUPLEX_FULL
//uint8_t power; ///< set by @ref PHY_POWER_NORM or @ref PHY_POWER_DOWN
//uint8_t link; ///< Valid only in CW_GET_PHYSTATUS. set by @ref PHY_LINK_ON or PHY_DUPLEX_OFF
}wiz_PhyConf;
#endif
/**
* @ingroup DATA_TYPE
* It used in setting dhcp_mode of @ref wiz_NetInfo.
*/
typedef enum
{
NETINFO_STATIC = 1, ///< Static IP configuration by manually.
NETINFO_DHCP ///< Dynamic IP configruation from a DHCP sever
}dhcp_mode;
/**
* @ingroup DATA_TYPE
* Network Information for WIZCHIP
*/
typedef struct wiz_NetInfo_t
{
uint8_t mac[6]; ///< Source Mac Address
uint8_t ip[4]; ///< Source IP Address
uint8_t sn[4]; ///< Subnet Mask
uint8_t gw[4]; ///< Gateway IP Address
uint8_t dns[4]; ///< DNS server IP Address
dhcp_mode dhcp; ///< 1 - Static, 2 - DHCP
}wiz_NetInfo;
/**
* @ingroup DATA_TYPE
* Network mode
*/
typedef enum
{
#if _WIZCHIP_ == 5500
NM_FORCEARP = (1<<1), ///< Force to APP send whenever udp data is sent. Valid only in W5500
#endif
NM_WAKEONLAN = (1<<5), ///< Wake On Lan
NM_PINGBLOCK = (1<<4), ///< Block ping-request
NM_PPPOE = (1<<3), ///< PPPoE mode
}netmode_type;
/**
* @ingroup DATA_TYPE
* Used in CN_SET_TIMEOUT or CN_GET_TIMEOUT of @ref ctlwizchip() for timeout configruation.
*/
typedef struct wiz_NetTimeout_t
{
uint8_t retry_cnt; ///< retry count
uint16_t time_100us; ///< time unit 100us
}wiz_NetTimeout;
/**
*@brief Registers call back function for critical section of I/O functions such as
*\ref WIZCHIP_READ, @ref WIZCHIP_WRITE, @ref WIZCHIP_READ_BUF and @ref WIZCHIP_WRITE_BUF.
*@param cris_en : callback function for critical section enter.
*@param cris_ex : callback function for critical section exit.
*@todo Describe @ref WIZCHIP_CRITICAL_ENTER and @ref WIZCHIP_CRITICAL_EXIT marco or register your functions.
*@note If you do not describe or register, default functions(@ref wizchip_cris_enter & @ref wizchip_cris_exit) is called.
*/
void reg_wizchip_cris_cbfunc(void(*cris_en)(void), void(*cris_ex)(void));
/**
*@brief Registers call back function for WIZCHIP select & deselect.
*@param cs_sel : callback function for WIZCHIP select
*@param cs_desel : callback fucntion for WIZCHIP deselect
*@todo Describe @ref wizchip_cs_select and @ref wizchip_cs_deselect function or register your functions.
*@note If you do not describe or register, null function is called.
*/
void reg_wizchip_cs_cbfunc(void(*cs_sel)(void), void(*cs_desel)(void));
/**
*@brief Registers call back function for bus interface.
*@param bus_rb : callback function to read byte data using system bus
*@param bus_wb : callback function to write byte data using system bus
*@todo Describe @ref wizchip_bus_readbyte and @ref wizchip_bus_writebyte function
*or register your functions.
*@note If you do not describe or register, null function is called.
*/
void reg_wizchip_bus_cbfunc(uint8_t (*bus_rb)(uint32_t addr), void (*bus_wb)(uint32_t addr, uint8_t wb));
/**
*@brief Registers call back function for SPI interface.
*@param spi_rb : callback function to read byte usig SPI
*@param spi_wb : callback function to write byte usig SPI
*@todo Describe \ref wizchip_spi_readbyte and \ref wizchip_spi_writebyte function
*or register your functions.
*@note If you do not describe or register, null function is called.
*/
void reg_wizchip_spi_cbfunc(void (*spi_rb)(uint8_t *, uint32_t), void (*spi_wb)(const uint8_t *, uint32_t));
/**
* @ingroup extra_functions
* @brief Controls to the WIZCHIP.
* @details Resets WIZCHIP & internal PHY, Configures PHY mode, Monitor PHY(Link,Speed,Half/Full/Auto),
* controls interrupt & mask and so on.
* @param cwtype : Decides to the control type
* @param arg : arg type is dependent on cwtype.
* @return 0 : Success \n
* -1 : Fail because of invalid \ref ctlwizchip_type or unsupported \ref ctlwizchip_type in WIZCHIP
*/
int8_t ctlwizchip(ctlwizchip_type cwtype, void* arg);
/**
* @ingroup extra_functions
* @brief Controls to network.
* @details Controls to network environment, mode, timeout and so on.
* @param cntype : Input. Decides to the control type
* @param arg : Inout. arg type is dependent on cntype.
* @return -1 : Fail because of invalid \ref ctlnetwork_type or unsupported \ref ctlnetwork_type in WIZCHIP \n
* 0 : Success
*/
int8_t ctlnetwork(ctlnetwork_type cntype, void* arg);
/*
* The following functions are implemented for internal use.
* but You can call these functions for code size reduction instead of ctlwizchip() and ctlnetwork().
*/
/**
* @ingroup extra_functions
* @brief Reset WIZCHIP by softly.
*/
void wizchip_sw_reset(void);
/**
* @ingroup extra_functions
* @brief Initializes WIZCHIP with socket buffer size
* @param txsize Socket tx buffer sizes. If null, initialized the default size 2KB.
* @param rxsize Socket rx buffer sizes. If null, initialized the default size 2KB.
* @return 0 : succcess \n
* -1 : fail. Invalid buffer size
*/
int8_t wizchip_init(uint8_t* txsize, uint8_t* rxsize);
/**
* @ingroup extra_functions
* @brief Clear Interrupt of WIZCHIP.
* @param intr : @ref intr_kind value operated OR. It can type-cast to uint16_t.
*/
void wizchip_clrinterrupt(intr_kind intr);
/**
* @ingroup extra_functions
* @brief Get Interrupt of WIZCHIP.
* @return @ref intr_kind value operated OR. It can type-cast to uint16_t.
*/
intr_kind wizchip_getinterrupt(void);
/**
* @ingroup extra_functions
* @brief Mask or Unmask Interrupt of WIZCHIP.
* @param intr : @ref intr_kind value operated OR. It can type-cast to uint16_t.
*/
void wizchip_setinterruptmask(intr_kind intr);
/**
* @ingroup extra_functions
* @brief Get Interrupt mask of WIZCHIP.
* @return : The operated OR vaule of @ref intr_kind. It can type-cast to uint16_t.
*/
intr_kind wizchip_getinterruptmask(void);
#if _WIZCHIP_ > 5100
int8_t wizphy_getphylink(void); ///< get the link status of phy in WIZCHIP. No use in W5100
int8_t wizphy_getphypmode(void); ///< get the power mode of PHY in WIZCHIP. No use in W5100
#endif
#if _WIZCHIP_ == 5500
void wizphy_reset(void); ///< Reset phy. Vailid only in W5500
/**
* @ingroup extra_functions
* @brief Set the phy information for WIZCHIP without power mode
* @param phyconf : @ref wiz_PhyConf
*/
void wizphy_setphyconf(wiz_PhyConf* phyconf);
/**
* @ingroup extra_functions
* @brief Get phy configuration information.
* @param phyconf : @ref wiz_PhyConf
*/
void wizphy_getphyconf(wiz_PhyConf* phyconf);
/**
* @ingroup extra_functions
* @brief Get phy status.
* @param phyconf : @ref wiz_PhyConf
*/
void wizphy_getphystat(wiz_PhyConf* phyconf);
/**
* @ingroup extra_functions
* @brief set the power mode of phy inside WIZCHIP. Refer to @ref PHYCFGR in W5500, @ref PHYSTATUS in W5200
* @param pmode Settig value of power down mode.
*/
int8_t wizphy_setphypmode(uint8_t pmode);
#endif
/**
* @ingroup extra_functions
* @brief Set the network information for WIZCHIP
* @param pnetinfo : @ref wizNetInfo
*/
void wizchip_setnetinfo(wiz_NetInfo* pnetinfo);
/**
* @ingroup extra_functions
* @brief Get the network information for WIZCHIP
* @param pnetinfo : @ref wizNetInfo
*/
void wizchip_getnetinfo(wiz_NetInfo* pnetinfo);
#if _WIZCHIP_ == 5200 // for W5200 ARP errata
uint8_t *wizchip_getsubn(void);
#endif
/**
* @ingroup extra_functions
* @brief Set the network mode such WOL, PPPoE, Ping Block, and etc.
* @param pnetinfo Value of network mode. Refer to @ref netmode_type.
*/
int8_t wizchip_setnetmode(netmode_type netmode);
/**
* @ingroup extra_functions
* @brief Get the network mode such WOL, PPPoE, Ping Block, and etc.
* @return Value of network mode. Refer to @ref netmode_type.
*/
netmode_type wizchip_getnetmode(void);
/**
* @ingroup extra_functions
* @brief Set retry time value(@ref RTR) and retry count(@ref RCR).
* @details @ref RTR configures the retransmission timeout period and @ref RCR configures the number of time of retransmission.
* @param nettime @ref RTR value and @ref RCR value. Refer to @ref wiz_NetTimeout.
*/
void wizchip_settimeout(wiz_NetTimeout* nettime);
/**
* @ingroup extra_functions
* @brief Get retry time value(@ref RTR) and retry count(@ref RCR).
* @details @ref RTR configures the retransmission timeout period and @ref RCR configures the number of time of retransmission.
* @param nettime @ref RTR value and @ref RCR value. Refer to @ref wiz_NetTimeout.
*/
void wizchip_gettimeout(wiz_NetTimeout* nettime);
#endif // _WIZCHIP_CONF_H_

View File

@ -1,975 +0,0 @@
//*****************************************************************************
//
//! \file dhcp.c
//! \brief DHCP APIs implement file.
//! \details Processig DHCP protocol as DISCOVER, OFFER, REQUEST, ACK, NACK and DECLINE.
//! \version 1.1.0
//! \date 2013/11/18
//! \par Revision history
//! <2018/10/09> Modified by Nick Moore for CircuitPython
//! <2013/11/18> 1st Release
//! <2012/12/20> V1.1.0
//! 1. Optimize code
//! 2. Add reg_dhcp_cbfunc()
//! 3. Add DHCP_stop()
//! 4. Integrate check_DHCP_state() & DHCP_run() to DHCP_run()
//! 5. Don't care system endian
//! 6. Add comments
//! <2012/12/26> V1.1.1
//! 1. Modify variable declaration: dhcp_tick_1s is declared volatile for code optimization
//! \author Eric Jung & MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
//#include "Ethernet/socket.h"
//#include "Internet/DHCP/dhcp.h"
#include "../../ethernet/socket.h"
#include "dhcp.h"
/* If you want to display debug & processing message, Define _DHCP_DEBUG_ in dhcp.h */
#ifdef _DHCP_DEBUG_
#include <stdio.h>
#endif
/* DHCP state machine. */
#define STATE_DHCP_INIT 0 ///< Initialize
#define STATE_DHCP_DISCOVER 1 ///< send DISCOVER and wait OFFER
#define STATE_DHCP_REQUEST 2 ///< send REQEUST and wait ACK or NACK
#define STATE_DHCP_LEASED 3 ///< ReceiveD ACK and IP leased
#define STATE_DHCP_REREQUEST 4 ///< send REQUEST for maintaining leased IP
#define STATE_DHCP_RELEASE 5 ///< No use
#define STATE_DHCP_STOP 6 ///< Stop processing DHCP
#define DHCP_FLAGSBROADCAST 0x8000 ///< The broadcast value of flags in @ref RIP_MSG
#define DHCP_FLAGSUNICAST 0x0000 ///< The unicast value of flags in @ref RIP_MSG
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1 ///< Request Message used in op of @ref RIP_MSG
#define DHCP_BOOTREPLY 2 ///< Reply Message used i op of @ref RIP_MSG
/* DHCP message type */
#define DHCP_DISCOVER 1 ///< DISCOVER message in OPT of @ref RIP_MSG
#define DHCP_OFFER 2 ///< OFFER message in OPT of @ref RIP_MSG
#define DHCP_REQUEST 3 ///< REQUEST message in OPT of @ref RIP_MSG
#define DHCP_DECLINE 4 ///< DECLINE message in OPT of @ref RIP_MSG
#define DHCP_ACK 5 ///< ACK message in OPT of @ref RIP_MSG
#define DHCP_NAK 6 ///< NACK message in OPT of @ref RIP_MSG
#define DHCP_RELEASE 7 ///< RELEASE message in OPT of @ref RIP_MSG. No use
#define DHCP_INFORM 8 ///< INFORM message in OPT of @ref RIP_MSG. No use
#define DHCP_HTYPE10MB 1 ///< Used in type of @ref RIP_MSG
#define DHCP_HTYPE100MB 2 ///< Used in type of @ref RIP_MSG
#define DHCP_HLENETHERNET 6 ///< Used in hlen of @ref RIP_MSG
#define DHCP_HOPS 0 ///< Used in hops of @ref RIP_MSG
#define DHCP_SECS 0 ///< Used in secs of @ref RIP_MSG
#define INFINITE_LEASETIME 0xffffffff ///< Infinite lease time
#define OPT_SIZE 312 /// Max OPT size of @ref RIP_MSG
#define RIP_MSG_SIZE (236+OPT_SIZE) /// Max size of @ref RIP_MSG
/*
* @brief DHCP option and value (cf. RFC1533)
*/
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
timeServer = 4,
nameServer = 5,
dns = 6,
logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,
hostName = 12,
bootFileSize = 13,
meritDumpFile = 14,
domainName = 15,
swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
dhcpOptionOverload = 52,
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
dhcpMsg = 56,
dhcpMaxMsgSize = 57,
dhcpT1value = 58,
dhcpT2value = 59,
dhcpClassIdentifier = 60,
dhcpClientIdentifier = 61,
endOption = 255
};
/*
* @brief DHCP message format
*/
typedef struct {
uint8_t op; ///< @ref DHCP_BOOTREQUEST or @ref DHCP_BOOTREPLY
uint8_t htype; ///< @ref DHCP_HTYPE10MB or @ref DHCP_HTYPE100MB
uint8_t hlen; ///< @ref DHCP_HLENETHERNET
uint8_t hops; ///< @ref DHCP_HOPS
uint32_t xid; ///< @ref DHCP_XID This increase one every DHCP transaction.
uint16_t secs; ///< @ref DHCP_SECS
uint16_t flags; ///< @ref DHCP_FLAGSBROADCAST or @ref DHCP_FLAGSUNICAST
uint8_t ciaddr[4]; ///< @ref Request IP to DHCP sever
uint8_t yiaddr[4]; ///< @ref Offered IP from DHCP server
uint8_t siaddr[4]; ///< No use
uint8_t giaddr[4]; ///< No use
uint8_t chaddr[16]; ///< DHCP client 6bytes MAC address. Others is filled to zero
uint8_t sname[64]; ///< No use
uint8_t file[128]; ///< No use
uint8_t OPT[OPT_SIZE]; ///< Option
} RIP_MSG;
uint8_t DHCP_SOCKET; // Socket number for DHCP
uint8_t DHCP_SIP[4]; // DHCP Server IP address
// Network information from DHCP Server
uint8_t OLD_allocated_ip[4] = {0, }; // Previous IP address
uint8_t DHCP_allocated_ip[4] = {0, }; // IP address from DHCP
uint8_t DHCP_allocated_gw[4] = {0, }; // Gateway address from DHCP
uint8_t DHCP_allocated_sn[4] = {0, }; // Subnet mask from DHCP
uint8_t DHCP_allocated_dns[4] = {0, }; // DNS address from DHCP
int8_t dhcp_state = STATE_DHCP_INIT; // DHCP state
int8_t dhcp_retry_count = 0;
uint32_t dhcp_lease_time = INFINITE_LEASETIME;
volatile uint32_t dhcp_tick_1s = 0; // unit 1 second
uint32_t dhcp_tick_next = DHCP_WAIT_TIME ;
uint32_t DHCP_XID; // Any number
RIP_MSG* pDHCPMSG; // Buffer pointer for DHCP processing
uint8_t HOST_NAME[] = DCHP_HOST_NAME;
uint8_t DHCP_CHADDR[6]; // DHCP Client MAC address.
/* The default callback function */
void default_ip_assign(void);
void default_ip_update(void);
void default_ip_conflict(void);
/* Callback handler */
void (*dhcp_ip_assign)(void) = default_ip_assign; /* handler to be called when the IP address from DHCP server is first assigned */
void (*dhcp_ip_update)(void) = default_ip_update; /* handler to be called when the IP address from DHCP server is updated */
void (*dhcp_ip_conflict)(void) = default_ip_conflict; /* handler to be called when the IP address from DHCP server is conflict */
void reg_dhcp_cbfunc(void(*ip_assign)(void), void(*ip_update)(void), void(*ip_conflict)(void));
/* send DISCOVER message to DHCP server */
void send_DHCP_DISCOVER(void);
/* send REQEUST message to DHCP server */
void send_DHCP_REQUEST(void);
/* send DECLINE message to DHCP server */
void send_DHCP_DECLINE(void);
/* IP conflict check by sending ARP-request to leased IP and wait ARP-response. */
int8_t check_DHCP_leasedIP(void);
/* check the timeout in DHCP process */
uint8_t check_DHCP_timeout(void);
/* Intialize to timeout process. */
void reset_DHCP_timeout(void);
/* Parse message as OFFER and ACK and NACK from DHCP server.*/
int8_t parseDHCPCMSG(void);
/* The default handler of ip assign first */
void default_ip_assign(void)
{
setSIPR(DHCP_allocated_ip);
setSUBR(DHCP_allocated_sn);
setGAR (DHCP_allocated_gw);
}
/* The default handler of ip changed */
void default_ip_update(void)
{
/* WIZchip Software Reset */
setMR(MR_RST);
getMR(); // for delay
default_ip_assign();
setSHAR(DHCP_CHADDR);
}
/* The default handler of ip changed */
void default_ip_conflict(void)
{
// WIZchip Software Reset
setMR(MR_RST);
getMR(); // for delay
setSHAR(DHCP_CHADDR);
}
/* register the call back func. */
void reg_dhcp_cbfunc(void(*ip_assign)(void), void(*ip_update)(void), void(*ip_conflict)(void))
{
dhcp_ip_assign = default_ip_assign;
dhcp_ip_update = default_ip_update;
dhcp_ip_conflict = default_ip_conflict;
if(ip_assign) dhcp_ip_assign = ip_assign;
if(ip_update) dhcp_ip_update = ip_update;
if(ip_conflict) dhcp_ip_conflict = ip_conflict;
}
/* make the common DHCP message */
void makeDHCPMSG(void)
{
uint8_t bk_mac[6];
uint8_t* ptmp;
uint8_t i;
getSHAR(bk_mac);
pDHCPMSG->op = DHCP_BOOTREQUEST;
pDHCPMSG->htype = DHCP_HTYPE10MB;
pDHCPMSG->hlen = DHCP_HLENETHERNET;
pDHCPMSG->hops = DHCP_HOPS;
ptmp = (uint8_t*)(&pDHCPMSG->xid);
*(ptmp+0) = (uint8_t)((DHCP_XID & 0xFF000000) >> 24);
*(ptmp+1) = (uint8_t)((DHCP_XID & 0x00FF0000) >> 16);
*(ptmp+2) = (uint8_t)((DHCP_XID & 0x0000FF00) >> 8);
*(ptmp+3) = (uint8_t)((DHCP_XID & 0x000000FF) >> 0);
pDHCPMSG->secs = DHCP_SECS;
ptmp = (uint8_t*)(&pDHCPMSG->flags);
*(ptmp+0) = (uint8_t)((DHCP_FLAGSBROADCAST & 0xFF00) >> 8);
*(ptmp+1) = (uint8_t)((DHCP_FLAGSBROADCAST & 0x00FF) >> 0);
pDHCPMSG->ciaddr[0] = 0;
pDHCPMSG->ciaddr[1] = 0;
pDHCPMSG->ciaddr[2] = 0;
pDHCPMSG->ciaddr[3] = 0;
pDHCPMSG->yiaddr[0] = 0;
pDHCPMSG->yiaddr[1] = 0;
pDHCPMSG->yiaddr[2] = 0;
pDHCPMSG->yiaddr[3] = 0;
pDHCPMSG->siaddr[0] = 0;
pDHCPMSG->siaddr[1] = 0;
pDHCPMSG->siaddr[2] = 0;
pDHCPMSG->siaddr[3] = 0;
pDHCPMSG->giaddr[0] = 0;
pDHCPMSG->giaddr[1] = 0;
pDHCPMSG->giaddr[2] = 0;
pDHCPMSG->giaddr[3] = 0;
pDHCPMSG->chaddr[0] = DHCP_CHADDR[0];
pDHCPMSG->chaddr[1] = DHCP_CHADDR[1];
pDHCPMSG->chaddr[2] = DHCP_CHADDR[2];
pDHCPMSG->chaddr[3] = DHCP_CHADDR[3];
pDHCPMSG->chaddr[4] = DHCP_CHADDR[4];
pDHCPMSG->chaddr[5] = DHCP_CHADDR[5];
for (i = 6; i < 16; i++) pDHCPMSG->chaddr[i] = 0;
for (i = 0; i < 64; i++) pDHCPMSG->sname[i] = 0;
for (i = 0; i < 128; i++) pDHCPMSG->file[i] = 0;
// MAGIC_COOKIE
pDHCPMSG->OPT[0] = (uint8_t)((MAGIC_COOKIE & 0xFF000000) >> 24);
pDHCPMSG->OPT[1] = (uint8_t)((MAGIC_COOKIE & 0x00FF0000) >> 16);
pDHCPMSG->OPT[2] = (uint8_t)((MAGIC_COOKIE & 0x0000FF00) >> 8);
pDHCPMSG->OPT[3] = (uint8_t) (MAGIC_COOKIE & 0x000000FF) >> 0;
}
/* SEND DHCP DISCOVER */
void send_DHCP_DISCOVER(void)
{
uint16_t i;
uint8_t ip[4];
uint16_t k = 0;
makeDHCPMSG();
k = 4; // because MAGIC_COOKIE already made by makeDHCPMSG()
// Option Request Param
pDHCPMSG->OPT[k++] = dhcpMessageType;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_DISCOVER;
// Client identifier
pDHCPMSG->OPT[k++] = dhcpClientIdentifier;
pDHCPMSG->OPT[k++] = 0x07;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_CHADDR[0];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[1];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[2];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[3];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[4];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[5];
// host name
pDHCPMSG->OPT[k++] = hostName;
pDHCPMSG->OPT[k++] = 0; // fill zero length of hostname
for(i = 0 ; HOST_NAME[i] != 0; i++)
pDHCPMSG->OPT[k++] = HOST_NAME[i];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[3];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[4];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[5];
pDHCPMSG->OPT[k - (i+3+1)] = i+3; // length of hostname
pDHCPMSG->OPT[k++] = dhcpParamRequest;
pDHCPMSG->OPT[k++] = 0x06; // length of request
pDHCPMSG->OPT[k++] = subnetMask;
pDHCPMSG->OPT[k++] = routersOnSubnet;
pDHCPMSG->OPT[k++] = dns;
pDHCPMSG->OPT[k++] = domainName;
pDHCPMSG->OPT[k++] = dhcpT1value;
pDHCPMSG->OPT[k++] = dhcpT2value;
pDHCPMSG->OPT[k++] = endOption;
for (i = k; i < OPT_SIZE; i++) pDHCPMSG->OPT[i] = 0;
// send broadcasting packet
ip[0] = 255;
ip[1] = 255;
ip[2] = 255;
ip[3] = 255;
#ifdef _DHCP_DEBUG_
printf("> Send DHCP_DISCOVER\r\n");
#endif
WIZCHIP_EXPORT(sendto)(DHCP_SOCKET, (uint8_t *)pDHCPMSG, RIP_MSG_SIZE, ip, DHCP_SERVER_PORT);
}
/* SEND DHCP REQUEST */
void send_DHCP_REQUEST(void)
{
int i;
uint8_t ip[4];
uint16_t k = 0;
makeDHCPMSG();
if(dhcp_state == STATE_DHCP_LEASED || dhcp_state == STATE_DHCP_REREQUEST)
{
*((uint8_t*)(&pDHCPMSG->flags)) = ((DHCP_FLAGSUNICAST & 0xFF00)>> 8);
*((uint8_t*)(&pDHCPMSG->flags)+1) = (DHCP_FLAGSUNICAST & 0x00FF);
pDHCPMSG->ciaddr[0] = DHCP_allocated_ip[0];
pDHCPMSG->ciaddr[1] = DHCP_allocated_ip[1];
pDHCPMSG->ciaddr[2] = DHCP_allocated_ip[2];
pDHCPMSG->ciaddr[3] = DHCP_allocated_ip[3];
ip[0] = DHCP_SIP[0];
ip[1] = DHCP_SIP[1];
ip[2] = DHCP_SIP[2];
ip[3] = DHCP_SIP[3];
}
else
{
ip[0] = 255;
ip[1] = 255;
ip[2] = 255;
ip[3] = 255;
}
k = 4; // because MAGIC_COOKIE already made by makeDHCPMSG()
// Option Request Param.
pDHCPMSG->OPT[k++] = dhcpMessageType;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_REQUEST;
pDHCPMSG->OPT[k++] = dhcpClientIdentifier;
pDHCPMSG->OPT[k++] = 0x07;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_CHADDR[0];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[1];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[2];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[3];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[4];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[5];
if(ip[3] == 255) // if(dchp_state == STATE_DHCP_LEASED || dchp_state == DHCP_REREQUEST_STATE)
{
pDHCPMSG->OPT[k++] = dhcpRequestedIPaddr;
pDHCPMSG->OPT[k++] = 0x04;
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[0];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[1];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[2];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[3];
pDHCPMSG->OPT[k++] = dhcpServerIdentifier;
pDHCPMSG->OPT[k++] = 0x04;
pDHCPMSG->OPT[k++] = DHCP_SIP[0];
pDHCPMSG->OPT[k++] = DHCP_SIP[1];
pDHCPMSG->OPT[k++] = DHCP_SIP[2];
pDHCPMSG->OPT[k++] = DHCP_SIP[3];
}
// host name
pDHCPMSG->OPT[k++] = hostName;
pDHCPMSG->OPT[k++] = 0; // length of hostname
for(i = 0 ; HOST_NAME[i] != 0; i++)
pDHCPMSG->OPT[k++] = HOST_NAME[i];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[3];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[4];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[5];
pDHCPMSG->OPT[k - (i+3+1)] = i+3; // length of hostname
pDHCPMSG->OPT[k++] = dhcpParamRequest;
pDHCPMSG->OPT[k++] = 0x08;
pDHCPMSG->OPT[k++] = subnetMask;
pDHCPMSG->OPT[k++] = routersOnSubnet;
pDHCPMSG->OPT[k++] = dns;
pDHCPMSG->OPT[k++] = domainName;
pDHCPMSG->OPT[k++] = dhcpT1value;
pDHCPMSG->OPT[k++] = dhcpT2value;
pDHCPMSG->OPT[k++] = performRouterDiscovery;
pDHCPMSG->OPT[k++] = staticRoute;
pDHCPMSG->OPT[k++] = endOption;
for (i = k; i < OPT_SIZE; i++) pDHCPMSG->OPT[i] = 0;
#ifdef _DHCP_DEBUG_
printf("> Send DHCP_REQUEST\r\n");
#endif
WIZCHIP_EXPORT(sendto)(DHCP_SOCKET, (uint8_t *)pDHCPMSG, RIP_MSG_SIZE, ip, DHCP_SERVER_PORT);
}
/* SEND DHCP DHCPDECLINE */
void send_DHCP_DECLINE(void)
{
int i;
uint8_t ip[4];
uint16_t k = 0;
makeDHCPMSG();
k = 4; // because MAGIC_COOKIE already made by makeDHCPMSG()
*((uint8_t*)(&pDHCPMSG->flags)) = ((DHCP_FLAGSUNICAST & 0xFF00)>> 8);
*((uint8_t*)(&pDHCPMSG->flags)+1) = (DHCP_FLAGSUNICAST & 0x00FF);
// Option Request Param.
pDHCPMSG->OPT[k++] = dhcpMessageType;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_DECLINE;
pDHCPMSG->OPT[k++] = dhcpClientIdentifier;
pDHCPMSG->OPT[k++] = 0x07;
pDHCPMSG->OPT[k++] = 0x01;
pDHCPMSG->OPT[k++] = DHCP_CHADDR[0];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[1];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[2];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[3];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[4];
pDHCPMSG->OPT[k++] = DHCP_CHADDR[5];
pDHCPMSG->OPT[k++] = dhcpRequestedIPaddr;
pDHCPMSG->OPT[k++] = 0x04;
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[0];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[1];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[2];
pDHCPMSG->OPT[k++] = DHCP_allocated_ip[3];
pDHCPMSG->OPT[k++] = dhcpServerIdentifier;
pDHCPMSG->OPT[k++] = 0x04;
pDHCPMSG->OPT[k++] = DHCP_SIP[0];
pDHCPMSG->OPT[k++] = DHCP_SIP[1];
pDHCPMSG->OPT[k++] = DHCP_SIP[2];
pDHCPMSG->OPT[k++] = DHCP_SIP[3];
pDHCPMSG->OPT[k++] = endOption;
for (i = k; i < OPT_SIZE; i++) pDHCPMSG->OPT[i] = 0;
//send broadcasting packet
ip[0] = 0xFF;
ip[1] = 0xFF;
ip[2] = 0xFF;
ip[3] = 0xFF;
#ifdef _DHCP_DEBUG_
printf("\r\n> Send DHCP_DECLINE\r\n");
#endif
WIZCHIP_EXPORT(sendto)(DHCP_SOCKET, (uint8_t *)pDHCPMSG, RIP_MSG_SIZE, ip, DHCP_SERVER_PORT);
}
/* PARSE REPLY pDHCPMSG */
int8_t parseDHCPMSG(void)
{
uint8_t svr_addr[6];
uint16_t svr_port;
uint16_t len;
uint8_t * p;
uint8_t * e;
uint8_t type = 0;
uint8_t opt_len;
if((len = getSn_RX_RSR(DHCP_SOCKET)) > 0)
{
len = WIZCHIP_EXPORT(recvfrom)(DHCP_SOCKET, (uint8_t *)pDHCPMSG, len, svr_addr, &svr_port);
#ifdef _DHCP_DEBUG_
printf("DHCP message : %d.%d.%d.%d(%d) %d received. \r\n",svr_addr[0],svr_addr[1],svr_addr[2], svr_addr[3],svr_port, len);
#endif
}
else return 0;
if (svr_port == DHCP_SERVER_PORT) {
// compare mac address
if ( (pDHCPMSG->chaddr[0] != DHCP_CHADDR[0]) || (pDHCPMSG->chaddr[1] != DHCP_CHADDR[1]) ||
(pDHCPMSG->chaddr[2] != DHCP_CHADDR[2]) || (pDHCPMSG->chaddr[3] != DHCP_CHADDR[3]) ||
(pDHCPMSG->chaddr[4] != DHCP_CHADDR[4]) || (pDHCPMSG->chaddr[5] != DHCP_CHADDR[5]) )
return 0;
type = 0;
p = (uint8_t *)(&pDHCPMSG->op);
p = p + 240; // 240 = sizeof(RIP_MSG) + MAGIC_COOKIE size in RIP_MSG.opt - sizeof(RIP_MSG.opt)
e = p + (len - 240);
while ( p < e ) {
switch ( *p ) {
case endOption :
p = e; // for break while(p < e)
break;
case padOption :
p++;
break;
case dhcpMessageType :
p++;
p++;
type = *p++;
break;
case subnetMask :
p++;
p++;
DHCP_allocated_sn[0] = *p++;
DHCP_allocated_sn[1] = *p++;
DHCP_allocated_sn[2] = *p++;
DHCP_allocated_sn[3] = *p++;
break;
case routersOnSubnet :
p++;
opt_len = *p++;
DHCP_allocated_gw[0] = *p++;
DHCP_allocated_gw[1] = *p++;
DHCP_allocated_gw[2] = *p++;
DHCP_allocated_gw[3] = *p++;
p = p + (opt_len - 4);
break;
case dns :
p++;
opt_len = *p++;
DHCP_allocated_dns[0] = *p++;
DHCP_allocated_dns[1] = *p++;
DHCP_allocated_dns[2] = *p++;
DHCP_allocated_dns[3] = *p++;
p = p + (opt_len - 4);
break;
case dhcpIPaddrLeaseTime :
p++;
opt_len = *p++;
dhcp_lease_time = *p++;
dhcp_lease_time = (dhcp_lease_time << 8) + *p++;
dhcp_lease_time = (dhcp_lease_time << 8) + *p++;
dhcp_lease_time = (dhcp_lease_time << 8) + *p++;
#ifdef _DHCP_DEBUG_
dhcp_lease_time = 10;
#endif
break;
case dhcpServerIdentifier :
p++;
opt_len = *p++;
DHCP_SIP[0] = *p++;
DHCP_SIP[1] = *p++;
DHCP_SIP[2] = *p++;
DHCP_SIP[3] = *p++;
break;
default :
p++;
opt_len = *p++;
p += opt_len;
break;
} // switch
} // while
} // if
return type;
}
uint8_t DHCP_run(void)
{
uint8_t type;
uint8_t ret;
if(dhcp_state == STATE_DHCP_STOP) return DHCP_STOPPED;
if(getSn_SR(DHCP_SOCKET) != SOCK_UDP)
WIZCHIP_EXPORT(socket)(DHCP_SOCKET, Sn_MR_UDP, DHCP_CLIENT_PORT, 0x00);
ret = DHCP_RUNNING;
type = parseDHCPMSG();
switch ( dhcp_state ) {
case STATE_DHCP_INIT :
DHCP_allocated_ip[0] = 0;
DHCP_allocated_ip[1] = 0;
DHCP_allocated_ip[2] = 0;
DHCP_allocated_ip[3] = 0;
send_DHCP_DISCOVER();
dhcp_state = STATE_DHCP_DISCOVER;
break;
case STATE_DHCP_DISCOVER :
if (type == DHCP_OFFER){
#ifdef _DHCP_DEBUG_
printf("> Receive DHCP_OFFER\r\n");
#endif
DHCP_allocated_ip[0] = pDHCPMSG->yiaddr[0];
DHCP_allocated_ip[1] = pDHCPMSG->yiaddr[1];
DHCP_allocated_ip[2] = pDHCPMSG->yiaddr[2];
DHCP_allocated_ip[3] = pDHCPMSG->yiaddr[3];
send_DHCP_REQUEST();
dhcp_state = STATE_DHCP_REQUEST;
} else ret = check_DHCP_timeout();
break;
case STATE_DHCP_REQUEST :
if (type == DHCP_ACK) {
#ifdef _DHCP_DEBUG_
printf("> Receive DHCP_ACK\r\n");
#endif
if (check_DHCP_leasedIP()) {
// Network info assignment from DHCP
dhcp_ip_assign();
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_LEASED;
} else {
// IP address conflict occurred
reset_DHCP_timeout();
dhcp_ip_conflict();
dhcp_state = STATE_DHCP_INIT;
}
} else if (type == DHCP_NAK) {
#ifdef _DHCP_DEBUG_
printf("> Receive DHCP_NACK\r\n");
#endif
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_DISCOVER;
} else ret = check_DHCP_timeout();
break;
case STATE_DHCP_LEASED :
ret = DHCP_IP_LEASED;
if ((dhcp_lease_time != INFINITE_LEASETIME) && ((dhcp_lease_time/2) < dhcp_tick_1s)) {
#ifdef _DHCP_DEBUG_
printf("> Maintains the IP address \r\n");
#endif
type = 0;
OLD_allocated_ip[0] = DHCP_allocated_ip[0];
OLD_allocated_ip[1] = DHCP_allocated_ip[1];
OLD_allocated_ip[2] = DHCP_allocated_ip[2];
OLD_allocated_ip[3] = DHCP_allocated_ip[3];
DHCP_XID++;
send_DHCP_REQUEST();
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_REREQUEST;
}
break;
case STATE_DHCP_REREQUEST :
ret = DHCP_IP_LEASED;
if (type == DHCP_ACK) {
dhcp_retry_count = 0;
if (OLD_allocated_ip[0] != DHCP_allocated_ip[0] ||
OLD_allocated_ip[1] != DHCP_allocated_ip[1] ||
OLD_allocated_ip[2] != DHCP_allocated_ip[2] ||
OLD_allocated_ip[3] != DHCP_allocated_ip[3])
{
ret = DHCP_IP_CHANGED;
dhcp_ip_update();
#ifdef _DHCP_DEBUG_
printf(">IP changed.\r\n");
#endif
}
#ifdef _DHCP_DEBUG_
else printf(">IP is continued.\r\n");
#endif
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_LEASED;
} else if (type == DHCP_NAK) {
#ifdef _DHCP_DEBUG_
printf("> Receive DHCP_NACK, Failed to maintain ip\r\n");
#endif
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_DISCOVER;
} else ret = check_DHCP_timeout();
break;
default :
break;
}
return ret;
}
void DHCP_stop(void)
{
WIZCHIP_EXPORT(close)(DHCP_SOCKET);
dhcp_state = STATE_DHCP_STOP;
}
uint8_t check_DHCP_timeout(void)
{
uint8_t ret = DHCP_RUNNING;
if (dhcp_retry_count < MAX_DHCP_RETRY) {
if (dhcp_tick_next < dhcp_tick_1s) {
switch ( dhcp_state ) {
case STATE_DHCP_DISCOVER :
// printf("<<timeout>> state : STATE_DHCP_DISCOVER\r\n");
send_DHCP_DISCOVER();
break;
case STATE_DHCP_REQUEST :
// printf("<<timeout>> state : STATE_DHCP_REQUEST\r\n");
send_DHCP_REQUEST();
break;
case STATE_DHCP_REREQUEST :
// printf("<<timeout>> state : STATE_DHCP_REREQUEST\r\n");
send_DHCP_REQUEST();
break;
default :
break;
}
dhcp_tick_1s = 0;
dhcp_tick_next = dhcp_tick_1s + DHCP_WAIT_TIME;
dhcp_retry_count++;
}
} else { // timeout occurred
switch(dhcp_state) {
case STATE_DHCP_DISCOVER:
dhcp_state = STATE_DHCP_INIT;
ret = DHCP_FAILED;
break;
case STATE_DHCP_REQUEST:
case STATE_DHCP_REREQUEST:
send_DHCP_DISCOVER();
dhcp_state = STATE_DHCP_DISCOVER;
break;
default :
break;
}
reset_DHCP_timeout();
}
return ret;
}
int8_t check_DHCP_leasedIP(void)
{
uint8_t tmp;
int32_t ret;
//WIZchip RCR value changed for ARP Timeout count control
tmp = getRCR();
setRCR(0x03);
// IP conflict detection : ARP request - ARP reply
// Broadcasting ARP Request for check the IP conflict using UDP sendto() function
ret = WIZCHIP_EXPORT(sendto)(DHCP_SOCKET, (uint8_t *)"CHECK_IP_CONFLICT", 17, DHCP_allocated_ip, 5000);
// RCR value restore
setRCR(tmp);
if(ret == SOCKERR_TIMEOUT) {
// UDP send Timeout occurred : allocated IP address is unique, DHCP Success
#ifdef _DHCP_DEBUG_
printf("\r\n> Check leased IP - OK\r\n");
#endif
return 1;
} else {
// Received ARP reply or etc : IP address conflict occur, DHCP Failed
send_DHCP_DECLINE();
ret = dhcp_tick_1s;
while((dhcp_tick_1s - ret) < 2) ; // wait for 1s over; wait to complete to send DECLINE message;
return 0;
}
}
void DHCP_init(uint8_t s, DHCP_INIT_BUFFER_TYPE* buf)
{
uint8_t zeroip[4] = {0,0,0,0};
getSHAR(DHCP_CHADDR);
if((DHCP_CHADDR[0] | DHCP_CHADDR[1] | DHCP_CHADDR[2] | DHCP_CHADDR[3] | DHCP_CHADDR[4] | DHCP_CHADDR[5]) == 0x00)
{
// assign temporary mac address, you should be set SHAR before call this function.
DHCP_CHADDR[0] = 0x00;
DHCP_CHADDR[1] = 0x08;
DHCP_CHADDR[2] = 0xdc;
DHCP_CHADDR[3] = 0x00;
DHCP_CHADDR[4] = 0x00;
DHCP_CHADDR[5] = 0x00;
setSHAR(DHCP_CHADDR);
}
DHCP_SOCKET = s; // SOCK_DHCP
pDHCPMSG = (RIP_MSG*)buf;
DHCP_XID = 0x12345678;
// WIZchip Netinfo Clear
setSIPR(zeroip);
setSIPR(zeroip);
setGAR(zeroip);
reset_DHCP_timeout();
dhcp_state = STATE_DHCP_INIT;
}
/* Rset the DHCP timeout count and retry count. */
void reset_DHCP_timeout(void)
{
dhcp_tick_1s = 0;
dhcp_tick_next = DHCP_WAIT_TIME;
dhcp_retry_count = 0;
}
void DHCP_time_handler(void)
{
dhcp_tick_1s++;
}
void getIPfromDHCP(uint8_t* ip)
{
ip[0] = DHCP_allocated_ip[0];
ip[1] = DHCP_allocated_ip[1];
ip[2] = DHCP_allocated_ip[2];
ip[3] = DHCP_allocated_ip[3];
}
void getGWfromDHCP(uint8_t* ip)
{
ip[0] =DHCP_allocated_gw[0];
ip[1] =DHCP_allocated_gw[1];
ip[2] =DHCP_allocated_gw[2];
ip[3] =DHCP_allocated_gw[3];
}
void getSNfromDHCP(uint8_t* ip)
{
ip[0] = DHCP_allocated_sn[0];
ip[1] = DHCP_allocated_sn[1];
ip[2] = DHCP_allocated_sn[2];
ip[3] = DHCP_allocated_sn[3];
}
void getDNSfromDHCP(uint8_t* ip)
{
ip[0] = DHCP_allocated_dns[0];
ip[1] = DHCP_allocated_dns[1];
ip[2] = DHCP_allocated_dns[2];
ip[3] = DHCP_allocated_dns[3];
}
uint32_t getDHCPLeasetime(void)
{
return dhcp_lease_time;
}

View File

@ -1,152 +0,0 @@
//*****************************************************************************
//
//! \file dhcp.h
//! \brief DHCP APIs Header file.
//! \details Processig DHCP protocol as DISCOVER, OFFER, REQUEST, ACK, NACK and DECLINE.
//! \version 1.1.0
//! \date 2013/11/18
//! \par Revision history
//! <2013/11/18> 1st Release
//! <2012/12/20> V1.1.0
//! 1. Move unreferenced DEFINE to dhcp.c
//! <2012/12/26> V1.1.1
//! \author Eric Jung & MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#ifndef _DHCP_H_
#define _DHCP_H_
/*
* @brief
* @details If you want to display debug & processing message, Define _DHCP_DEBUG_
* @note If defined, it depends on <stdio.h>
*/
//#define _DHCP_DEBUG_
/* Retry to processing DHCP */
#define MAX_DHCP_RETRY 2 ///< Maximum retry count
#define DHCP_WAIT_TIME 3 ///< Wait Time 3s (was 10s)
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 ///< DHCP server port number
#define DHCP_CLIENT_PORT 68 ///< DHCP client port number
#define MAGIC_COOKIE 0x63825363 ///< Any number. You can be modified it any number
#define DCHP_HOST_NAME "WIZnet\0"
/*
* @brief return value of @ref DHCP_run()
*/
enum
{
DHCP_FAILED = 0, ///< Processing Fail
DHCP_RUNNING, ///< Processing DHCP protocol
DHCP_IP_ASSIGN, ///< First Occupy IP from DHPC server (if cbfunc == null, act as default default_ip_assign)
DHCP_IP_CHANGED, ///< Change IP address by new IP address from DHCP (if cbfunc == null, act as default default_ip_update)
DHCP_IP_LEASED, ///< Stand by
DHCP_STOPPED ///< Stop processing DHCP protocol
};
#define DHCP_INIT_BUFFER_TYPE uint32_t
#define DHCP_INIT_BUFFER_SIZE (137)
/*
* @brief DHCP client initialization (outside of the main loop)
* @param s - socket number
* @param buf - buffer for processing DHCP message
*/
void DHCP_init(uint8_t s, DHCP_INIT_BUFFER_TYPE* buf);
/*
* @brief DHCP 1s Tick Timer handler
* @note SHOULD BE register to your system 1s Tick timer handler
*/
void DHCP_time_handler(void);
/*
* @brief Register call back function
* @param ip_assign - callback func when IP is assigned from DHCP server first
* @param ip_update - callback func when IP is changed
* @prarm ip_conflict - callback func when the assigned IP is conflict with others.
*/
void reg_dhcp_cbfunc(void(*ip_assign)(void), void(*ip_update)(void), void(*ip_conflict)(void));
/*
* @brief DHCP client in the main loop
* @return The value is as the follow \n
* @ref DHCP_FAILED \n
* @ref DHCP_RUNNING \n
* @ref DHCP_IP_ASSIGN \n
* @ref DHCP_IP_CHANGED \n
* @ref DHCP_IP_LEASED \n
* @ref DHCP_STOPPED \n
*
* @note This function is always called by you main task.
*/
uint8_t DHCP_run(void);
/*
* @brief Stop DHCP processing
* @note If you want to restart. call DHCP_init() and DHCP_run()
*/
void DHCP_stop(void);
/* Get Network information assigned from DHCP server */
/*
* @brief Get IP address
* @param ip - IP address to be returned
*/
void getIPfromDHCP(uint8_t* ip);
/*
* @brief Get Gateway address
* @param ip - Gateway address to be returned
*/
void getGWfromDHCP(uint8_t* ip);
/*
* @brief Get Subnet mask value
* @param ip - Subnet mask to be returned
*/
void getSNfromDHCP(uint8_t* ip);
/*
* @brief Get DNS address
* @param ip - DNS address to be returned
*/
void getDNSfromDHCP(uint8_t* ip);
/*
* @brief Get the leased time by DHCP sever
* @return unit 1s
*/
uint32_t getDHCPLeasetime(void);
#endif /* _DHCP_H_ */

View File

@ -1,572 +0,0 @@
//*****************************************************************************
//
//! \file dns.c
//! \brief DNS APIs Implement file.
//! \details Send DNS query & Receive DNS reponse. \n
//! It depends on stdlib.h & string.h in ansi-c library
//! \version 1.1.0
//! \date 2013/11/18
//! \par Revision history
//! <2013/10/21> 1st Release
//! <2013/12/20> V1.1.0
//! 1. Remove secondary DNS server in DNS_run
//! If 1st DNS_run failed, call DNS_run with 2nd DNS again
//! 2. DNS_timerHandler -> DNS_time_handler
//! 3. Remove the unused define
//! 4. Integrated dns.h dns.c & dns_parse.h dns_parse.c into dns.h & dns.c
//! <2013/12/20> V1.1.0
//! <2018/10/04> Modified HAL_GetTick for use with CircuitPython by Nick Moore
//!
//! \author Eric Jung & MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#include <string.h>
#include <stdlib.h>
#include "supervisor/shared/tick.h"
//#include "Ethernet/socket.h"
//#include "Internet/DNS/dns.h"
#include "../../ethernet/socket.h"
#include "dns.h"
#ifdef _DNS_DEBUG_
#include <stdio.h>
#endif
#define INITRTT 2000L /* Initial smoothed response time */
#define MAXCNAME (MAX_DOMAIN_NAME + (MAX_DOMAIN_NAME>>1)) /* Maximum amount of cname recursion */
#define TYPE_A 1 /* Host address */
#define TYPE_NS 2 /* Name server */
#define TYPE_MD 3 /* Mail destination (obsolete) */
#define TYPE_MF 4 /* Mail forwarder (obsolete) */
#define TYPE_CNAME 5 /* Canonical name */
#define TYPE_SOA 6 /* Start of Authority */
#define TYPE_MB 7 /* Mailbox name (experimental) */
#define TYPE_MG 8 /* Mail group member (experimental) */
#define TYPE_MR 9 /* Mail rename name (experimental) */
#define TYPE_NULL 10 /* Null (experimental) */
#define TYPE_WKS 11 /* Well-known sockets */
#define TYPE_PTR 12 /* Pointer record */
#define TYPE_HINFO 13 /* Host information */
#define TYPE_MINFO 14 /* Mailbox information (experimental)*/
#define TYPE_MX 15 /* Mail exchanger */
#define TYPE_TXT 16 /* Text strings */
#define TYPE_ANY 255 /* Matches any type */
#define CLASS_IN 1 /* The ARPA Internet */
/* Round trip timing parameters */
#define AGAIN 8 /* Average RTT gain = 1/8 */
#define LAGAIN 3 /* Log2(AGAIN) */
#define DGAIN 4 /* Mean deviation gain = 1/4 */
#define LDGAIN 2 /* log2(DGAIN) */
/* Header for all domain messages */
struct dhdr
{
uint16_t id; /* Identification */
uint8_t qr; /* Query/Response */
#define QUERY 0
#define RESPONSE 1
uint8_t opcode;
#define IQUERY 1
uint8_t aa; /* Authoratative answer */
uint8_t tc; /* Truncation */
uint8_t rd; /* Recursion desired */
uint8_t ra; /* Recursion available */
uint8_t rcode; /* Response code */
#define NO_ERROR 0
#define FORMAT_ERROR 1
#define SERVER_FAIL 2
#define NAME_ERROR 3
#define NOT_IMPL 4
#define REFUSED 5
uint16_t qdcount; /* Question count */
uint16_t ancount; /* Answer count */
uint16_t nscount; /* Authority (name server) count */
uint16_t arcount; /* Additional record count */
};
uint8_t* pDNSMSG; // DNS message buffer
uint8_t DNS_SOCKET; // SOCKET number for DNS
uint16_t DNS_MSGID; // DNS message ID
uint32_t HAL_GetTick(void) {
return supervisor_ticks_ms32();
}
uint32_t hal_sys_tick;
/* converts uint16_t from network buffer to a host byte order integer. */
uint16_t get16(uint8_t * s)
{
uint16_t i;
i = *s++ << 8;
i = i + *s;
return i;
}
/* copies uint16_t to the network buffer with network byte order. */
uint8_t * put16(uint8_t * s, uint16_t i)
{
*s++ = i >> 8;
*s++ = i;
return s;
}
/*
* CONVERT A DOMAIN NAME TO THE HUMAN-READABLE FORM
*
* Description : This function converts a compressed domain name to the human-readable form
* Arguments : msg - is a pointer to the reply message
* compressed - is a pointer to the domain name in reply message.
* buf - is a pointer to the buffer for the human-readable form name.
* len - is the MAX. size of buffer.
* Returns : the length of compressed message
*/
int parse_name(uint8_t * msg, uint8_t * compressed, char * buf, int16_t len)
{
uint16_t slen; /* Length of current segment */
uint8_t * cp;
int clen = 0; /* Total length of compressed name */
int indirect = 0; /* Set if indirection encountered */
int nseg = 0; /* Total number of segments in name */
cp = compressed;
for (;;)
{
slen = *cp++; /* Length of this segment */
if (!indirect) clen++;
if ((slen & 0xc0) == 0xc0)
{
if (!indirect)
clen++;
indirect = 1;
/* Follow indirection */
cp = &msg[((slen & 0x3f)<<8) + *cp];
slen = *cp++;
}
if (slen == 0) /* zero length == all done */
break;
len -= slen + 1;
if (len < 0) return -1;
if (!indirect) clen += slen;
while (slen-- != 0) *buf++ = (char)*cp++;
*buf++ = '.';
nseg++;
}
if (nseg == 0)
{
/* Root name; represent as single dot */
*buf++ = '.';
len--;
}
*buf++ = '\0';
len--;
return clen; /* Length of compressed message */
}
/*
* PARSE QUESTION SECTION
*
* Description : This function parses the question record of the reply message.
* Arguments : msg - is a pointer to the reply message
* cp - is a pointer to the question record.
* Returns : a pointer the to next record.
*/
uint8_t * dns_question(uint8_t * msg, uint8_t * cp)
{
int len;
char name[MAXCNAME];
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
cp += 2; /* type */
cp += 2; /* class */
return cp;
}
/*
* PARSE ANSER SECTION
*
* Description : This function parses the answer record of the reply message.
* Arguments : msg - is a pointer to the reply message
* cp - is a pointer to the answer record.
* Returns : a pointer the to next record.
*/
uint8_t * dns_answer(uint8_t * msg, uint8_t * cp, uint8_t * ip_from_dns)
{
int len, type;
char name[MAXCNAME];
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
type = get16(cp);
cp += 2; /* type */
cp += 2; /* class */
cp += 4; /* ttl */
cp += 2; /* len */
switch (type)
{
case TYPE_A:
/* Just read the address directly into the structure */
ip_from_dns[0] = *cp++;
ip_from_dns[1] = *cp++;
ip_from_dns[2] = *cp++;
ip_from_dns[3] = *cp++;
break;
case TYPE_CNAME:
case TYPE_MB:
case TYPE_MG:
case TYPE_MR:
case TYPE_NS:
case TYPE_PTR:
/* These types all consist of a single domain name */
/* convert it to ASCII format */
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
break;
case TYPE_HINFO:
len = *cp++;
cp += len;
len = *cp++;
cp += len;
break;
case TYPE_MX:
cp += 2;
/* Get domain name of exchanger */
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
break;
case TYPE_SOA:
/* Get domain name of name server */
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
/* Get domain name of responsible person */
len = parse_name(msg, cp, name, MAXCNAME);
if (len == -1) return 0;
cp += len;
cp += 4;
cp += 4;
cp += 4;
cp += 4;
cp += 4;
break;
case TYPE_TXT:
/* Just stash */
break;
default:
/* Ignore */
break;
}
return cp;
}
/*
* PARSE THE DNS REPLY
*
* Description : This function parses the reply message from DNS server.
* Arguments : dhdr - is a pointer to the header for DNS message
* buf - is a pointer to the reply message.
* len - is the size of reply message.
* Returns : -1 - Domain name length is too big
* 0 - Fail (Timeout or parse error)
* 1 - Success,
*/
int8_t parseDNSMSG(struct dhdr * pdhdr, uint8_t * pbuf, uint8_t * ip_from_dns)
{
uint16_t tmp;
uint16_t i;
uint8_t * msg;
uint8_t * cp;
msg = pbuf;
memset(pdhdr, 0, sizeof(*pdhdr));
pdhdr->id = get16(&msg[0]);
tmp = get16(&msg[2]);
if (tmp & 0x8000) pdhdr->qr = 1;
pdhdr->opcode = (tmp >> 11) & 0xf;
if (tmp & 0x0400) pdhdr->aa = 1;
if (tmp & 0x0200) pdhdr->tc = 1;
if (tmp & 0x0100) pdhdr->rd = 1;
if (tmp & 0x0080) pdhdr->ra = 1;
pdhdr->rcode = tmp & 0xf;
pdhdr->qdcount = get16(&msg[4]);
pdhdr->ancount = get16(&msg[6]);
pdhdr->nscount = get16(&msg[8]);
pdhdr->arcount = get16(&msg[10]);
/* Now parse the variable length sections */
cp = &msg[12];
/* Question section */
for (i = 0; i < pdhdr->qdcount; i++)
{
cp = dns_question(msg, cp);
if(!cp)
{
#ifdef _DNS_DEBUG_
printf("MAX_DOMAIN_NAME is too small, it should be redefined in dns.h\r\n");
#endif
return -1;
}
}
/* Answer section */
for (i = 0; i < pdhdr->ancount; i++)
{
cp = dns_answer(msg, cp, ip_from_dns);
if(!cp)
{
#ifdef _DNS_DEBUG_
printf("MAX_DOMAIN_NAME is too small, it should be redefined in dns.h\r\n");
#endif
return -1;
}
}
/* Name server (authority) section */
for (i = 0; i < pdhdr->nscount; i++)
{
;
}
/* Additional section */
for (i = 0; i < pdhdr->arcount; i++)
{
;
}
if(pdhdr->rcode == 0) return 1; // No error
else return 0;
}
/*
* MAKE DNS QUERY MESSAGE
*
* Description : This function makes DNS query message.
* Arguments : op - Recursion desired
* name - is a pointer to the domain name.
* buf - is a pointer to the buffer for DNS message.
* len - is the MAX. size of buffer.
* Returns : the pointer to the DNS message.
*/
int16_t dns_makequery(uint16_t op, char * name, uint8_t * buf, uint16_t len)
{
uint8_t *cp;
char *cp1;
char sname[MAXCNAME];
char *dname;
uint16_t p;
uint16_t dlen;
cp = buf;
DNS_MSGID++;
cp = put16(cp, DNS_MSGID);
p = (op << 11) | 0x0100; /* Recursion desired */
cp = put16(cp, p);
cp = put16(cp, 1);
cp = put16(cp, 0);
cp = put16(cp, 0);
cp = put16(cp, 0);
strcpy(sname, name);
dname = sname;
dlen = strlen(dname);
for (;;)
{
/* Look for next dot */
cp1 = strchr(dname, '.');
if (cp1 != NULL) len = cp1 - dname; /* More to come */
else len = dlen; /* Last component */
*cp++ = len; /* Write length of component */
if (len == 0) break;
/* Copy component up to (but not including) dot */
memcpy(cp, dname, len);
cp += len;
if (cp1 == NULL)
{
*cp++ = 0; /* Last one; write null and finish */
break;
}
dname += len+1;
dlen -= len+1;
}
cp = put16(cp, 0x0001); /* type */
cp = put16(cp, 0x0001); /* class */
return ((int16_t)((uint32_t)(cp) - (uint32_t)(buf)));
}
/*
* CHECK DNS TIMEOUT
*
* Description : This function check the DNS timeout
* Arguments : None.
* Returns : -1 - timeout occurred, 0 - timer over, but no timeout, 1 - no timer over, no timeout occur
* Note : timeout : retry count and timer both over.
*/
int8_t check_DNS_timeout(void)
{
static uint8_t retry_count;
uint32_t tick = HAL_GetTick();
if(tick - hal_sys_tick >= DNS_WAIT_TIME * 1000)
{
hal_sys_tick = tick;
if(retry_count >= MAX_DNS_RETRY) {
retry_count = 0;
return -1; // timeout occurred
}
retry_count++;
return 0; // timer over, but no timeout
}
return 1; // no timer over, no timeout occur
}
/* DNS CLIENT INIT */
void DNS_init(uint8_t s, uint8_t * buf)
{
DNS_SOCKET = s; // SOCK_DNS
pDNSMSG = buf; // User's shared buffer
DNS_MSGID = DNS_MSG_ID;
}
/* DNS CLIENT RUN */
int8_t DNS_run(uint8_t * dns_ip, uint8_t * name, uint8_t * ip_from_dns)
{
int8_t ret;
struct dhdr dhp;
uint8_t ip[4];
uint16_t len, port;
int8_t ret_check_timeout;
hal_sys_tick = HAL_GetTick();
// Socket open
WIZCHIP_EXPORT(socket)(DNS_SOCKET, Sn_MR_UDP, 0, 0);
#ifdef _DNS_DEBUG_
printf("> DNS Query to DNS Server : %d.%d.%d.%d\r\n", dns_ip[0], dns_ip[1], dns_ip[2], dns_ip[3]);
#endif
len = dns_makequery(0, (char *)name, pDNSMSG, MAX_DNS_BUF_SIZE);
WIZCHIP_EXPORT(sendto)(DNS_SOCKET, pDNSMSG, len, dns_ip, IPPORT_DOMAIN);
while (1)
{
if ((len = getSn_RX_RSR(DNS_SOCKET)) > 0)
{
if (len > MAX_DNS_BUF_SIZE) len = MAX_DNS_BUF_SIZE;
len = WIZCHIP_EXPORT(recvfrom)(DNS_SOCKET, pDNSMSG, len, ip, &port);
#ifdef _DNS_DEBUG_
printf("> Receive DNS message from %d.%d.%d.%d(%d). len = %d\r\n", ip[0], ip[1], ip[2], ip[3],port,len);
#endif
ret = parseDNSMSG(&dhp, pDNSMSG, ip_from_dns);
break;
}
// Check Timeout
ret_check_timeout = check_DNS_timeout();
if (ret_check_timeout < 0) {
#ifdef _DNS_DEBUG_
printf("> DNS Server is not responding : %d.%d.%d.%d\r\n", dns_ip[0], dns_ip[1], dns_ip[2], dns_ip[3]);
#endif
return 0; // timeout occurred
}
else if (ret_check_timeout == 0) {
#ifdef _DNS_DEBUG_
printf("> DNS Timeout\r\n");
#endif
WIZCHIP_EXPORT(sendto)(DNS_SOCKET, pDNSMSG, len, dns_ip, IPPORT_DOMAIN);
}
}
WIZCHIP_EXPORT(close)(DNS_SOCKET);
// Return value
// 0 > : failed / 1 - success
return ret;
}

View File

@ -1,96 +0,0 @@
//*****************************************************************************
//
//! \file dns.h
//! \brief DNS APIs Header file.
//! \details Send DNS query & Receive DNS reponse.
//! \version 1.1.0
//! \date 2013/11/18
//! \par Revision history
//! <2013/10/21> 1st Release
//! <2013/12/20> V1.1.0
//! 1. Remove secondary DNS server in DNS_run
//! If 1st DNS_run failed, call DNS_run with 2nd DNS again
//! 2. DNS_timerHandler -> DNS_time_handler
//! 3. Move the no reference define to dns.c
//! 4. Integrated dns.h dns.c & dns_parse.h dns_parse.c into dns.h & dns.c
//! <2013/12/20> V1.1.0
//!
//! \author Eric Jung & MidnightCow
//! \copyright
//!
//! Copyright (c) 2013, WIZnet Co., LTD.
//! All rights reserved.
//!
//! Redistribution and use in source and binary forms, with or without
//! modification, are permitted provided that the following conditions
//! are met:
//!
//! * Redistributions of source code must retain the above copyright
//! notice, this list of conditions and the following disclaimer.
//! * Redistributions in binary form must reproduce the above copyright
//! notice, this list of conditions and the following disclaimer in the
//! documentation and/or other materials provided with the distribution.
//! * Neither the name of the <ORGANIZATION> nor the names of its
//! contributors may be used to endorse or promote products derived
//! from this software without specific prior written permission.
//!
//! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
//! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
//! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
//! THE POSSIBILITY OF SUCH DAMAGE.
//
//*****************************************************************************
#ifndef _DNS_H_
#define _DNS_H_
#include <stdint.h>
/*
* @brief Define it for Debug & Monitor DNS processing.
* @note If defined, it depends on <stdio.h>
*/
//#define _DNS_DEBUG_
#define MAX_DNS_BUF_SIZE 256 ///< maximum size of DNS buffer. */
/*
* @brief Maximum length of your queried Domain name
* @todo SHOULD BE defined it equal as or greater than your Domain name length + null character(1)
* @note SHOULD BE careful to stack overflow because it is allocated 1.5 times as MAX_DOMAIN_NAME in stack.
*/
#define MAX_DOMAIN_NAME 32 // for example "www.google.com"
#define MAX_DNS_RETRY 2 ///< Requery Count
#define DNS_WAIT_TIME 4 ///< Wait response time. unit 1s.
#define IPPORT_DOMAIN 53 ///< DNS server port number
#define DNS_MSG_ID 0x1122 ///< ID for DNS message. You can be modified it any number
/*
* @brief DNS process initialize
* @param s : Socket number for DNS
* @param buf : Buffer for DNS message
*/
void DNS_init(uint8_t s, uint8_t * buf);
/*
* @brief DNS process
* @details Send DNS query and receive DNS response
* @param dns_ip : DNS server ip address
* @param name : Domain name to be queried
* @param ip_from_dns : IP address from DNS server
* @return -1 : failed. @ref MAX_DOMIN_NAME is too small \n
* 0 : failed (Timeout or Parse error)\n
* 1 : success
* @note This function blocks until success or fail. max time = @ref MAX_DNS_RETRY * @ref DNS_WAIT_TIME
*/
int8_t DNS_run(uint8_t * dns_ip, uint8_t * name, uint8_t * ip_from_dns);
#endif /* _DNS_H_ */

View File

@ -0,0 +1,117 @@
/*
* Automatically generated header file: don't edit
*/
#define HAVE_DOT_CONFIG 1
#define CONFIG_PLATFORM_LINUX 1
#undef CONFIG_PLATFORM_CYGWIN
#undef CONFIG_PLATFORM_WIN32
/*
* General Configuration
*/
#define PREFIX "/usr/local"
#undef CONFIG_DEBUG
#undef CONFIG_STRIP_UNWANTED_SECTIONS
#undef CONFIG_VISUAL_STUDIO_7_0
#undef CONFIG_VISUAL_STUDIO_8_0
#undef CONFIG_VISUAL_STUDIO_10_0
#define CONFIG_VISUAL_STUDIO_7_0_BASE ""
#define CONFIG_VISUAL_STUDIO_8_0_BASE ""
#define CONFIG_VISUAL_STUDIO_10_0_BASE ""
#define CONFIG_EXTRA_CFLAGS_OPTIONS ""
#define CONFIG_EXTRA_LDFLAGS_OPTIONS ""
/*
* SSL Library
*/
#undef CONFIG_SSL_SERVER_ONLY
#undef CONFIG_SSL_CERT_VERIFICATION
#undef CONFIG_SSL_FULL_MODE
#define CONFIG_SSL_SKELETON_MODE 1
#define CONFIG_SSL_ENABLE_SERVER 1
#define CONFIG_SSL_ENABLE_CLIENT 1
#undef CONFIG_SSL_DIAGNOSTICS
#define CONFIG_SSL_PROT_LOW 1
#undef CONFIG_SSL_PROT_MEDIUM
#undef CONFIG_SSL_PROT_HIGH
#define CONFIG_SSL_AES 1
#define CONFIG_SSL_USE_DEFAULT_KEY 1
#define CONFIG_SSL_PRIVATE_KEY_LOCATION ""
#define CONFIG_SSL_PRIVATE_KEY_PASSWORD ""
#define CONFIG_SSL_X509_CERT_LOCATION ""
#undef CONFIG_SSL_GENERATE_X509_CERT
#define CONFIG_SSL_X509_COMMON_NAME ""
#define CONFIG_SSL_X509_ORGANIZATION_NAME ""
#define CONFIG_SSL_X509_ORGANIZATION_UNIT_NAME ""
#undef CONFIG_SSL_HAS_PEM
#undef CONFIG_SSL_USE_PKCS12
#define CONFIG_SSL_EXPIRY_TIME
#define CONFIG_X509_MAX_CA_CERTS 0
#define CONFIG_SSL_MAX_CERTS 3
#undef CONFIG_SSL_CTX_MUTEXING
#undef CONFIG_USE_DEV_URANDOM
#undef CONFIG_WIN32_USE_CRYPTO_LIB
#undef CONFIG_OPENSSL_COMPATIBLE
#undef CONFIG_PERFORMANCE_TESTING
#undef CONFIG_SSL_TEST
#undef CONFIG_AXTLSWRAP
#undef CONFIG_AXHTTPD
#undef CONFIG_HTTP_STATIC_BUILD
#define CONFIG_HTTP_PORT
#define CONFIG_HTTP_HTTPS_PORT
#define CONFIG_HTTP_SESSION_CACHE_SIZE
#define CONFIG_HTTP_WEBROOT ""
#define CONFIG_HTTP_TIMEOUT
#undef CONFIG_HTTP_HAS_CGI
#define CONFIG_HTTP_CGI_EXTENSIONS ""
#undef CONFIG_HTTP_ENABLE_LUA
#define CONFIG_HTTP_LUA_PREFIX ""
#undef CONFIG_HTTP_BUILD_LUA
#define CONFIG_HTTP_CGI_LAUNCHER ""
#undef CONFIG_HTTP_DIRECTORIES
#undef CONFIG_HTTP_HAS_AUTHORIZATION
#undef CONFIG_HTTP_HAS_IPV6
#undef CONFIG_HTTP_ENABLE_DIFFERENT_USER
#define CONFIG_HTTP_USER ""
#undef CONFIG_HTTP_VERBOSE
#undef CONFIG_HTTP_IS_DAEMON
/*
* Language Bindings
*/
#undef CONFIG_BINDINGS
#undef CONFIG_CSHARP_BINDINGS
#undef CONFIG_VBNET_BINDINGS
#define CONFIG_DOT_NET_FRAMEWORK_BASE ""
#undef CONFIG_JAVA_BINDINGS
#define CONFIG_JAVA_HOME ""
#undef CONFIG_PERL_BINDINGS
#define CONFIG_PERL_CORE ""
#define CONFIG_PERL_LIB ""
#undef CONFIG_LUA_BINDINGS
#define CONFIG_LUA_CORE ""
/*
* Samples
*/
#undef CONFIG_SAMPLES
#undef CONFIG_C_SAMPLES
#undef CONFIG_CSHARP_SAMPLES
#undef CONFIG_VBNET_SAMPLES
#undef CONFIG_JAVA_SAMPLES
#undef CONFIG_PERL_SAMPLES
#undef CONFIG_LUA_SAMPLES
#undef CONFIG_BIGINT_CLASSICAL
#undef CONFIG_BIGINT_MONTGOMERY
#undef CONFIG_BIGINT_BARRETT
#undef CONFIG_BIGINT_CRT
#undef CONFIG_BIGINT_KARATSUBA
#define MUL_KARATSUBA_THRESH
#define SQU_KARATSUBA_THRESH
#undef CONFIG_BIGINT_SLIDING_WINDOW
#undef CONFIG_BIGINT_SQUARE
#undef CONFIG_BIGINT_CHECK_ON
#undef CONFIG_INTEGER_32BIT
#undef CONFIG_INTEGER_16BIT
#undef CONFIG_INTEGER_8BIT

View File

@ -0,0 +1 @@
#define AXTLS_VERSION "(no version)"

View File

@ -1,94 +0,0 @@
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
//
// SPDX-License-Identifier: MIT
#include "py/runtime.h"
#include "extmod/machine_mem.h"
#if MICROPY_PY_MACHINE
// If you wish to override the functions for mapping the machine_mem read/write
// address, then add a #define for MICROPY_MACHINE_MEM_GET_READ_ADDR and/or
// MICROPY_MACHINE_MEM_GET_WRITE_ADDR in your mpconfigport.h. Since the
// prototypes are identical, it is allowable for both of the macros to evaluate
// the to same function.
//
// It is expected that the modmachine.c file for a given port will provide the
// implementations, if the default implementation isn't used.
#if !defined(MICROPY_MACHINE_MEM_GET_READ_ADDR) || !defined(MICROPY_MACHINE_MEM_GET_WRITE_ADDR)
STATIC uintptr_t machine_mem_get_addr(mp_obj_t addr_o, uint align) {
uintptr_t addr = mp_obj_int_get_truncated(addr_o);
if ((addr & (align - 1)) != 0) {
mp_raise_ValueError_varg(translate("address %08x is not aligned to %d bytes"), addr, align);
}
return addr;
}
#if !defined(MICROPY_MACHINE_MEM_GET_READ_ADDR)
#define MICROPY_MACHINE_MEM_GET_READ_ADDR machine_mem_get_addr
#endif
#if !defined(MICROPY_MACHINE_MEM_GET_WRITE_ADDR)
#define MICROPY_MACHINE_MEM_GET_WRITE_ADDR machine_mem_get_addr
#endif
#endif
STATIC void machine_mem_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind;
machine_mem_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<%u-bit memory>", 8 * self->elem_size);
}
STATIC mp_obj_t machine_mem_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
// TODO support slice index to read/write multiple values at once
machine_mem_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (value == MP_OBJ_NULL) {
// delete
return MP_OBJ_NULL; // op not supported
} else if (value == MP_OBJ_SENTINEL) {
// load
uintptr_t addr = MICROPY_MACHINE_MEM_GET_READ_ADDR(index, self->elem_size);
uint32_t val;
switch (self->elem_size) {
case 1:
val = (*(uint8_t *)addr);
break;
case 2:
val = (*(uint16_t *)addr);
break;
default:
val = (*(uint32_t *)addr);
break;
}
return mp_obj_new_int(val);
} else {
// store
uintptr_t addr = MICROPY_MACHINE_MEM_GET_WRITE_ADDR(index, self->elem_size);
uint32_t val = mp_obj_get_int_truncated(value);
switch (self->elem_size) {
case 1:
(*(uint8_t *)addr) = val;
break;
case 2:
(*(uint16_t *)addr) = val;
break;
default:
(*(uint32_t *)addr) = val;
break;
}
return mp_const_none;
}
}
const mp_obj_type_t machine_mem_type = {
{ &mp_type_type },
.name = MP_QSTR_mem,
.print = machine_mem_print,
.subscr = machine_mem_subscr,
};
const machine_mem_obj_t machine_mem8_obj = {{&machine_mem_type}, 1};
const machine_mem_obj_t machine_mem16_obj = {{&machine_mem_type}, 2};
const machine_mem_obj_t machine_mem32_obj = {{&machine_mem_type}, 4};
#endif // MICROPY_PY_MACHINE

View File

@ -1,29 +0,0 @@
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// SPDX-FileCopyrightText: Copyright (c) 2015 Damien P. George
//
// SPDX-License-Identifier: MIT
#ifndef MICROPY_INCLUDED_EXTMOD_MACHINE_MEM_H
#define MICROPY_INCLUDED_EXTMOD_MACHINE_MEM_H
#include "py/obj.h"
typedef struct _machine_mem_obj_t {
mp_obj_base_t base;
unsigned elem_size; // in bytes
} machine_mem_obj_t;
extern const mp_obj_type_t machine_mem_type;
extern const machine_mem_obj_t machine_mem8_obj;
extern const machine_mem_obj_t machine_mem16_obj;
extern const machine_mem_obj_t machine_mem32_obj;
#if defined(MICROPY_MACHINE_MEM_GET_READ_ADDR)
uintptr_t MICROPY_MACHINE_MEM_GET_READ_ADDR(mp_obj_t addr_o, uint align);
#endif
#if defined(MICROPY_MACHINE_MEM_GET_WRITE_ADDR)
uintptr_t MICROPY_MACHINE_MEM_GET_WRITE_ADDR(mp_obj_t addr_o, uint align);
#endif
#endif // MICROPY_INCLUDED_EXTMOD_MACHINE_MEM_H

View File

@ -1,67 +0,0 @@
// Copyright (c) 2016 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
//
// SPDX-License-Identifier: MIT
#include "py/mpconfig.h"
#if MICROPY_PY_MACHINE
#include "py/obj.h"
#include "py/runtime.h"
#include "extmod/virtpin.h"
#include "extmod/machine_pinbase.h"
// PinBase class
// As this is abstract class, its instance is null.
// But there should be an instance, as the rest of instance code
// expects that there will be concrete object for inheritance.
typedef struct _mp_pinbase_t {
mp_obj_base_t base;
} mp_pinbase_t;
STATIC const mp_pinbase_t pinbase_singleton = {
.base = { &machine_pinbase_type },
};
STATIC mp_obj_t pinbase_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
(void)type;
(void)n_args;
(void)args;
(void)kw_args;
return MP_OBJ_FROM_PTR(&pinbase_singleton);
}
mp_uint_t pinbase_ioctl(mp_obj_t obj, mp_uint_t request, uintptr_t arg, int *errcode);
mp_uint_t pinbase_ioctl(mp_obj_t obj, mp_uint_t request, uintptr_t arg, int *errcode) {
(void)errcode;
switch (request) {
case MP_PIN_READ: {
mp_obj_t dest[2];
mp_load_method(obj, MP_QSTR_value, dest);
return mp_obj_get_int(mp_call_method_n_kw(0, 0, dest));
}
case MP_PIN_WRITE: {
mp_obj_t dest[3];
mp_load_method(obj, MP_QSTR_value, dest);
dest[2] = (arg == 0 ? mp_const_false : mp_const_true);
mp_call_method_n_kw(1, 0, dest);
return 0;
}
}
return -1;
}
STATIC const mp_pin_p_t pinbase_pin_p = {
MP_PROTO_IMPLEMENT(MP_QSTR_protocol_pin)
.ioctl = pinbase_ioctl,
};
const mp_obj_type_t machine_pinbase_type = {
{ &mp_type_type },
.name = MP_QSTR_PinBase,
.make_new = pinbase_make_new,
.protocol = &pinbase_pin_p,
};
#endif // MICROPY_PY_MACHINE

View File

@ -1,13 +0,0 @@
// Copyright (c) 2016 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
//
// SPDX-License-Identifier: MIT
#ifndef MICROPY_INCLUDED_EXTMOD_MACHINE_PINBASE_H
#define MICROPY_INCLUDED_EXTMOD_MACHINE_PINBASE_H
#include "py/obj.h"
extern const mp_obj_type_t machine_pinbase_type;
#endif // MICROPY_INCLUDED_EXTMOD_MACHINE_PINBASE_H

View File

@ -1,44 +0,0 @@
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
//
// SPDX-License-Identifier: MIT
#include "py/runtime.h"
#include "py/mperrno.h"
#include "extmod/machine_pulse.h"
#if MICROPY_PY_MACHINE_PULSE
mp_uint_t machine_time_pulse_us(mp_hal_pin_obj_t pin, int pulse_level, mp_uint_t timeout_us) {
mp_uint_t start = mp_hal_ticks_us();
while (mp_hal_pin_read(pin) != pulse_level) {
if ((mp_uint_t)(mp_hal_ticks_us() - start) >= timeout_us) {
return (mp_uint_t)-2;
}
}
start = mp_hal_ticks_us();
while (mp_hal_pin_read(pin) == pulse_level) {
if ((mp_uint_t)(mp_hal_ticks_us() - start) >= timeout_us) {
return (mp_uint_t)-1;
}
}
return mp_hal_ticks_us() - start;
}
STATIC mp_obj_t machine_time_pulse_us_(size_t n_args, const mp_obj_t *args) {
mp_hal_pin_obj_t pin = mp_hal_get_pin_obj(args[0]);
int level = 0;
if (mp_obj_is_true(args[1])) {
level = 1;
}
mp_uint_t timeout_us = 1000000;
if (n_args > 2) {
timeout_us = mp_obj_get_int(args[2]);
}
mp_uint_t us = machine_time_pulse_us(pin, level, timeout_us);
// May return -1 or -2 in case of timeout
return mp_obj_new_int(us);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_time_pulse_us_obj, 2, 3, machine_time_pulse_us_);
#endif

View File

@ -1,16 +0,0 @@
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
//
// SPDX-License-Identifier: MIT
#ifndef MICROPY_INCLUDED_EXTMOD_MACHINE_PULSE_H
#define MICROPY_INCLUDED_EXTMOD_MACHINE_PULSE_H
#include "py/obj.h"
#include "py/mphal.h"
mp_uint_t machine_time_pulse_us(mp_hal_pin_obj_t pin, int pulse_level, mp_uint_t timeout_us);
MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(machine_time_pulse_us_obj);
#endif // MICROPY_INCLUDED_EXTMOD_MACHINE_PULSE_H

View File

@ -1,159 +0,0 @@
// Copyright (c) 2017 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
//
// SPDX-License-Identifier: MIT
#include "py/mpconfig.h"
#if MICROPY_PY_MACHINE
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "extmod/virtpin.h"
#include "extmod/machine_signal.h"
// Signal class
typedef struct _machine_signal_t {
mp_obj_base_t base;
mp_obj_t pin;
bool invert;
} machine_signal_t;
STATIC mp_obj_t signal_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
mp_obj_t pin = args[0];
bool invert = false;
#if defined(MICROPY_PY_MACHINE_PIN_MAKE_NEW)
mp_pin_p_t *pin_p = (mp_pin_t *)mp_proto_get(QSTR_pin_protocol, pin);
if (pin_p == NULL) {
// If first argument isn't a Pin-like object, we filter out "invert"
// from keyword arguments and pass them all to the exported Pin
// constructor to create one.
mp_obj_t *pin_args = mp_local_alloc((n_args + n_kw * 2) * sizeof(mp_obj_t));
memcpy(pin_args, args, n_args * sizeof(mp_obj_t));
const mp_obj_t *src = args + n_args;
mp_obj_t *dst = pin_args + n_args;
mp_obj_t *sig_value = NULL;
for (size_t cnt = n_kw; cnt; cnt--) {
if (*src == MP_OBJ_NEW_QSTR(MP_QSTR_invert)) {
invert = mp_obj_is_true(src[1]);
n_kw--;
} else {
*dst++ = *src;
*dst++ = src[1];
}
if (*src == MP_OBJ_NEW_QSTR(MP_QSTR_value)) {
// Value is pertained to Signal, so we should invert
// it for Pin if needed, and we should do it only when
// inversion status is guaranteedly known.
sig_value = dst - 1;
}
src += 2;
}
if (invert && sig_value != NULL) {
*sig_value = mp_obj_is_true(*sig_value) ? MP_OBJ_NEW_SMALL_INT(0) : MP_OBJ_NEW_SMALL_INT(1);
}
// Here we pass NULL as a type, hoping that mp_pin_make_new()
// will just ignore it as set a concrete type. If not, we'd need
// to expose port's "default" pin type too.
pin = MICROPY_PY_MACHINE_PIN_MAKE_NEW(NULL, n_args, n_kw, pin_args);
mp_local_free(pin_args);
} else
#endif
// Otherwise there should be 1 or 2 args
{
if (n_args == 1) {
if (kw_args == NULL || kw_args->used == 0) {
} else if (kw_args->used == 1 && kw_args->table[0].key == MP_OBJ_NEW_QSTR(MP_QSTR_invert)) {
invert = mp_obj_is_true(kw_args->table[0].value);
} else {
goto error;
}
} else {
error:
mp_raise_TypeError(NULL);
}
}
machine_signal_t *o = m_new_obj(machine_signal_t);
o->base.type = type;
o->pin = pin;
o->invert = invert;
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_uint_t signal_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
(void)errcode;
machine_signal_t *self = MP_OBJ_TO_PTR(self_in);
switch (request) {
case MP_PIN_READ: {
return mp_virtual_pin_read(self->pin) ^ self->invert;
}
case MP_PIN_WRITE: {
mp_virtual_pin_write(self->pin, arg ^ self->invert);
return 0;
}
}
return -1;
}
// fast method for getting/setting signal value
STATIC mp_obj_t signal_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num_kw_array(n_args, n_kw, 0, 1, false);
if (n_args == 0) {
// get pin
return MP_OBJ_NEW_SMALL_INT(mp_virtual_pin_read(self_in));
} else {
// set pin
mp_virtual_pin_write(self_in, mp_obj_is_true(args[0]));
return mp_const_none;
}
}
STATIC mp_obj_t signal_value(size_t n_args, const mp_obj_t *args) {
return signal_call(args[0], n_args - 1, 0, args + 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(signal_value_obj, 1, 2, signal_value);
STATIC mp_obj_t signal_on(mp_obj_t self_in) {
mp_virtual_pin_write(self_in, 1);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(signal_on_obj, signal_on);
STATIC mp_obj_t signal_off(mp_obj_t self_in) {
mp_virtual_pin_write(self_in, 0);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(signal_off_obj, signal_off);
STATIC const mp_rom_map_elem_t signal_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&signal_value_obj) },
{ MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&signal_on_obj) },
{ MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&signal_off_obj) },
};
STATIC MP_DEFINE_CONST_DICT(signal_locals_dict, signal_locals_dict_table);
STATIC const mp_pin_p_t signal_pin_p = {
MP_PROTO_IMPLEMENT(MP_QSTR_protocol_pin)
.ioctl = signal_ioctl,
};
const mp_obj_type_t machine_signal_type = {
{ &mp_type_type },
.name = MP_QSTR_Signal,
.make_new = signal_make_new,
.call = signal_call,
.protocol = &signal_pin_p,
.locals_dict = (void *)&signal_locals_dict,
};
#endif // MICROPY_PY_MACHINE

View File

@ -1,13 +0,0 @@
// Copyright (c) 2017 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
//
// SPDX-License-Identifier: MIT
#ifndef MICROPY_INCLUDED_EXTMOD_MACHINE_SIGNAL_H
#define MICROPY_INCLUDED_EXTMOD_MACHINE_SIGNAL_H
#include "py/obj.h"
extern const mp_obj_type_t machine_signal_type;
#endif // MICROPY_INCLUDED_EXTMOD_MACHINE_SIGNAL_H

View File

@ -331,7 +331,7 @@ STATIC mp_obj_t mod_btree_open(size_t n_args, const mp_obj_t *pos_args, mp_map_t
openinfo.psize = args.pagesize.u_int; openinfo.psize = args.pagesize.u_int;
openinfo.minkeypage = args.minkeypage.u_int; openinfo.minkeypage = args.minkeypage.u_int;
DB *db = __bt_open(pos_args[0], &btree_stream_fvtable, &openinfo, /*dflags*/ 0); DB *db = __bt_open(MP_OBJ_TO_PTR(pos_args[0]), &btree_stream_fvtable, &openinfo, /*dflags*/ 0);
if (db == NULL) { if (db == NULL) {
mp_raise_OSError(errno); mp_raise_OSError(errno);
} }

File diff suppressed because it is too large Load Diff

View File

@ -13,8 +13,8 @@
// Low-level 1-Wire routines // Low-level 1-Wire routines
#define TIMING_RESET1 (480) #define TIMING_RESET1 (480)
#define TIMING_RESET2 (40) #define TIMING_RESET2 (70)
#define TIMING_RESET3 (420) #define TIMING_RESET3 (410)
#define TIMING_READ1 (5) #define TIMING_READ1 (5)
#define TIMING_READ2 (5) #define TIMING_READ2 (5)
#define TIMING_READ3 (40) #define TIMING_READ3 (40)

View File

@ -1,4 +1,4 @@
// Copyright (c) 2014 Paul Sokolovsky // Copyright (c) 2014-2018 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) // SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// //
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
@ -73,7 +73,7 @@ enum {
#define AGG_TYPE_BITS 2 #define AGG_TYPE_BITS 2
enum { enum {
STRUCT, PTR, ARRAY, BITFIELD, STRUCT, PTR, ARRAY,
}; };
// Here we need to set sign bit right // Here we need to set sign bit right
@ -118,7 +118,11 @@ STATIC void uctypes_struct_print(const mp_print_t *print, mp_obj_t self_in, mp_p
(void)kind; (void)kind;
mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
const char *typen = "unk"; const char *typen = "unk";
if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) { if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)
#if MICROPY_PY_COLLECTIONS_ORDEREDDICT
|| MP_OBJ_IS_TYPE(self->desc, &mp_type_ordereddict)
#endif
) {
typen = "STRUCT"; typen = "STRUCT";
} else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) { } else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc); mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
@ -191,7 +195,11 @@ STATIC mp_uint_t uctypes_struct_agg_size(mp_obj_tuple_t *t, int layout_type, mp_
} }
STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size) { STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size) {
if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)) { if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)
#if MICROPY_PY_COLLECTIONS_ORDEREDDICT
&& !MP_OBJ_IS_TYPE(desc_in, &mp_type_ordereddict)
#endif
) {
if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) { if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) {
return uctypes_struct_agg_size((mp_obj_tuple_t *)MP_OBJ_TO_PTR(desc_in), layout_type, max_field_size); return uctypes_struct_agg_size((mp_obj_tuple_t *)MP_OBJ_TO_PTR(desc_in), layout_type, max_field_size);
} else if (MP_OBJ_IS_SMALL_INT(desc_in)) { } else if (MP_OBJ_IS_SMALL_INT(desc_in)) {
@ -246,7 +254,8 @@ STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_
return total_size; return total_size;
} }
STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) { STATIC mp_obj_t uctypes_struct_sizeof(size_t n_args, const mp_obj_t *args) {
mp_obj_t obj_in = args[0];
mp_uint_t max_field_size = 0; mp_uint_t max_field_size = 0;
if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) { if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) {
return mp_obj_len(obj_in); return mp_obj_len(obj_in);
@ -255,15 +264,22 @@ STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) {
// We can apply sizeof either to structure definition (a dict) // We can apply sizeof either to structure definition (a dict)
// or to instantiated structure // or to instantiated structure
if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) { if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) {
if (n_args != 1) {
mp_raise_TypeError(NULL);
}
// Extract structure definition // Extract structure definition
mp_obj_uctypes_struct_t *obj = MP_OBJ_TO_PTR(obj_in); mp_obj_uctypes_struct_t *obj = MP_OBJ_TO_PTR(obj_in);
obj_in = obj->desc; obj_in = obj->desc;
layout_type = obj->flags; layout_type = obj->flags;
} else {
if (n_args == 2) {
layout_type = mp_obj_get_int(args[1]);
}
} }
mp_uint_t size = uctypes_struct_size(obj_in, layout_type, &max_field_size); mp_uint_t size = uctypes_struct_size(obj_in, layout_type, &max_field_size);
return MP_OBJ_NEW_SMALL_INT(size); return MP_OBJ_NEW_SMALL_INT(size);
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_sizeof_obj, uctypes_struct_sizeof); STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(uctypes_struct_sizeof_obj, 1, 2, uctypes_struct_sizeof);
static inline mp_obj_t get_unaligned(uint val_type, byte *p, int big_endian) { static inline mp_obj_t get_unaligned(uint val_type, byte *p, int big_endian) {
char struct_type = big_endian ? '>' : '<'; char struct_type = big_endian ? '>' : '<';
@ -325,7 +341,7 @@ STATIC mp_obj_t get_aligned(uint val_type, void *p, mp_int_t index) {
return mp_obj_new_int_from_ll(((int64_t *)p)[index]); return mp_obj_new_int_from_ll(((int64_t *)p)[index]);
#if MICROPY_PY_BUILTINS_FLOAT #if MICROPY_PY_BUILTINS_FLOAT
case FLOAT32: case FLOAT32:
return mp_obj_new_float((mp_float_t)((float *)p)[index]); return mp_obj_new_float(((float *)p)[index]);
case FLOAT64: case FLOAT64:
return mp_obj_new_float(((double *)p)[index]); return mp_obj_new_float(((double *)p)[index]);
#endif #endif
@ -384,8 +400,11 @@ STATIC void set_aligned(uint val_type, void *p, mp_int_t index, mp_obj_t val) {
STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) { STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) {
mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
// TODO: Support at least OrderedDict in addition if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)
if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) { #if MICROPY_PY_COLLECTIONS_ORDEREDDICT
&& !MP_OBJ_IS_TYPE(self->desc, &mp_type_ordereddict)
#endif
) {
mp_raise_TypeError(translate("struct: no fields")); mp_raise_TypeError(translate("struct: no fields"));
} }
@ -589,6 +608,26 @@ STATIC mp_obj_t uctypes_struct_subscr(mp_obj_t base_in, mp_obj_t index_in, mp_ob
} }
} }
STATIC mp_obj_t uctypes_struct_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
switch (op) {
case MP_UNARY_OP_INT:
if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
if (agg_type == PTR) {
byte *p = *(void **)self->addr;
return mp_obj_new_int((mp_int_t)(uintptr_t)p);
}
}
/* fallthru */
default:
return MP_OBJ_NULL; // op not supported
}
}
STATIC mp_int_t uctypes_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { STATIC mp_int_t uctypes_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
(void)flags; (void)flags;
mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
@ -637,6 +676,7 @@ STATIC const mp_obj_type_t uctypes_struct_type = {
.make_new = uctypes_struct_make_new, .make_new = uctypes_struct_make_new,
.attr = uctypes_struct_attr, .attr = uctypes_struct_attr,
.subscr = uctypes_struct_subscr, .subscr = uctypes_struct_subscr,
.unary_op = uctypes_struct_unary_op,
.buffer_p = { .get_buffer = uctypes_get_buffer }, .buffer_p = { .get_buffer = uctypes_get_buffer },
}; };
@ -695,6 +735,30 @@ STATIC const mp_rom_map_elem_t mp_module_uctypes_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_FLOAT64), MP_ROM_INT(TYPE2SMALLINT(FLOAT64, 4)) }, { MP_ROM_QSTR(MP_QSTR_FLOAT64), MP_ROM_INT(TYPE2SMALLINT(FLOAT64, 4)) },
#endif #endif
#if MICROPY_PY_UCTYPES_NATIVE_C_TYPES
// C native type aliases. These depend on GCC-compatible predefined
// preprocessor macros.
#if __SIZEOF_SHORT__ == 2
{ MP_ROM_QSTR(MP_QSTR_SHORT), MP_ROM_INT(TYPE2SMALLINT(INT16, 4)) },
{ MP_ROM_QSTR(MP_QSTR_USHORT), MP_ROM_INT(TYPE2SMALLINT(UINT16, 4)) },
#endif
#if __SIZEOF_INT__ == 4
{ MP_ROM_QSTR(MP_QSTR_INT), MP_ROM_INT(TYPE2SMALLINT(INT32, 4)) },
{ MP_ROM_QSTR(MP_QSTR_UINT), MP_ROM_INT(TYPE2SMALLINT(UINT32, 4)) },
#endif
#if __SIZEOF_LONG__ == 4
{ MP_ROM_QSTR(MP_QSTR_LONG), MP_ROM_INT(TYPE2SMALLINT(INT32, 4)) },
{ MP_ROM_QSTR(MP_QSTR_ULONG), MP_ROM_INT(TYPE2SMALLINT(UINT32, 4)) },
#elif __SIZEOF_LONG__ == 8
{ MP_ROM_QSTR(MP_QSTR_LONG), MP_ROM_INT(TYPE2SMALLINT(INT64, 4)) },
{ MP_ROM_QSTR(MP_QSTR_ULONG), MP_ROM_INT(TYPE2SMALLINT(UINT64, 4)) },
#endif
#if __SIZEOF_LONG_LONG__ == 8
{ MP_ROM_QSTR(MP_QSTR_LONGLONG), MP_ROM_INT(TYPE2SMALLINT(INT64, 4)) },
{ MP_ROM_QSTR(MP_QSTR_ULONGLONG), MP_ROM_INT(TYPE2SMALLINT(UINT64, 4)) },
#endif
#endif // MICROPY_PY_UCTYPES_NATIVE_C_TYPES
{ MP_ROM_QSTR(MP_QSTR_PTR), MP_ROM_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) }, { MP_ROM_QSTR(MP_QSTR_PTR), MP_ROM_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) },
{ MP_ROM_QSTR(MP_QSTR_ARRAY), MP_ROM_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) }, { MP_ROM_QSTR(MP_QSTR_ARRAY), MP_ROM_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) },
}; };

View File

@ -12,6 +12,10 @@
#if MICROPY_PY_UHASHLIB #if MICROPY_PY_UHASHLIB
#if MICROPY_SSL_MBEDTLS
#include "mbedtls/version.h"
#endif
#if MICROPY_PY_UHASHLIB_SHA256 #if MICROPY_PY_UHASHLIB_SHA256
#if MICROPY_SSL_MBEDTLS #if MICROPY_SSL_MBEDTLS
@ -22,13 +26,14 @@
#endif #endif
#if MICROPY_PY_UHASHLIB_SHA1 #if MICROPY_PY_UHASHLIB_SHA1 || MICROPY_PY_UHASHLIB_MD5
#if MICROPY_SSL_AXTLS #if MICROPY_SSL_AXTLS
#include "lib/axtls/crypto/crypto.h" #include "lib/axtls/crypto/crypto.h"
#endif #endif
#if MICROPY_SSL_MBEDTLS #if MICROPY_SSL_MBEDTLS
#include "mbedtls/md5.h"
#include "mbedtls/sha1.h" #include "mbedtls/sha1.h"
#endif #endif
@ -45,12 +50,18 @@ STATIC mp_obj_t uhashlib_sha256_update(mp_obj_t self_in, mp_obj_t arg);
#if MICROPY_SSL_MBEDTLS #if MICROPY_SSL_MBEDTLS
STATIC mp_obj_t uhashlib_sha256_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { #if MBEDTLS_VERSION_NUMBER < 0x02070000
mp_arg_check_num(n_args, kw_args, 0, 1, false); #define mbedtls_sha256_starts_ret mbedtls_sha256_starts
#define mbedtls_sha256_update_ret mbedtls_sha256_update
#define mbedtls_sha256_finish_ret mbedtls_sha256_finish
#endif
STATIC mp_obj_t uhashlib_sha256_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(mbedtls_sha256_context)); mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(mbedtls_sha256_context));
o->base.type = type; o->base.type = type;
mbedtls_sha256_init((mbedtls_sha256_context *)&o->state); mbedtls_sha256_init((mbedtls_sha256_context *)&o->state);
mbedtls_sha256_starts((mbedtls_sha256_context *)&o->state, 0); mbedtls_sha256_starts_ret((mbedtls_sha256_context *)&o->state, 0);
if (n_args == 1) { if (n_args == 1) {
uhashlib_sha256_update(MP_OBJ_FROM_PTR(o), args[0]); uhashlib_sha256_update(MP_OBJ_FROM_PTR(o), args[0]);
} }
@ -61,7 +72,7 @@ STATIC mp_obj_t uhashlib_sha256_update(mp_obj_t self_in, mp_obj_t arg) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo; mp_buffer_info_t bufinfo;
mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ); mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ);
mbedtls_sha256_update((mbedtls_sha256_context *)&self->state, bufinfo.buf, bufinfo.len); mbedtls_sha256_update_ret((mbedtls_sha256_context *)&self->state, bufinfo.buf, bufinfo.len);
return mp_const_none; return mp_const_none;
} }
@ -69,7 +80,7 @@ STATIC mp_obj_t uhashlib_sha256_digest(mp_obj_t self_in) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
vstr_t vstr; vstr_t vstr;
vstr_init_len(&vstr, 32); vstr_init_len(&vstr, 32);
mbedtls_sha256_finish((mbedtls_sha256_context *)&self->state, (unsigned char *)vstr.buf); mbedtls_sha256_finish_ret((mbedtls_sha256_context *)&self->state, (unsigned char *)vstr.buf);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
} }
@ -164,12 +175,19 @@ STATIC mp_obj_t uhashlib_sha1_digest(mp_obj_t self_in) {
#endif #endif
#if MICROPY_SSL_MBEDTLS #if MICROPY_SSL_MBEDTLS
#if MBEDTLS_VERSION_NUMBER < 0x02070000
#define mbedtls_sha1_starts_ret mbedtls_sha1_starts
#define mbedtls_sha1_update_ret mbedtls_sha1_update
#define mbedtls_sha1_finish_ret mbedtls_sha1_finish
#endif
STATIC mp_obj_t uhashlib_sha1_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { STATIC mp_obj_t uhashlib_sha1_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false); mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(mbedtls_sha1_context)); mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(mbedtls_sha1_context));
o->base.type = type; o->base.type = type;
mbedtls_sha1_init((mbedtls_sha1_context *)o->state); mbedtls_sha1_init((mbedtls_sha1_context *)o->state);
mbedtls_sha1_starts((mbedtls_sha1_context *)o->state); mbedtls_sha1_starts_ret((mbedtls_sha1_context *)o->state);
if (n_args == 1) { if (n_args == 1) {
uhashlib_sha1_update(MP_OBJ_FROM_PTR(o), args[0]); uhashlib_sha1_update(MP_OBJ_FROM_PTR(o), args[0]);
} }
@ -180,7 +198,7 @@ STATIC mp_obj_t uhashlib_sha1_update(mp_obj_t self_in, mp_obj_t arg) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo; mp_buffer_info_t bufinfo;
mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ); mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ);
mbedtls_sha1_update((mbedtls_sha1_context *)self->state, bufinfo.buf, bufinfo.len); mbedtls_sha1_update_ret((mbedtls_sha1_context *)self->state, bufinfo.buf, bufinfo.len);
return mp_const_none; return mp_const_none;
} }
@ -188,7 +206,7 @@ STATIC mp_obj_t uhashlib_sha1_digest(mp_obj_t self_in) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
vstr_t vstr; vstr_t vstr;
vstr_init_len(&vstr, 20); vstr_init_len(&vstr, 20);
mbedtls_sha1_finish((mbedtls_sha1_context *)self->state, (byte *)vstr.buf); mbedtls_sha1_finish_ret((mbedtls_sha1_context *)self->state, (byte *)vstr.buf);
mbedtls_sha1_free((mbedtls_sha1_context *)self->state); mbedtls_sha1_free((mbedtls_sha1_context *)self->state);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
} }
@ -211,6 +229,93 @@ STATIC const mp_obj_type_t uhashlib_sha1_type = {
}; };
#endif #endif
#if MICROPY_PY_UHASHLIB_MD5
STATIC mp_obj_t uhashlib_md5_update(mp_obj_t self_in, mp_obj_t arg);
#if MICROPY_SSL_AXTLS
STATIC mp_obj_t uhashlib_md5_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(MD5_CTX));
o->base.type = type;
MD5_Init((MD5_CTX *)o->state);
if (n_args == 1) {
uhashlib_md5_update(MP_OBJ_FROM_PTR(o), args[0]);
}
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t uhashlib_md5_update(mp_obj_t self_in, mp_obj_t arg) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ);
MD5_Update((MD5_CTX *)self->state, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC mp_obj_t uhashlib_md5_digest(mp_obj_t self_in) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
vstr_t vstr;
vstr_init_len(&vstr, MD5_SIZE);
MD5_Final((byte *)vstr.buf, (MD5_CTX *)self->state);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
#endif // MICROPY_SSL_AXTLS
#if MICROPY_SSL_MBEDTLS
#if MBEDTLS_VERSION_NUMBER < 0x02070000
#define mbedtls_md5_starts_ret mbedtls_md5_starts
#define mbedtls_md5_update_ret mbedtls_md5_update
#define mbedtls_md5_finish_ret mbedtls_md5_finish
#endif
STATIC mp_obj_t uhashlib_md5_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, false);
mp_obj_hash_t *o = m_new_obj_var(mp_obj_hash_t, char, sizeof(mbedtls_md5_context));
o->base.type = type;
mbedtls_md5_init((mbedtls_md5_context *)o->state);
mbedtls_md5_starts_ret((mbedtls_md5_context *)o->state);
if (n_args == 1) {
uhashlib_md5_update(MP_OBJ_FROM_PTR(o), args[0]);
}
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t uhashlib_md5_update(mp_obj_t self_in, mp_obj_t arg) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(arg, &bufinfo, MP_BUFFER_READ);
mbedtls_md5_update_ret((mbedtls_md5_context *)self->state, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC mp_obj_t uhashlib_md5_digest(mp_obj_t self_in) {
mp_obj_hash_t *self = MP_OBJ_TO_PTR(self_in);
vstr_t vstr;
vstr_init_len(&vstr, 16);
mbedtls_md5_finish_ret((mbedtls_md5_context *)self->state, (byte *)vstr.buf);
mbedtls_md5_free((mbedtls_md5_context *)self->state);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
#endif // MICROPY_SSL_MBEDTLS
STATIC MP_DEFINE_CONST_FUN_OBJ_2(uhashlib_md5_update_obj, uhashlib_md5_update);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(uhashlib_md5_digest_obj, uhashlib_md5_digest);
STATIC const mp_rom_map_elem_t uhashlib_md5_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_update), MP_ROM_PTR(&uhashlib_md5_update_obj) },
{ MP_ROM_QSTR(MP_QSTR_digest), MP_ROM_PTR(&uhashlib_md5_digest_obj) },
};
STATIC MP_DEFINE_CONST_DICT(uhashlib_md5_locals_dict, uhashlib_md5_locals_dict_table);
STATIC const mp_obj_type_t uhashlib_md5_type = {
{ &mp_type_type },
.name = MP_QSTR_md5,
.make_new = uhashlib_md5_make_new,
.locals_dict = (void *)&uhashlib_md5_locals_dict,
};
#endif // MICROPY_PY_UHASHLIB_MD5
STATIC const mp_rom_map_elem_t mp_module_uhashlib_globals_table[] = { STATIC const mp_rom_map_elem_t mp_module_uhashlib_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_hashlib) }, { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_hashlib) },
#if MICROPY_PY_UHASHLIB_SHA256 #if MICROPY_PY_UHASHLIB_SHA256
@ -219,6 +324,9 @@ STATIC const mp_rom_map_elem_t mp_module_uhashlib_globals_table[] = {
#if MICROPY_PY_UHASHLIB_SHA1 #if MICROPY_PY_UHASHLIB_SHA1
{ MP_ROM_QSTR(MP_QSTR_sha1), MP_ROM_PTR(&uhashlib_sha1_type) }, { MP_ROM_QSTR(MP_QSTR_sha1), MP_ROM_PTR(&uhashlib_sha1_type) },
#endif #endif
#if MICROPY_PY_UHASHLIB_MD5
{ MP_ROM_QSTR(MP_QSTR_md5), MP_ROM_PTR(&uhashlib_md5_type) },
#endif
}; };
STATIC MP_DEFINE_CONST_DICT(mp_module_uhashlib_globals, mp_module_uhashlib_globals_table); STATIC MP_DEFINE_CONST_DICT(mp_module_uhashlib_globals, mp_module_uhashlib_globals_table);

View File

@ -25,7 +25,7 @@
typedef struct _poll_obj_t { typedef struct _poll_obj_t {
mp_obj_t obj; mp_obj_t obj;
mp_uint_t (*ioctl)(mp_obj_t obj, mp_uint_t request, mp_uint_t arg, int *errcode); mp_uint_t (*ioctl)(mp_obj_t obj, mp_uint_t request, uintptr_t arg, int *errcode);
mp_uint_t flags; mp_uint_t flags;
mp_uint_t flags_ret; mp_uint_t flags_ret;
} poll_obj_t; } poll_obj_t;
@ -33,7 +33,7 @@ typedef struct _poll_obj_t {
STATIC void poll_map_add(mp_map_t *poll_map, const mp_obj_t *obj, mp_uint_t obj_len, mp_uint_t flags, bool or_flags) { STATIC void poll_map_add(mp_map_t *poll_map, const mp_obj_t *obj, mp_uint_t obj_len, mp_uint_t flags, bool or_flags) {
for (mp_uint_t i = 0; i < obj_len; i++) { for (mp_uint_t i = 0; i < obj_len; i++) {
mp_map_elem_t *elem = mp_map_lookup(poll_map, mp_obj_id(obj[i]), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); mp_map_elem_t *elem = mp_map_lookup(poll_map, mp_obj_id(obj[i]), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
if (elem->value == NULL) { if (elem->value == MP_OBJ_NULL) {
// object not found; get its ioctl and add it to the poll list // object not found; get its ioctl and add it to the poll list
const mp_stream_p_t *stream_p = mp_get_stream_raise(obj[i], MP_STREAM_OP_IOCTL); const mp_stream_p_t *stream_p = mp_get_stream_raise(obj[i], MP_STREAM_OP_IOCTL);
poll_obj_t *poll_obj = m_new_obj(poll_obj_t); poll_obj_t *poll_obj = m_new_obj(poll_obj_t);
@ -41,27 +41,27 @@ STATIC void poll_map_add(mp_map_t *poll_map, const mp_obj_t *obj, mp_uint_t obj_
poll_obj->ioctl = stream_p->ioctl; poll_obj->ioctl = stream_p->ioctl;
poll_obj->flags = flags; poll_obj->flags = flags;
poll_obj->flags_ret = 0; poll_obj->flags_ret = 0;
elem->value = poll_obj; elem->value = MP_OBJ_FROM_PTR(poll_obj);
} else { } else {
// object exists; update its flags // object exists; update its flags
if (or_flags) { if (or_flags) {
((poll_obj_t *)elem->value)->flags |= flags; ((poll_obj_t *)MP_OBJ_TO_PTR(elem->value))->flags |= flags;
} else { } else {
((poll_obj_t *)elem->value)->flags = flags; ((poll_obj_t *)MP_OBJ_TO_PTR(elem->value))->flags = flags;
} }
} }
} }
} }
// poll each object in the map // poll each object in the map
STATIC mp_uint_t poll_map_poll(mp_map_t *poll_map, mp_uint_t *rwx_num) { STATIC mp_uint_t poll_map_poll(mp_map_t *poll_map, size_t *rwx_num) {
mp_uint_t n_ready = 0; mp_uint_t n_ready = 0;
for (mp_uint_t i = 0; i < poll_map->alloc; ++i) { for (mp_uint_t i = 0; i < poll_map->alloc; ++i) {
if (!MP_MAP_SLOT_IS_FILLED(poll_map, i)) { if (!MP_MAP_SLOT_IS_FILLED(poll_map, i)) {
continue; continue;
} }
poll_obj_t *poll_obj = (poll_obj_t *)poll_map->table[i].value; poll_obj_t *poll_obj = MP_OBJ_TO_PTR(poll_map->table[i].value);
int errcode; int errcode;
mp_int_t ret = poll_obj->ioctl(poll_obj->obj, MP_STREAM_POLL, poll_obj->flags, &errcode); mp_int_t ret = poll_obj->ioctl(poll_obj->obj, MP_STREAM_POLL, poll_obj->flags, &errcode);
poll_obj->flags_ret = ret; poll_obj->flags_ret = ret;
@ -138,15 +138,15 @@ STATIC mp_obj_t select_select(uint n_args, const mp_obj_t *args) {
if (!MP_MAP_SLOT_IS_FILLED(&poll_map, i)) { if (!MP_MAP_SLOT_IS_FILLED(&poll_map, i)) {
continue; continue;
} }
poll_obj_t *poll_obj = (poll_obj_t *)poll_map.table[i].value; poll_obj_t *poll_obj = MP_OBJ_TO_PTR(poll_map.table[i].value);
if (poll_obj->flags_ret & MP_STREAM_POLL_RD) { if (poll_obj->flags_ret & MP_STREAM_POLL_RD) {
((mp_obj_list_t *)list_array[0])->items[rwx_len[0]++] = poll_obj->obj; ((mp_obj_list_t *)MP_OBJ_TO_PTR(list_array[0]))->items[rwx_len[0]++] = poll_obj->obj;
} }
if (poll_obj->flags_ret & MP_STREAM_POLL_WR) { if (poll_obj->flags_ret & MP_STREAM_POLL_WR) {
((mp_obj_list_t *)list_array[1])->items[rwx_len[1]++] = poll_obj->obj; ((mp_obj_list_t *)MP_OBJ_TO_PTR(list_array[1]))->items[rwx_len[1]++] = poll_obj->obj;
} }
if ((poll_obj->flags_ret & ~(MP_STREAM_POLL_RD | MP_STREAM_POLL_WR)) != 0) { if ((poll_obj->flags_ret & ~(MP_STREAM_POLL_RD | MP_STREAM_POLL_WR)) != 0) {
((mp_obj_list_t *)list_array[2])->items[rwx_len[2]++] = poll_obj->obj; ((mp_obj_list_t *)MP_OBJ_TO_PTR(list_array[2]))->items[rwx_len[2]++] = poll_obj->obj;
} }
} }
mp_map_deinit(&poll_map); mp_map_deinit(&poll_map);
@ -171,7 +171,7 @@ typedef struct _mp_obj_poll_t {
/// \method register(obj[, eventmask]) /// \method register(obj[, eventmask])
STATIC mp_obj_t poll_register(uint n_args, const mp_obj_t *args) { STATIC mp_obj_t poll_register(uint n_args, const mp_obj_t *args) {
mp_obj_poll_t *self = args[0]; mp_obj_poll_t *self = MP_OBJ_TO_PTR(args[0]);
mp_uint_t flags; mp_uint_t flags;
if (n_args == 3) { if (n_args == 3) {
flags = mp_obj_get_int(args[2]); flags = mp_obj_get_int(args[2]);
@ -185,7 +185,7 @@ MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poll_register_obj, 2, 3, poll_register);
/// \method unregister(obj) /// \method unregister(obj)
STATIC mp_obj_t poll_unregister(mp_obj_t self_in, mp_obj_t obj_in) { STATIC mp_obj_t poll_unregister(mp_obj_t self_in, mp_obj_t obj_in) {
mp_obj_poll_t *self = self_in; mp_obj_poll_t *self = MP_OBJ_TO_PTR(self_in);
mp_map_lookup(&self->poll_map, mp_obj_id(obj_in), MP_MAP_LOOKUP_REMOVE_IF_FOUND); mp_map_lookup(&self->poll_map, mp_obj_id(obj_in), MP_MAP_LOOKUP_REMOVE_IF_FOUND);
// TODO raise KeyError if obj didn't exist in map // TODO raise KeyError if obj didn't exist in map
return mp_const_none; return mp_const_none;
@ -194,18 +194,18 @@ MP_DEFINE_CONST_FUN_OBJ_2(poll_unregister_obj, poll_unregister);
/// \method modify(obj, eventmask) /// \method modify(obj, eventmask)
STATIC mp_obj_t poll_modify(mp_obj_t self_in, mp_obj_t obj_in, mp_obj_t eventmask_in) { STATIC mp_obj_t poll_modify(mp_obj_t self_in, mp_obj_t obj_in, mp_obj_t eventmask_in) {
mp_obj_poll_t *self = self_in; mp_obj_poll_t *self = MP_OBJ_TO_PTR(self_in);
mp_map_elem_t *elem = mp_map_lookup(&self->poll_map, mp_obj_id(obj_in), MP_MAP_LOOKUP); mp_map_elem_t *elem = mp_map_lookup(&self->poll_map, mp_obj_id(obj_in), MP_MAP_LOOKUP);
if (elem == NULL) { if (elem == NULL) {
mp_raise_OSError(MP_ENOENT); mp_raise_OSError(MP_ENOENT);
} }
((poll_obj_t *)elem->value)->flags = mp_obj_get_int(eventmask_in); ((poll_obj_t *)MP_OBJ_TO_PTR(elem->value))->flags = mp_obj_get_int(eventmask_in);
return mp_const_none; return mp_const_none;
} }
MP_DEFINE_CONST_FUN_OBJ_3(poll_modify_obj, poll_modify); MP_DEFINE_CONST_FUN_OBJ_3(poll_modify_obj, poll_modify);
STATIC mp_uint_t poll_poll_internal(uint n_args, const mp_obj_t *args) { STATIC mp_uint_t poll_poll_internal(uint n_args, const mp_obj_t *args) {
mp_obj_poll_t *self = args[0]; mp_obj_poll_t *self = MP_OBJ_TO_PTR(args[0]);
// work out timeout (its given already in ms) // work out timeout (its given already in ms)
mp_uint_t timeout = -1; mp_uint_t timeout = -1;
@ -238,18 +238,18 @@ STATIC mp_uint_t poll_poll_internal(uint n_args, const mp_obj_t *args) {
return n_ready; return n_ready;
} }
STATIC mp_obj_t poll_poll(uint n_args, const mp_obj_t *args) { STATIC mp_obj_t poll_poll(size_t n_args, const mp_obj_t *args) {
mp_obj_poll_t *self = args[0]; mp_obj_poll_t *self = MP_OBJ_TO_PTR(args[0]);
mp_uint_t n_ready = poll_poll_internal(n_args, args); mp_uint_t n_ready = poll_poll_internal(n_args, args);
// one or more objects are ready, or we had a timeout // one or more objects are ready, or we had a timeout
mp_obj_list_t *ret_list = mp_obj_new_list(n_ready, NULL); mp_obj_list_t *ret_list = MP_OBJ_TO_PTR(mp_obj_new_list(n_ready, NULL));
n_ready = 0; n_ready = 0;
for (mp_uint_t i = 0; i < self->poll_map.alloc; ++i) { for (mp_uint_t i = 0; i < self->poll_map.alloc; ++i) {
if (!MP_MAP_SLOT_IS_FILLED(&self->poll_map, i)) { if (!MP_MAP_SLOT_IS_FILLED(&self->poll_map, i)) {
continue; continue;
} }
poll_obj_t *poll_obj = (poll_obj_t *)self->poll_map.table[i].value; poll_obj_t *poll_obj = MP_OBJ_TO_PTR(self->poll_map.table[i].value);
if (poll_obj->flags_ret != 0) { if (poll_obj->flags_ret != 0) {
mp_obj_t tuple[2] = {poll_obj->obj, MP_OBJ_NEW_SMALL_INT(poll_obj->flags_ret)}; mp_obj_t tuple[2] = {poll_obj->obj, MP_OBJ_NEW_SMALL_INT(poll_obj->flags_ret)};
ret_list->items[n_ready++] = mp_obj_new_tuple(2, tuple); ret_list->items[n_ready++] = mp_obj_new_tuple(2, tuple);
@ -259,7 +259,7 @@ STATIC mp_obj_t poll_poll(uint n_args, const mp_obj_t *args) {
} }
} }
} }
return ret_list; return MP_OBJ_FROM_PTR(ret_list);
} }
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poll_poll_obj, 1, 3, poll_poll); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(poll_poll_obj, 1, 3, poll_poll);
@ -292,7 +292,7 @@ STATIC mp_obj_t poll_iternext(mp_obj_t self_in) {
if (!MP_MAP_SLOT_IS_FILLED(&self->poll_map, i)) { if (!MP_MAP_SLOT_IS_FILLED(&self->poll_map, i)) {
continue; continue;
} }
poll_obj_t *poll_obj = (poll_obj_t *)self->poll_map.table[i].value; poll_obj_t *poll_obj = MP_OBJ_TO_PTR(self->poll_map.table[i].value);
if (poll_obj->flags_ret != 0) { if (poll_obj->flags_ret != 0) {
mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->ret_tuple); mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->ret_tuple);
t->items[0] = poll_obj->obj; t->items[0] = poll_obj->obj;
@ -334,7 +334,7 @@ STATIC mp_obj_t select_poll(void) {
mp_map_init(&poll->poll_map, 0); mp_map_init(&poll->poll_map, 0);
poll->iter_cnt = 0; poll->iter_cnt = 0;
poll->ret_tuple = MP_OBJ_NULL; poll->ret_tuple = MP_OBJ_NULL;
return poll; return MP_OBJ_FROM_PTR(poll);
} }
MP_DEFINE_CONST_FUN_OBJ_0(mp_select_poll_obj, select_poll); MP_DEFINE_CONST_FUN_OBJ_0(mp_select_poll_obj, select_poll);

View File

@ -158,21 +158,13 @@ STATIC mp_uint_t socket_write(mp_obj_t o_in, const void *buf, mp_uint_t size, in
STATIC mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) { STATIC mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) {
mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in); mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in);
(void)arg; if (request == MP_STREAM_CLOSE && self->ssl_sock != NULL) {
switch (request) { ssl_free(self->ssl_sock);
case MP_STREAM_CLOSE: ssl_ctx_free(self->ssl_ctx);
if (self->ssl_sock != NULL) { self->ssl_sock = NULL;
ssl_free(self->ssl_sock);
ssl_ctx_free(self->ssl_ctx);
self->ssl_sock = NULL;
mp_stream_close(self->sock);
}
return 0;
default:
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
} }
// Pass all requests down to the underlying socket
return mp_get_stream(self->sock)->ioctl(self->sock, request, arg, errcode);
} }
STATIC mp_obj_t socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) { STATIC mp_obj_t socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) {
@ -220,10 +212,10 @@ STATIC const mp_obj_type_t ussl_socket_type = {
STATIC mp_obj_t mod_ssl_wrap_socket(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { STATIC mp_obj_t mod_ssl_wrap_socket(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO: Implement more args // TODO: Implement more args
static const mp_arg_t allowed_args[] = { static const mp_arg_t allowed_args[] = {
{ MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_cert, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_cert, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_server_side, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_server_side, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_server_hostname, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_server_hostname, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
}; };
// TODO: Check that sock implements stream protocol // TODO: Check that sock implements stream protocol

View File

@ -249,23 +249,17 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_setblocking_obj, socket_setblocking);
STATIC mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) { STATIC mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) {
mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in); mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in);
(void)arg; if (request == MP_STREAM_CLOSE) {
switch (request) { mbedtls_pk_free(&self->pkey);
case MP_STREAM_CLOSE: mbedtls_x509_crt_free(&self->cert);
mbedtls_pk_free(&self->pkey); mbedtls_x509_crt_free(&self->cacert);
mbedtls_x509_crt_free(&self->cert); mbedtls_ssl_free(&self->ssl);
mbedtls_x509_crt_free(&self->cacert); mbedtls_ssl_config_free(&self->conf);
mbedtls_ssl_free(&self->ssl); mbedtls_ctr_drbg_free(&self->ctr_drbg);
mbedtls_ssl_config_free(&self->conf); mbedtls_entropy_free(&self->entropy);
mbedtls_ctr_drbg_free(&self->ctr_drbg);
mbedtls_entropy_free(&self->entropy);
mp_stream_close(self->sock);
return 0;
default:
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
} }
// Pass all requests down to the underlying socket
return mp_get_stream(self->sock)->ioctl(self->sock, request, arg, errcode);
} }
STATIC const mp_rom_map_elem_t ussl_socket_locals_dict_table[] = { STATIC const mp_rom_map_elem_t ussl_socket_locals_dict_table[] = {

View File

@ -14,7 +14,6 @@
#include "py/mphal.h" #include "py/mphal.h"
#endif #endif
#include "extmod/modwebsocket.h" #include "extmod/modwebsocket.h"
#include "genhdr/mpversion.h"
#if MICROPY_PY_WEBREPL #if MICROPY_PY_WEBREPL

View File

@ -66,7 +66,7 @@ int mp_uos_dupterm_rx_chr(void) {
return buf[0]; return buf[0];
} }
} else { } else {
mp_uos_deactivate(idx, "dupterm: Exception in read() method, deactivating: ", nlr.ret_val); mp_uos_deactivate(idx, "dupterm: Exception in read() method, deactivating: ", MP_OBJ_FROM_PTR(nlr.ret_val));
} }
} }
@ -84,7 +84,7 @@ void mp_uos_dupterm_tx_strn(const char *str, size_t len) {
mp_stream_write(MP_STATE_VM(dupterm_objs[idx]), str, len, MP_STREAM_RW_WRITE); mp_stream_write(MP_STATE_VM(dupterm_objs[idx]), str, len, MP_STREAM_RW_WRITE);
nlr_pop(); nlr_pop();
} else { } else {
mp_uos_deactivate(idx, "dupterm: Exception in write() method, deactivating: ", nlr.ret_val); mp_uos_deactivate(idx, "dupterm: Exception in write() method, deactivating: ", MP_OBJ_FROM_PTR(nlr.ret_val));
} }
} }
} }

View File

@ -17,6 +17,10 @@
#include "extmod/vfs_fat.h" #include "extmod/vfs_fat.h"
#endif #endif
#if defined(MICROPY_VFS_POSIX) && MICROPY_VFS_POSIX
#include "extmod/vfs_posix.h"
#endif
// For mp_vfs_proxy_call, the maximum number of additional args that can be passed. // For mp_vfs_proxy_call, the maximum number of additional args that can be passed.
// A fixed maximum size is used to avoid the need for a costly variable array. // A fixed maximum size is used to avoid the need for a costly variable array.
#define PROXY_MAX_ARGS (2) #define PROXY_MAX_ARGS (2)
@ -244,6 +248,13 @@ mp_obj_t mp_vfs_open(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args)
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if defined(MICROPY_VFS_POSIX) && MICROPY_VFS_POSIX
// If the file is an integer then delegate straight to the POSIX handler
if (MP_OBJ_IS_SMALL_INT(args[ARG_file].u_obj)) {
return mp_vfs_posix_file_open(&mp_type_textio, args[ARG_file].u_obj, args[ARG_mode].u_obj);
}
#endif
mp_vfs_mount_t *vfs = lookup_path(args[ARG_file].u_obj, &args[ARG_file].u_obj); mp_vfs_mount_t *vfs = lookup_path(args[ARG_file].u_obj, &args[ARG_file].u_obj);
return mp_vfs_proxy_call(vfs, MP_QSTR_open, 2, (mp_obj_t *)&args); return mp_vfs_proxy_call(vfs, MP_QSTR_open, 2, (mp_obj_t *)&args);
} }

View File

@ -172,6 +172,9 @@ STATIC mp_obj_t vfs_posix_ilistdir_it_iternext(mp_obj_t self_in) {
} }
#ifdef _DIRENT_HAVE_D_TYPE #ifdef _DIRENT_HAVE_D_TYPE
#ifdef DTTOIF
t->items[1] = MP_OBJ_NEW_SMALL_INT(DTTOIF(dirent->d_type));
#else
if (dirent->d_type == DT_DIR) { if (dirent->d_type == DT_DIR) {
t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR); t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR);
} else if (dirent->d_type == DT_REG) { } else if (dirent->d_type == DT_REG) {
@ -179,10 +182,12 @@ STATIC mp_obj_t vfs_posix_ilistdir_it_iternext(mp_obj_t self_in) {
} else { } else {
t->items[1] = MP_OBJ_NEW_SMALL_INT(dirent->d_type); t->items[1] = MP_OBJ_NEW_SMALL_INT(dirent->d_type);
} }
#endif
#else #else
// DT_UNKNOWN should have 0 value on any reasonable system // DT_UNKNOWN should have 0 value on any reasonable system
t->items[1] = MP_OBJ_NEW_SMALL_INT(0); t->items[1] = MP_OBJ_NEW_SMALL_INT(0);
#endif #endif
#ifdef _DIRENT_HAVE_D_INO #ifdef _DIRENT_HAVE_D_INO
t->items[2] = MP_OBJ_NEW_SMALL_INT(dirent->d_ino); t->items[2] = MP_OBJ_NEW_SMALL_INT(dirent->d_ino);
#else #else
@ -200,6 +205,9 @@ STATIC mp_obj_t vfs_posix_ilistdir(mp_obj_t self_in, mp_obj_t path_in) {
iter->iternext = vfs_posix_ilistdir_it_iternext; iter->iternext = vfs_posix_ilistdir_it_iternext;
iter->is_str = mp_obj_get_type(path_in) == &mp_type_str; iter->is_str = mp_obj_get_type(path_in) == &mp_type_str;
const char *path = vfs_posix_get_path_str(self, path_in); const char *path = vfs_posix_get_path_str(self, path_in);
if (path[0] == '\0') {
path = ".";
}
iter->dir = opendir(path); iter->dir = opendir(path);
if (iter->dir == NULL) { if (iter->dir == NULL) {
mp_raise_OSError(errno); mp_raise_OSError(errno);

View File

@ -1,4 +1,4 @@
// Copyright (c) 2016 Paul Sokolovsky // SPDX-FileCopyrightText: Copyright (c) 2016 Paul Sokolovsky
// SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) // SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors)
// //
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT

View File

@ -30,12 +30,17 @@ typedef float float_t;
typedef union { typedef union {
float f; float f;
struct { struct {
uint64_t m : 23; uint32_t m : 23;
uint64_t e : 8; uint32_t e : 8;
uint64_t s : 1; uint32_t s : 1;
}; };
} float_s_t; } float_s_t;
int __signbitf(float f) {
float_s_t u = {.f = f};
return u.s;
}
#ifndef NDEBUG #ifndef NDEBUG
float copysignf(float x, float y) { float copysignf(float x, float y) {
float_s_t fx={.f = x}; float_s_t fx={.f = x};
@ -55,10 +60,14 @@ static const float _M_LN2 = 0.6931472;
float log2f(float x) { return logf(x) / (float)_M_LN2; } float log2f(float x) { return logf(x) / (float)_M_LN2; }
float tanhf(float x) { float tanhf(float x) {
if (isinf(x)) { int sign = 0;
return copysignf(1, x); if (x < 0) {
sign = 1;
x = -x;
} }
return sinhf(x) / coshf(x); x = expm1f(-2 * x);
x = x / (x + 2);
return sign ? x : -x;
} }
/*****************************************************************************/ /*****************************************************************************/

View File

@ -35,6 +35,10 @@
{ {
float y; float y;
int local_signgam; int local_signgam;
if (!isfinite(x)) {
/* special cases: tgammaf(nan)=nan, tgammaf(inf)=inf, tgammaf(-inf)=nan */
return x + INFINITY;
}
y = expf(__ieee754_lgammaf_r(x,&local_signgam)); y = expf(__ieee754_lgammaf_r(x,&local_signgam));
if (local_signgam < 0) y = -y; if (local_signgam < 0) y = -y;
#ifdef _IEEE_LIBM #ifdef _IEEE_LIBM

View File

@ -4,6 +4,10 @@ functions.
The files lgamma.c, log10.c and tanh.c are too small to have a meaningful The files lgamma.c, log10.c and tanh.c are too small to have a meaningful
copyright or license. copyright or license.
The file copysign.c contains a double version of the float copysignf provided
in libm/math.c for use in DEBUG builds where the standard library copy is
not available.
The rest of the files in this directory are copied from the musl library, The rest of the files in this directory are copied from the musl library,
v1.1.16, and, unless otherwise stated in the individual file, have the v1.1.16, and, unless otherwise stated in the individual file, have the
following copyright and MIT license: following copyright and MIT license:

View File

@ -3,7 +3,7 @@
* *
* The MIT License (MIT) * The MIT License (MIT)
* *
* SPDX-FileCopyrightText: Copyright (c) 2016-2018 Damien P. George * Copyright (c) 2013, 2014 Damien P. George
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -23,33 +23,26 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MICROPY_INCLUDED_DRIVERS_BUS_SPI_H
#define MICROPY_INCLUDED_DRIVERS_BUS_SPI_H
#include "py/mphal.h" #include "libm.h"
enum { #ifndef NDEBUG
MP_SPI_IOCTL_INIT, typedef union {
MP_SPI_IOCTL_DEINIT, double d;
}; struct {
uint64_t m : 52;
uint64_t e : 11;
uint64_t s : 1;
};
} double_s_t;
typedef struct _mp_spi_proto_t { double copysign(double x, double y) {
int (*ioctl)(void *self, uint32_t cmd); double_s_t dx={.d = x};
void (*transfer)(void *self, size_t len, const uint8_t *src, uint8_t *dest); double_s_t dy={.d = y};
} mp_spi_proto_t;
typedef struct _mp_soft_spi_obj_t { // copy sign bit;
uint32_t delay_half; // microsecond delay for half SCK period dx.s = dy.s;
uint8_t polarity;
uint8_t phase;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t mosi;
mp_hal_pin_obj_t miso;
} mp_soft_spi_obj_t;
extern const mp_spi_proto_t mp_soft_spi_proto; return dx.d;
}
int mp_soft_spi_ioctl(void *self, uint32_t cmd); #endif
void mp_soft_spi_transfer(void *self, size_t len, const uint8_t *src, uint8_t *dest);
#endif // MICROPY_INCLUDED_DRIVERS_BUS_SPI_H

View File

@ -1,5 +1,12 @@
#include <math.h> #include <math.h>
double tanh(double x) { double tanh(double x) {
return sinh(x) / cosh(x); int sign = 0;
if (x < 0) {
sign = 1;
x = -x;
}
x = expm1(-2 * x);
x = x / (x + 2);
return sign ? x : -x;
} }

124
lib/utils/mpirq.c Normal file
View File

@ -0,0 +1,124 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Daniel Campora
* 2018 Tobias Badertscher
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "lib/utils/mpirq.h"
/******************************************************************************
DECLARE PUBLIC DATA
******************************************************************************/
const mp_arg_t mp_irq_init_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} },
};
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
mp_irq_obj_t *mp_irq_new(const mp_irq_methods_t *methods, mp_obj_t parent) {
mp_irq_obj_t *self = m_new0(mp_irq_obj_t, 1);
self->base.type = &mp_irq_type;
self->methods = (mp_irq_methods_t *)methods;
self->parent = parent;
self->handler = mp_const_none;
self->ishard = false;
return self;
}
void mp_irq_handler(mp_irq_obj_t *self) {
if (self->handler != mp_const_none) {
if (self->ishard) {
// When executing code within a handler we must lock the GC to prevent
// any memory allocations.
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_1(self->handler, self->parent);
nlr_pop();
} else {
// Uncaught exception; disable the callback so that it doesn't run again
self->methods->trigger(self->parent, 0);
self->handler = mp_const_none;
printf("Uncaught exception in IRQ callback handler\n");
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
gc_unlock();
} else {
// Schedule call to user function
mp_sched_schedule(self->handler, self->parent);
}
}
}
/******************************************************************************/
// MicroPython bindings
STATIC mp_obj_t mp_irq_flags(mp_obj_t self_in) {
mp_irq_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(self->methods->info(self->parent, MP_IRQ_INFO_FLAGS));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_irq_flags_obj, mp_irq_flags);
STATIC mp_obj_t mp_irq_trigger(size_t n_args, const mp_obj_t *args) {
mp_irq_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_t ret_obj = mp_obj_new_int(self->methods->info(self->parent, MP_IRQ_INFO_TRIGGERS));
if (n_args == 2) {
// Set trigger
self->methods->trigger(self->parent, mp_obj_get_int(args[1]));
}
return ret_obj;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_irq_trigger_obj, 1, 2, mp_irq_trigger);
STATIC mp_obj_t mp_irq_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 0, false);
mp_irq_handler(MP_OBJ_TO_PTR(self_in));
return mp_const_none;
}
STATIC const mp_rom_map_elem_t mp_irq_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_flags), MP_ROM_PTR(&mp_irq_flags_obj) },
{ MP_ROM_QSTR(MP_QSTR_trigger), MP_ROM_PTR(&mp_irq_trigger_obj) },
};
STATIC MP_DEFINE_CONST_DICT(mp_irq_locals_dict, mp_irq_locals_dict_table);
const mp_obj_type_t mp_irq_type = {
{ &mp_type_type },
.name = MP_QSTR_irq,
.call = mp_irq_call,
.locals_dict = (mp_obj_dict_t *)&mp_irq_locals_dict,
};

82
lib/utils/mpirq.h Normal file
View File

@ -0,0 +1,82 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MICROPY_INCLUDED_LIB_UTILS_MPIRQ_H
#define MICROPY_INCLUDED_LIB_UTILS_MPIRQ_H
/******************************************************************************
DEFINE CONSTANTS
******************************************************************************/
enum {
MP_IRQ_ARG_INIT_handler = 0,
MP_IRQ_ARG_INIT_trigger,
MP_IRQ_ARG_INIT_hard,
MP_IRQ_ARG_INIT_NUM_ARGS,
};
/******************************************************************************
DEFINE TYPES
******************************************************************************/
typedef mp_obj_t (*mp_irq_init_t)(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
typedef mp_uint_t (*mp_irq_uint_method_one_uint_para_t)(mp_obj_t self, mp_uint_t trigger);
typedef mp_uint_t (*mp_irq_int_method_one_para_t)(mp_obj_t self, mp_uint_t info_type);
enum {
MP_IRQ_INFO_FLAGS,
MP_IRQ_INFO_TRIGGERS,
MP_IRQ_INFO_CNT
};
typedef struct _mp_irq_methods_t {
mp_irq_init_t init;
mp_irq_uint_method_one_uint_para_t trigger;
mp_irq_int_method_one_para_t info;
} mp_irq_methods_t;
typedef struct _mp_irq_obj_t {
mp_obj_base_t base;
mp_irq_methods_t *methods;
mp_obj_t parent;
mp_obj_t handler;
bool ishard;
} mp_irq_obj_t;
/******************************************************************************
DECLARE EXPORTED DATA
******************************************************************************/
extern const mp_arg_t mp_irq_init_args[];
extern const mp_obj_type_t mp_irq_type;
/******************************************************************************
DECLARE PUBLIC FUNCTIONS
******************************************************************************/
mp_irq_obj_t *mp_irq_new(const mp_irq_methods_t *methods, mp_obj_t parent);
void mp_irq_handler(mp_irq_obj_t *self);
#endif // MICROPY_INCLUDED_LIB_UTILS_MPIRQ_H

View File

@ -26,8 +26,6 @@
#include "py/mpconfig.h" #include "py/mpconfig.h"
#if MICROPY_USE_INTERNAL_PRINTF
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#include <stdarg.h> #include <stdarg.h>
@ -39,6 +37,18 @@
#include "py/formatfloat.h" #include "py/formatfloat.h"
#endif #endif
#if MICROPY_DEBUG_PRINTERS
int DEBUG_printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
int ret = mp_vprintf(MICROPY_DEBUG_PRINTER, fmt, ap);
va_end(ap);
return ret;
}
#endif
#if MICROPY_USE_INTERNAL_PRINTF
#undef putchar // Some stdlibs have a #define for putchar #undef putchar // Some stdlibs have a #define for putchar
int printf(const char *fmt, ...); int printf(const char *fmt, ...);
int vprintf(const char *fmt, va_list ap); int vprintf(const char *fmt, va_list ap);
@ -59,20 +69,6 @@ int vprintf(const char *fmt, va_list ap) {
return mp_vprintf(&mp_plat_print, fmt, ap); return mp_vprintf(&mp_plat_print, fmt, ap);
} }
#if MICROPY_DEBUG_PRINTERS
extern const mp_print_t MICROPY_DEBUG_PRINTER_DEST;
int DEBUG_printf(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
#ifndef MICROPY_DEBUG_PRINTER_DEST
#define MICROPY_DEBUG_PRINTER_DEST mp_plat_print
#endif
int ret = mp_vprintf(&MICROPY_DEBUG_PRINTER_DEST, fmt, ap);
va_end(ap);
return ret;
}
#endif
// need this because gcc optimises printf("%c", c) -> putchar(c), and printf("a") -> putchar('a') // need this because gcc optimises printf("%c", c) -> putchar(c), and printf("a") -> putchar('a')
int putchar(int c) { int putchar(int c) {
char chr = c; char chr = c;

View File

@ -129,7 +129,7 @@ STATIC int parse_compile_execute(const void *source, mp_parse_input_kind_t input
mp_hal_stdout_tx_strn("\x04", 1); mp_hal_stdout_tx_strn("\x04", 1);
} }
// check for SystemExit // check for SystemExit
if (mp_obj_is_subclass_fast(mp_obj_get_type((mp_obj_t)nlr.ret_val), &mp_type_SystemExit)) { if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_SystemExit))) {
// at the moment, the value of SystemExit is unused // at the moment, the value of SystemExit is unused
ret = pyexec_system_exit; ret = pyexec_system_exit;
#if CIRCUITPY_ALARM #if CIRCUITPY_ALARM
@ -138,7 +138,7 @@ STATIC int parse_compile_execute(const void *source, mp_parse_input_kind_t input
#endif #endif
} else { } else {
if ((mp_obj_t)nlr.ret_val != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) { if ((mp_obj_t)nlr.ret_val != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) {
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
} }
ret = PYEXEC_EXCEPTION; ret = PYEXEC_EXCEPTION;
} }
@ -455,6 +455,12 @@ friendly_repl_reset:
} }
#endif #endif
// If the GC is locked at this point there is no way out except a reset,
// so force the GC to be unlocked to help the user debug what went wrong.
if (MP_STATE_MEM(gc_lock_depth) != 0) {
MP_STATE_MEM(gc_lock_depth) = 0;
}
vstr_reset(&line); vstr_reset(&line);
int ret = readline(&line, ">>> "); int ret = readline(&line, ">>> ");
mp_parse_input_kind_t parse_input_kind = MP_PARSE_SINGLE_INPUT; mp_parse_input_kind_t parse_input_kind = MP_PARSE_SINGLE_INPUT;

View File

@ -172,7 +172,7 @@ STATIC const mp_obj_type_t stdio_buffer_obj_type = {
.getiter = mp_identity_getiter, .getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter, .iternext = mp_stream_unbuffered_iter,
.protocol = &stdio_buffer_obj_stream_p, .protocol = &stdio_buffer_obj_stream_p,
.locals_dict = (mp_obj_t)&stdio_locals_dict, .locals_dict = (mp_obj_dict_t *)&stdio_locals_dict,
}; };
STATIC const sys_stdio_obj_t stdio_buffer_obj = {{&stdio_buffer_obj_type}, .fd = 0}; // fd unused STATIC const sys_stdio_obj_t stdio_buffer_obj = {{&stdio_buffer_obj_type}, .fd = 0}; // fd unused

View File

@ -2304,10 +2304,6 @@ msgstr ""
msgid "Version was invalid" msgid "Version was invalid"
msgstr "" msgstr ""
#: py/emitnative.c
msgid "Viper functions don't currently support more than 4 arguments"
msgstr ""
#: ports/stm/common-hal/microcontroller/Processor.c #: ports/stm/common-hal/microcontroller/Processor.c
msgid "Voltage read timed out" msgid "Voltage read timed out"
msgstr "" msgstr ""
@ -2387,11 +2383,6 @@ msgstr ""
msgid "abort() called" msgid "abort() called"
msgstr "" msgstr ""
#: extmod/machine_mem.c
#, c-format
msgid "address %08x is not aligned to %d bytes"
msgstr ""
#: shared-bindings/i2cperipheral/I2CPeripheral.c #: shared-bindings/i2cperipheral/I2CPeripheral.c
msgid "address out of bounds" msgid "address out of bounds"
msgstr "" msgstr ""
@ -2400,6 +2391,10 @@ msgstr ""
msgid "addresses is empty" msgid "addresses is empty"
msgstr "" msgstr ""
#: py/compile.c
msgid "annotation must be an identifier"
msgstr ""
#: py/modbuiltins.c #: py/modbuiltins.c
msgid "arg is an empty sequence" msgid "arg is an empty sequence"
msgstr "" msgstr ""
@ -2582,6 +2577,10 @@ msgstr ""
msgid "can't convert %q to %q" msgid "can't convert %q to %q"
msgstr "" msgstr ""
#: py/runtime.c
msgid "can't convert %q to int"
msgstr ""
#: py/objstr.c #: py/objstr.c
msgid "can't convert '%q' object to %q implicitly" msgid "can't convert '%q' object to %q implicitly"
msgstr "" msgstr ""
@ -2590,6 +2589,10 @@ msgstr ""
msgid "can't convert to %q" msgid "can't convert to %q"
msgstr "" msgstr ""
#: py/runtime.c
msgid "can't convert to int"
msgstr ""
#: py/objstr.c #: py/objstr.c
msgid "can't convert to str implicitly" msgid "can't convert to str implicitly"
msgstr "" msgstr ""
@ -2993,7 +2996,7 @@ msgid "full"
msgstr "" msgstr ""
#: py/argcheck.c #: py/argcheck.c
msgid "function does not take keyword arguments" msgid "function doesn't take keyword arguments"
msgstr "" msgstr ""
#: py/argcheck.c #: py/argcheck.c
@ -3048,6 +3051,10 @@ msgstr ""
msgid "generator ignored GeneratorExit" msgid "generator ignored GeneratorExit"
msgstr "" msgstr ""
#: py/objgenerator.c
msgid "generator raised StopIteration"
msgstr ""
#: shared-bindings/_stage/Layer.c #: shared-bindings/_stage/Layer.c
msgid "graphic must be 2048 bytes long" msgid "graphic must be 2048 bytes long"
msgstr "" msgstr ""
@ -3427,6 +3434,10 @@ msgstr ""
msgid "need more than %d values to unpack" msgid "need more than %d values to unpack"
msgstr "" msgstr ""
#: py/modmath.c
msgid "negative factorial"
msgstr ""
#: py/objint_longlong.c py/objint_mpz.c py/runtime.c #: py/objint_longlong.c py/objint_mpz.c py/runtime.c
msgid "negative power with no float support" msgid "negative power with no float support"
msgstr "" msgstr ""
@ -3656,10 +3667,6 @@ msgstr ""
msgid "palette_index should be an int" msgid "palette_index should be an int"
msgstr "" msgstr ""
#: py/compile.c
msgid "parameter annotation must be an identifier"
msgstr ""
#: py/emitinlinextensa.c #: py/emitinlinextensa.c
msgid "parameters must be registers in sequence a2 to a5" msgid "parameters must be registers in sequence a2 to a5"
msgstr "" msgstr ""
@ -3715,6 +3722,7 @@ msgstr ""
#: ports/esp32s2/boards/adafruit_magtag_2.9_grayscale/mpconfigboard.h #: ports/esp32s2/boards/adafruit_magtag_2.9_grayscale/mpconfigboard.h
#: ports/esp32s2/boards/adafruit_metro_esp32s2/mpconfigboard.h #: ports/esp32s2/boards/adafruit_metro_esp32s2/mpconfigboard.h
#: ports/esp32s2/boards/artisense_rd00/mpconfigboard.h #: ports/esp32s2/boards/artisense_rd00/mpconfigboard.h
#: ports/esp32s2/boards/atmegazero_esp32s2/mpconfigboard.h
#: ports/esp32s2/boards/electroniccats_bastwifi/mpconfigboard.h #: ports/esp32s2/boards/electroniccats_bastwifi/mpconfigboard.h
#: ports/esp32s2/boards/espressif_kaluga_1/mpconfigboard.h #: ports/esp32s2/boards/espressif_kaluga_1/mpconfigboard.h
#: ports/esp32s2/boards/espressif_saola_1_wroom/mpconfigboard.h #: ports/esp32s2/boards/espressif_saola_1_wroom/mpconfigboard.h
@ -4098,7 +4106,7 @@ msgstr ""
msgid "unknown type" msgid "unknown type"
msgstr "" msgstr ""
#: py/emitnative.c #: py/compile.c
msgid "unknown type '%q'" msgid "unknown type '%q'"
msgstr "" msgstr ""

View File

@ -9,6 +9,8 @@ ifneq ($(findstring undefine,$(.FEATURES)),)
override undefine COPT override undefine COPT
override undefine CFLAGS_EXTRA override undefine CFLAGS_EXTRA
override undefine LDFLAGS_EXTRA override undefine LDFLAGS_EXTRA
override undefine MICROPY_FORCE_32BIT
override undefine CROSS_COMPILE
override undefine FROZEN_DIR override undefine FROZEN_DIR
override undefine FROZEN_MPY_DIR override undefine FROZEN_MPY_DIR
override undefine BUILD override undefine BUILD

View File

@ -2,4 +2,5 @@
// //
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// empty file // prevent including extmod/virtpin.h
#define mp_hal_pin_obj_t

View File

@ -22,8 +22,8 @@ UNAME_S := $(shell uname -s)
# include py core make definitions # include py core make definitions
include $(TOP)/py/py.mk include $(TOP)/py/py.mk
INC += -I. INC += -I.
INC += -I$(TOP) INC += -I$(TOP)
INC += -I$(BUILD) INC += -I$(BUILD)
# compiler settings # compiler settings
@ -79,7 +79,7 @@ ifneq (,$(findstring mingw,$(COMPILER_TARGET)))
SRC_C += fmode.c SRC_C += fmode.c
endif endif
OBJ = $(PY_O) OBJ = $(PY_CORE_O)
OBJ += $(addprefix $(BUILD)/, $(SRC_C:.c=.o)) OBJ += $(addprefix $(BUILD)/, $(SRC_C:.c=.o))
$(BUILD)/supervisor/shared/translate.o: $(HEADER_BUILD)/qstrdefs.generated.h $(BUILD)/supervisor/shared/translate.o: $(HEADER_BUILD)/qstrdefs.generated.h

View File

@ -76,6 +76,9 @@ LDFLAGS_ARCH = -Wl,-Map=$@.map,--cref -Wl,--gc-sections
endif endif
LDFLAGS = -Lbuild $(LDFLAGS_MOD) $(LDFLAGS_ARCH) -lm $(LDFLAGS_EXTRA) LDFLAGS = -Lbuild $(LDFLAGS_MOD) $(LDFLAGS_ARCH) -lm $(LDFLAGS_EXTRA)
# Flags to link with pthread library
LIBPTHREAD = -lpthread
ifeq ($(MICROPY_FORCE_32BIT),1) ifeq ($(MICROPY_FORCE_32BIT),1)
# Note: you may need to install i386 versions of dependency packages, # Note: you may need to install i386 versions of dependency packages,
# starting with linux-libc-dev:i386 # starting with linux-libc-dev:i386
@ -101,17 +104,17 @@ SRC_MOD += modusocket.c
endif endif
ifeq ($(MICROPY_PY_THREAD),1) ifeq ($(MICROPY_PY_THREAD),1)
CFLAGS_MOD += -DMICROPY_PY_THREAD=1 -DMICROPY_PY_THREAD_GIL=0 CFLAGS_MOD += -DMICROPY_PY_THREAD=1 -DMICROPY_PY_THREAD_GIL=0
LDFLAGS_MOD += -lpthread LDFLAGS_MOD += $(LIBPTHREAD)
endif endif
ifeq ($(MICROPY_PY_FFI),1) ifeq ($(MICROPY_PY_FFI),1)
ifeq ($(MICROPY_STANDALONE),1) ifeq ($(MICROPY_STANDALONE),1)
LIBFFI_CFLAGS_MOD := -I$(shell ls -1d $(TOP)/lib/libffi/build_dir/out/lib/libffi-*/include) LIBFFI_CFLAGS_MOD := -I$(shell ls -1d $(BUILD)/lib/libffi/out/lib/libffi-*/include)
ifeq ($(MICROPY_FORCE_32BIT),1) ifeq ($(MICROPY_FORCE_32BIT),1)
LIBFFI_LDFLAGS_MOD = $(TOP)/lib/libffi/build_dir/out/lib32/libffi.a LIBFFI_LDFLAGS_MOD = $(BUILD)/lib/libffi/out/lib32/libffi.a
else else
LIBFFI_LDFLAGS_MOD = $(TOP)/lib/libffi/build_dir/out/lib/libffi.a LIBFFI_LDFLAGS_MOD = $(BUILD)/lib/libffi/out/lib/libffi.a
endif endif
else else
LIBFFI_CFLAGS_MOD := $(shell pkg-config --cflags libffi) LIBFFI_CFLAGS_MOD := $(shell pkg-config --cflags libffi)
@ -141,7 +144,6 @@ SRC_C += \
mpthreadport.c \ mpthreadport.c \
input.c \ input.c \
file.c \ file.c \
modmachine.c \
modos.c \ modos.c \
moduos_vfs.c \ moduos_vfs.c \
modtime.c \ modtime.c \
@ -156,12 +158,6 @@ SRC_C += \
supervisor/shared/translate.c \ supervisor/shared/translate.c \
$(SRC_MOD) $(SRC_MOD)
PY_EXTMOD_O_BASENAME += \
extmod/machine_mem.o \
extmod/machine_pinbase.o \
extmod/machine_signal.o \
extmod/machine_pulse.o \
LIB_SRC_C = $(addprefix lib/,\ LIB_SRC_C = $(addprefix lib/,\
$(LIB_SRC_C_EXTRA) \ $(LIB_SRC_C_EXTRA) \
timeutils/timeutils.c \ timeutils/timeutils.c \
@ -232,8 +228,7 @@ nanbox:
CFLAGS_EXTRA='-DMP_CONFIGFILE="<mpconfigport_nanbox.h>"' \ CFLAGS_EXTRA='-DMP_CONFIGFILE="<mpconfigport_nanbox.h>"' \
BUILD=build-nanbox \ BUILD=build-nanbox \
PROG=micropython_nanbox \ PROG=micropython_nanbox \
MICROPY_FORCE_32BIT=1 \ MICROPY_FORCE_32BIT=1
MICROPY_PY_USSL=0
freedos: freedos:
$(MAKE) \ $(MAKE) \
@ -264,9 +259,9 @@ coverage:
coverage_test: coverage coverage_test: coverage
$(eval DIRNAME=ports/$(notdir $(CURDIR))) $(eval DIRNAME=ports/$(notdir $(CURDIR)))
cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests --auto-jobs cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests -j1
cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests --auto-jobs -d thread cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests -j1 -d thread
cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests --auto-jobs --emit native cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests -j1 --emit native
cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests -j1 --via-mpy -d basics float cd $(TOP)/tests && MICROPY_MICROPYTHON=../$(DIRNAME)/micropython_coverage ./run-tests -j1 --via-mpy -d basics float
cat $(TOP)/tests/basics/0prelim.py | ./micropython_coverage | grep -q 'abc' cat $(TOP)/tests/basics/0prelim.py | ./micropython_coverage | grep -q 'abc'
gcov -o build-coverage/py $(TOP)/py/*.c gcov -o build-coverage/py $(TOP)/py/*.c
@ -297,23 +292,19 @@ endif
deplibs: libffi axtls deplibs: libffi axtls
libffi: $(BUILD)/lib/libffi/include/ffi.h
$(TOP)/lib/libffi/configure: $(TOP)/lib/libffi/autogen.sh
cd $(TOP)/lib/libffi; ./autogen.sh
# install-exec-recursive & install-data-am targets are used to avoid building # install-exec-recursive & install-data-am targets are used to avoid building
# docs and depending on makeinfo # docs and depending on makeinfo
libffi: $(BUILD)/lib/libffi/include/ffi.h: $(TOP)/lib/libffi/configure
cd $(TOP)/lib/libffi; git clean -d -x -f mkdir -p $(BUILD)/lib/libffi; cd $(BUILD)/lib/libffi; \
cd $(TOP)/lib/libffi; ./autogen.sh $(abspath $(TOP))/lib/libffi/configure $(CROSS_COMPILE_HOST) --prefix=$$PWD/out --disable-structs CC="$(CC)" CXX="$(CXX)" LD="$(LD)" CFLAGS="-Os -fomit-frame-pointer -fstrict-aliasing -ffast-math -fno-exceptions"; \
mkdir -p $(TOP)/lib/libffi/build_dir; cd $(TOP)/lib/libffi/build_dir; \
../configure $(CROSS_COMPILE_HOST) --prefix=$$PWD/out --disable-structs CC="$(CC)" CXX="$(CXX)" LD="$(LD)" CFLAGS="-Os -fomit-frame-pointer -fstrict-aliasing -ffast-math -fno-exceptions"; \
$(MAKE) install-exec-recursive; $(MAKE) -C include install-data-am $(MAKE) install-exec-recursive; $(MAKE) -C include install-data-am
axtls: $(BUILD)/libaxtls.a axtls: $(TOP)/lib/axtls/README
$(BUILD)/libaxtls.a: $(TOP)/lib/axtls/README | $(OBJ_DIRS)
cd $(TOP)/lib/axtls; cp config/upyconfig config/.config
cd $(TOP)/lib/axtls; $(MAKE) oldconfig -B
cd $(TOP)/lib/axtls; $(MAKE) clean
cd $(TOP)/lib/axtls; $(MAKE) all CC="$(CC)" LD="$(LD)"
cp $(TOP)/lib/axtls/_stage/libaxtls.a $@
$(TOP)/lib/axtls/README: $(TOP)/lib/axtls/README:
@echo "You cloned without --recursive, fetching submodules for you." @echo "You cloned without --recursive, fetching submodules for you."

View File

@ -125,6 +125,8 @@ STATIC mp_uint_t fdfile_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, i
o->fd = -1; o->fd = -1;
#endif #endif
return 0; return 0;
case MP_STREAM_GET_FILENO:
return o->fd;
default: default:
*errcode = EINVAL; *errcode = EINVAL;
return MP_STREAM_ERROR; return MP_STREAM_ERROR;

View File

@ -511,9 +511,6 @@ MP_NOINLINE int main_(int argc, char **argv) {
} }
} }
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0); mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0);
#if defined(MICROPY_UNIX_COVERAGE) #if defined(MICROPY_UNIX_COVERAGE)

View File

@ -117,6 +117,10 @@ STATIC ffi_type *char2ffi_type(char c) {
return &ffi_type_slong; return &ffi_type_slong;
case 'L': case 'L':
return &ffi_type_ulong; return &ffi_type_ulong;
case 'q':
return &ffi_type_sint64;
case 'Q':
return &ffi_type_uint64;
#if MICROPY_PY_BUILTINS_FLOAT #if MICROPY_PY_BUILTINS_FLOAT
case 'f': case 'f':
return &ffi_type_float; return &ffi_type_float;

View File

@ -118,7 +118,7 @@ STATIC void print_jobject(const mp_print_t *print, jobject obj) {
// jclass // jclass
STATIC void jclass_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { STATIC void jclass_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_jclass_t *self = self_in; mp_obj_jclass_t *self = MP_OBJ_TO_PTR(self_in);
if (kind == PRINT_REPR) { if (kind == PRINT_REPR) {
mp_printf(print, "<jclass @%p \"", self->cls); mp_printf(print, "<jclass @%p \"", self->cls);
} }
@ -131,7 +131,7 @@ STATIC void jclass_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kin
STATIC void jclass_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) { STATIC void jclass_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) {
if (dest[0] == MP_OBJ_NULL) { if (dest[0] == MP_OBJ_NULL) {
// load attribute // load attribute
mp_obj_jclass_t *self = self_in; mp_obj_jclass_t *self = MP_OBJ_TO_PTR(self_in);
const char *attr = qstr_str(attr_in); const char *attr = qstr_str(attr_in);
jstring field_name = JJ(NewStringUTF, attr); jstring field_name = JJ(NewStringUTF, attr);
@ -151,7 +151,7 @@ STATIC void jclass_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) {
o->meth = NULL; o->meth = NULL;
o->obj = self->cls; o->obj = self->cls;
o->is_static = true; o->is_static = true;
dest[0] = o; dest[0] = MP_OBJ_FROM_PTR(o);
} }
} }
@ -159,7 +159,7 @@ STATIC mp_obj_t jclass_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const
if (n_kw != 0) { if (n_kw != 0) {
mp_raise_TypeError("kwargs not supported"); mp_raise_TypeError("kwargs not supported");
} }
mp_obj_jclass_t *self = self_in; mp_obj_jclass_t *self = MP_OBJ_TO_PTR(self_in);
jarray methods = JJ(CallObjectMethod, self->cls, Class_getConstructors_mid); jarray methods = JJ(CallObjectMethod, self->cls, Class_getConstructors_mid);
@ -186,13 +186,13 @@ STATIC mp_obj_t new_jclass(jclass jc) {
mp_obj_jclass_t *o = m_new_obj(mp_obj_jclass_t); mp_obj_jclass_t *o = m_new_obj(mp_obj_jclass_t);
o->base.type = &jclass_type; o->base.type = &jclass_type;
o->cls = jc; o->cls = jc;
return o; return MP_OBJ_FROM_PTR(o);
} }
// jobject // jobject
STATIC void jobject_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { STATIC void jobject_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_jobject_t *self = self_in; mp_obj_jobject_t *self = MP_OBJ_TO_PTR(self_in);
if (kind == PRINT_REPR) { if (kind == PRINT_REPR) {
mp_printf(print, "<jobject @%p \"", self->obj); mp_printf(print, "<jobject @%p \"", self->obj);
} }
@ -205,7 +205,7 @@ STATIC void jobject_print(const mp_print_t *print, mp_obj_t self_in, mp_print_ki
STATIC void jobject_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) { STATIC void jobject_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) {
if (dest[0] == MP_OBJ_NULL) { if (dest[0] == MP_OBJ_NULL) {
// load attribute // load attribute
mp_obj_jobject_t *self = self_in; mp_obj_jobject_t *self = MP_OBJ_TO_PTR(self_in);
const char *attr = qstr_str(attr_in); const char *attr = qstr_str(attr_in);
jclass obj_class = JJ(GetObjectClass, self->obj); jclass obj_class = JJ(GetObjectClass, self->obj);
@ -229,7 +229,7 @@ STATIC void jobject_attr(mp_obj_t self_in, qstr attr_in, mp_obj_t *dest) {
o->meth = NULL; o->meth = NULL;
o->obj = self->obj; o->obj = self->obj;
o->is_static = false; o->is_static = false;
dest[0] = o; dest[0] = MP_OBJ_FROM_PTR(o);
} }
} }
@ -242,7 +242,7 @@ STATIC void get_jclass_name(jobject obj, char *buf) {
} }
STATIC mp_obj_t jobject_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { STATIC mp_obj_t jobject_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
mp_obj_jobject_t *self = self_in; mp_obj_jobject_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t idx = mp_obj_get_int(index); mp_uint_t idx = mp_obj_get_int(index);
char class_name[64]; char class_name[64];
get_jclass_name(self->obj, class_name); get_jclass_name(self->obj, class_name);
@ -292,7 +292,7 @@ STATIC mp_obj_t jobject_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value)
} }
STATIC mp_obj_t jobject_unary_op(mp_unary_op_t op, mp_obj_t self_in) { STATIC mp_obj_t jobject_unary_op(mp_unary_op_t op, mp_obj_t self_in) {
mp_obj_jobject_t *self = self_in; mp_obj_jobject_t *self = MP_OBJ_TO_PTR(self_in);
switch (op) { switch (op) {
case MP_UNARY_OP_BOOL: case MP_UNARY_OP_BOOL:
case MP_UNARY_OP_LEN: { case MP_UNARY_OP_LEN: {
@ -316,9 +316,9 @@ MP_DEFINE_CONST_FUN_OBJ_2(subscr_load_adaptor_obj, subscr_load_adaptor);
// .getiter special method which returns iterator which works in terms // .getiter special method which returns iterator which works in terms
// of object subscription. // of object subscription.
STATIC mp_obj_t subscr_getiter(mp_obj_t self_in) { STATIC mp_obj_t subscr_getiter(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf) {
mp_obj_t dest[2] = {(mp_obj_t)&subscr_load_adaptor_obj, self_in}; mp_obj_t dest[2] = {MP_OBJ_FROM_PTR(&subscr_load_adaptor_obj), self_in};
return mp_obj_new_getitem_iter(dest); return mp_obj_new_getitem_iter(dest, iter_buf);
} }
STATIC const mp_obj_type_t jobject_type = { STATIC const mp_obj_type_t jobject_type = {
@ -346,7 +346,7 @@ STATIC mp_obj_t new_jobject(jobject jo) {
mp_obj_jobject_t *o = m_new_obj(mp_obj_jobject_t); mp_obj_jobject_t *o = m_new_obj(mp_obj_jobject_t);
o->base.type = &jobject_type; o->base.type = &jobject_type;
o->obj = jo; o->obj = jo;
return o; return MP_OBJ_FROM_PTR(o);
} }
} }
@ -356,7 +356,7 @@ STATIC mp_obj_t new_jobject(jobject jo) {
STATIC void jmethod_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { STATIC void jmethod_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
(void)kind; (void)kind;
mp_obj_jmethod_t *self = self_in; mp_obj_jmethod_t *self = MP_OBJ_TO_PTR(self_in);
// Variable value printed as cast to int // Variable value printed as cast to int
mp_printf(print, "<jmethod '%s'>", qstr_str(self->name)); mp_printf(print, "<jmethod '%s'>", qstr_str(self->name));
} }
@ -408,7 +408,7 @@ STATIC bool py2jvalue(const char **jtypesig, mp_obj_t arg, jvalue *out) {
if (!is_object) { if (!is_object) {
return false; return false;
} }
mp_obj_jobject_t *jo = arg; mp_obj_jobject_t *jo = MP_OBJ_TO_PTR(arg);
if (!MATCH(expected_type, "java.lang.Object")) { if (!MATCH(expected_type, "java.lang.Object")) {
char class_name[64]; char class_name[64];
get_jclass_name(jo->obj, class_name); get_jclass_name(jo->obj, class_name);
@ -490,8 +490,8 @@ STATIC mp_obj_t call_method(jobject obj, const char *name, jarray methods, bool
// printf("name=%p meth_name=%s\n", name, meth_name); // printf("name=%p meth_name=%s\n", name, meth_name);
bool found = true; bool found = true;
for (int i = 0; i < n_args && *arg_types != ')'; i++) { for (size_t j = 0; j < n_args && *arg_types != ')'; j++) {
if (!py2jvalue(&arg_types, args[i], &jargs[i])) { if (!py2jvalue(&arg_types, args[j], &jargs[j])) {
goto next_method; goto next_method;
} }
@ -507,13 +507,12 @@ STATIC mp_obj_t call_method(jobject obj, const char *name, jarray methods, bool
if (found) { if (found) {
// printf("found!\n"); // printf("found!\n");
jmethodID method_id = JJ(FromReflectedMethod, meth); jmethodID method_id = JJ(FromReflectedMethod, meth);
jobject res;
mp_obj_t ret;
if (is_constr) { if (is_constr) {
JJ(ReleaseStringUTFChars, name_o, decl); JJ(ReleaseStringUTFChars, name_o, decl);
res = JJ(NewObjectA, obj, method_id, jargs); jobject res = JJ(NewObjectA, obj, method_id, jargs);
return new_jobject(res); return new_jobject(res);
} else { } else {
mp_obj_t ret;
if (MATCH(ret_type, "void")) { if (MATCH(ret_type, "void")) {
JJ(CallVoidMethodA, obj, method_id, jargs); JJ(CallVoidMethodA, obj, method_id, jargs);
check_exception(); check_exception();
@ -527,7 +526,7 @@ STATIC mp_obj_t call_method(jobject obj, const char *name, jarray methods, bool
check_exception(); check_exception();
ret = mp_obj_new_bool(res); ret = mp_obj_new_bool(res);
} else if (is_object_type(ret_type)) { } else if (is_object_type(ret_type)) {
res = JJ(CallObjectMethodA, obj, method_id, jargs); jobject res = JJ(CallObjectMethodA, obj, method_id, jargs);
check_exception(); check_exception();
ret = new_jobject(res); ret = new_jobject(res);
} else { } else {
@ -556,7 +555,7 @@ STATIC mp_obj_t jmethod_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const
if (n_kw != 0) { if (n_kw != 0) {
mp_raise_TypeError("kwargs not supported"); mp_raise_TypeError("kwargs not supported");
} }
mp_obj_jmethod_t *self = self_in; mp_obj_jmethod_t *self = MP_OBJ_TO_PTR(self_in);
const char *name = qstr_str(self->name); const char *name = qstr_str(self->name);
// jstring meth_name = JJ(NewStringUTF, name); // jstring meth_name = JJ(NewStringUTF, name);
@ -585,7 +584,7 @@ STATIC const mp_obj_type_t jmethod_type = {
#define LIBJVM_SO "libjvm.so" #define LIBJVM_SO "libjvm.so"
#endif #endif
STATIC void create_jvm() { STATIC void create_jvm(void) {
JavaVMInitArgs args; JavaVMInitArgs args;
JavaVMOption options; JavaVMOption options;
options.optionString = "-Djava.class.path=."; options.optionString = "-Djava.class.path=.";
@ -648,7 +647,7 @@ STATIC mp_obj_t mod_jni_cls(mp_obj_t cls_name_in) {
mp_obj_jclass_t *o = m_new_obj(mp_obj_jclass_t); mp_obj_jclass_t *o = m_new_obj(mp_obj_jclass_t);
o->base.type = &jclass_type; o->base.type = &jclass_type;
o->cls = cls; o->cls = cls;
return o; return MP_OBJ_FROM_PTR(o);
} }
MP_DEFINE_CONST_FUN_OBJ_1(mod_jni_cls_obj, mod_jni_cls); MP_DEFINE_CONST_FUN_OBJ_1(mod_jni_cls_obj, mod_jni_cls);
@ -661,7 +660,7 @@ STATIC mp_obj_t mod_jni_array(mp_obj_t type_in, mp_obj_t size_in) {
if (MP_OBJ_IS_TYPE(type_in, &jclass_type)) { if (MP_OBJ_IS_TYPE(type_in, &jclass_type)) {
mp_obj_jclass_t *jcls = type_in; mp_obj_jclass_t *jcls = MP_OBJ_TO_PTR(type_in);
res = JJ(NewObjectArray, size, jcls->cls, NULL); res = JJ(NewObjectArray, size, jcls->cls, NULL);
} else if (MP_OBJ_IS_STR(type_in)) { } else if (MP_OBJ_IS_STR(type_in)) {
@ -700,8 +699,8 @@ STATIC mp_obj_t mod_jni_array(mp_obj_t type_in, mp_obj_t size_in) {
MP_DEFINE_CONST_FUN_OBJ_2(mod_jni_array_obj, mod_jni_array); MP_DEFINE_CONST_FUN_OBJ_2(mod_jni_array_obj, mod_jni_array);
STATIC mp_obj_t mod_jni_env() { STATIC mp_obj_t mod_jni_env(void) {
return mp_obj_new_int((mp_int_t)env); return mp_obj_new_int((mp_int_t)(uintptr_t)env);
} }
MP_DEFINE_CONST_FUN_OBJ_0(mod_jni_env_obj, mod_jni_env); MP_DEFINE_CONST_FUN_OBJ_0(mod_jni_env_obj, mod_jni_env);

View File

@ -37,6 +37,7 @@
#include "py/runtime.h" #include "py/runtime.h"
#include "py/objtuple.h" #include "py/objtuple.h"
#include "py/mphal.h" #include "py/mphal.h"
#include "extmod/vfs.h"
#include "extmod/misc.h" #include "extmod/misc.h"
#ifdef __ANDROID__ #ifdef __ANDROID__
@ -106,16 +107,21 @@ STATIC mp_obj_t mod_os_statvfs(mp_obj_t path_in) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_os_statvfs_obj, mod_os_statvfs); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_os_statvfs_obj, mod_os_statvfs);
#endif #endif
STATIC mp_obj_t mod_os_unlink(mp_obj_t path_in) { STATIC mp_obj_t mod_os_remove(mp_obj_t path_in) {
const char *path = mp_obj_str_get_str(path_in); const char *path = mp_obj_str_get_str(path_in);
// Note that POSIX requires remove() to be able to delete a directory
// too (act as rmdir()). This is POSIX extenstion to ANSI C semantics
// of that function. But Python remove() follows ANSI C, and explicitly
// required to raise exception on attempt to remove a directory. Thus,
// call POSIX unlink() here.
int r = unlink(path); int r = unlink(path);
RAISE_ERRNO(r, errno); RAISE_ERRNO(r, errno);
return mp_const_none; return mp_const_none;
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_os_unlink_obj, mod_os_unlink); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_os_remove_obj, mod_os_remove);
STATIC mp_obj_t mod_os_system(mp_obj_t cmd_in) { STATIC mp_obj_t mod_os_system(mp_obj_t cmd_in) {
const char *cmd = mp_obj_str_get_str(cmd_in); const char *cmd = mp_obj_str_get_str(cmd_in);
@ -172,12 +178,24 @@ STATIC mp_obj_t listdir_next(mp_obj_t self_in) {
mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(3, NULL)); mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(3, NULL));
t->items[0] = mp_obj_new_str(dirent->d_name, strlen(dirent->d_name)); t->items[0] = mp_obj_new_str(dirent->d_name, strlen(dirent->d_name));
#ifdef _DIRENT_HAVE_D_TYPE #ifdef _DIRENT_HAVE_D_TYPE
t->items[1] = MP_OBJ_NEW_SMALL_INT(dirent->d_type); #ifdef DTTOIF
t->items[1] = MP_OBJ_NEW_SMALL_INT(DTTOIF(dirent->d_type));
#else
if (dirent->d_type == DT_DIR) {
t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR);
} else if (dirent->d_type == DT_REG) {
t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFREG);
} else {
t->items[1] = MP_OBJ_NEW_SMALL_INT(dirent->d_type);
}
#endif
#else #else
// DT_UNKNOWN should have 0 value on any reasonable system // DT_UNKNOWN should have 0 value on any reasonable system
t->items[1] = MP_OBJ_NEW_SMALL_INT(0); t->items[1] = MP_OBJ_NEW_SMALL_INT(0);
#endif #endif
#ifdef _DIRENT_HAVE_D_INO #ifdef _DIRENT_HAVE_D_INO
t->items[2] = MP_OBJ_NEW_SMALL_INT(dirent->d_ino); t->items[2] = MP_OBJ_NEW_SMALL_INT(dirent->d_ino);
#else #else
@ -217,7 +235,7 @@ STATIC const mp_rom_map_elem_t mp_module_os_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR_statvfs), MP_ROM_PTR(&mod_os_statvfs_obj) }, { MP_ROM_QSTR(MP_QSTR_statvfs), MP_ROM_PTR(&mod_os_statvfs_obj) },
#endif #endif
{ MP_ROM_QSTR(MP_QSTR_system), MP_ROM_PTR(&mod_os_system_obj) }, { MP_ROM_QSTR(MP_QSTR_system), MP_ROM_PTR(&mod_os_system_obj) },
{ MP_ROM_QSTR(MP_QSTR_unlink), MP_ROM_PTR(&mod_os_unlink_obj) }, { MP_ROM_QSTR(MP_QSTR_remove), MP_ROM_PTR(&mod_os_remove_obj) },
{ MP_ROM_QSTR(MP_QSTR_getenv), MP_ROM_PTR(&mod_os_getenv_obj) }, { MP_ROM_QSTR(MP_QSTR_getenv), MP_ROM_PTR(&mod_os_getenv_obj) },
{ MP_ROM_QSTR(MP_QSTR_mkdir), MP_ROM_PTR(&mod_os_mkdir_obj) }, { MP_ROM_QSTR(MP_QSTR_mkdir), MP_ROM_PTR(&mod_os_mkdir_obj) },
{ MP_ROM_QSTR(MP_QSTR_ilistdir), MP_ROM_PTR(&mod_os_ilistdir_obj) }, { MP_ROM_QSTR(MP_QSTR_ilistdir), MP_ROM_PTR(&mod_os_ilistdir_obj) },

View File

@ -34,6 +34,7 @@
#include <poll.h> #include <poll.h>
#include "py/runtime.h" #include "py/runtime.h"
#include "py/stream.h"
#include "py/obj.h" #include "py/obj.h"
#include "py/objlist.h" #include "py/objlist.h"
#include "py/objtuple.h" #include "py/objtuple.h"
@ -65,19 +66,15 @@ typedef struct _mp_obj_poll_t {
} mp_obj_poll_t; } mp_obj_poll_t;
STATIC int get_fd(mp_obj_t fdlike) { STATIC int get_fd(mp_obj_t fdlike) {
int fd; if (MP_OBJ_IS_OBJ(fdlike)) {
// Shortcut for fdfile compatible types const mp_stream_p_t *stream_p = mp_get_stream_raise(fdlike, MP_STREAM_OP_IOCTL);
if (MP_OBJ_IS_TYPE(fdlike, &mp_type_fileio) int err;
#if MICROPY_PY_SOCKET mp_uint_t res = stream_p->ioctl(fdlike, MP_STREAM_GET_FILENO, 0, &err);
|| MP_OBJ_IS_TYPE(fdlike, &mp_type_socket) if (res != MP_STREAM_ERROR) {
#endif return res;
) { }
mp_obj_fdfile_t *fdfile = MP_OBJ_TO_PTR(fdlike);
fd = fdfile->fd;
} else {
fd = mp_obj_get_int(fdlike);
} }
return fd; return mp_obj_get_int(fdlike);
} }
/// \method register(obj[, eventmask]) /// \method register(obj[, eventmask])
@ -161,13 +158,13 @@ STATIC mp_obj_t poll_modify(mp_obj_t self_in, mp_obj_t obj_in, mp_obj_t eventmas
for (int i = self->len - 1; i >= 0; i--) { for (int i = self->len - 1; i >= 0; i--) {
if (entries->fd == fd) { if (entries->fd == fd) {
entries->events = mp_obj_get_int(eventmask_in); entries->events = mp_obj_get_int(eventmask_in);
break; return mp_const_none;
} }
entries++; entries++;
} }
// TODO raise KeyError if obj didn't exist in map // obj doesn't exist in poller
return mp_const_none; mp_raise_OSError(MP_ENOENT);
} }
MP_DEFINE_CONST_FUN_OBJ_3(poll_modify_obj, poll_modify); MP_DEFINE_CONST_FUN_OBJ_3(poll_modify_obj, poll_modify);

View File

@ -37,6 +37,7 @@
#include <arpa/inet.h> #include <arpa/inet.h>
#include <netdb.h> #include <netdb.h>
#include <errno.h> #include <errno.h>
#include <math.h>
#include "py/objtuple.h" #include "py/objtuple.h"
#include "py/objstr.h" #include "py/objstr.h"
@ -67,6 +68,7 @@
typedef struct _mp_obj_socket_t { typedef struct _mp_obj_socket_t {
mp_obj_base_t base; mp_obj_base_t base;
int fd; int fd;
bool blocking;
} mp_obj_socket_t; } mp_obj_socket_t;
const mp_obj_type_t mp_type_socket; const mp_obj_type_t mp_type_socket;
@ -80,6 +82,7 @@ STATIC mp_obj_socket_t *socket_new(int fd) {
mp_obj_socket_t *o = m_new_obj(mp_obj_socket_t); mp_obj_socket_t *o = m_new_obj(mp_obj_socket_t);
o->base.type = &mp_type_socket; o->base.type = &mp_type_socket;
o->fd = fd; o->fd = fd;
o->blocking = true;
return o; return o;
} }
@ -94,7 +97,14 @@ STATIC mp_uint_t socket_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errc
mp_obj_socket_t *o = MP_OBJ_TO_PTR(o_in); mp_obj_socket_t *o = MP_OBJ_TO_PTR(o_in);
mp_int_t r = read(o->fd, buf, size); mp_int_t r = read(o->fd, buf, size);
if (r == -1) { if (r == -1) {
*errcode = errno; int err = errno;
// On blocking socket, we get EAGAIN in case SO_RCVTIMEO/SO_SNDTIMEO
// timed out, and need to convert that to ETIMEDOUT.
if (err == EAGAIN && o->blocking) {
err = MP_ETIMEDOUT;
}
*errcode = err;
return MP_STREAM_ERROR; return MP_STREAM_ERROR;
} }
return r; return r;
@ -104,7 +114,14 @@ STATIC mp_uint_t socket_write(mp_obj_t o_in, const void *buf, mp_uint_t size, in
mp_obj_socket_t *o = MP_OBJ_TO_PTR(o_in); mp_obj_socket_t *o = MP_OBJ_TO_PTR(o_in);
mp_int_t r = write(o->fd, buf, size); mp_int_t r = write(o->fd, buf, size);
if (r == -1) { if (r == -1) {
*errcode = errno; int err = errno;
// On blocking socket, we get EAGAIN in case SO_RCVTIMEO/SO_SNDTIMEO
// timed out, and need to convert that to ETIMEDOUT.
if (err == EAGAIN && o->blocking) {
err = MP_ETIMEDOUT;
}
*errcode = err;
return MP_STREAM_ERROR; return MP_STREAM_ERROR;
} }
return r; return r;
@ -125,6 +142,9 @@ STATIC mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, i
close(self->fd); close(self->fd);
return 0; return 0;
case MP_STREAM_GET_FILENO:
return self->fd;
default: default:
*errcode = MP_EINVAL; *errcode = MP_EINVAL;
return MP_STREAM_ERROR; return MP_STREAM_ERROR;
@ -309,10 +329,49 @@ STATIC mp_obj_t socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) {
} }
flags = fcntl(self->fd, F_SETFL, flags); flags = fcntl(self->fd, F_SETFL, flags);
RAISE_ERRNO(flags, errno); RAISE_ERRNO(flags, errno);
self->blocking = val;
return mp_const_none; return mp_const_none;
} }
STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_setblocking_obj, socket_setblocking); STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_setblocking_obj, socket_setblocking);
STATIC mp_obj_t socket_settimeout(mp_obj_t self_in, mp_obj_t timeout_in) {
mp_obj_socket_t *self = MP_OBJ_TO_PTR(self_in);
struct timeval tv = {0,};
bool new_blocking = true;
if (timeout_in == mp_const_none) {
setsockopt(self->fd, SOL_SOCKET, SO_RCVTIMEO, NULL, 0);
setsockopt(self->fd, SOL_SOCKET, SO_SNDTIMEO, NULL, 0);
} else {
#if MICROPY_PY_BUILTINS_FLOAT
mp_float_t val = mp_obj_get_float(timeout_in);
double ipart;
tv.tv_usec = round(modf(val, &ipart) * 1000000);
tv.tv_sec = ipart;
#else
tv.tv_sec = mp_obj_get_int(timeout_in);
#endif
// For SO_RCVTIMEO/SO_SNDTIMEO, zero timeout means infinity, but
// for Python API it means non-blocking.
if (tv.tv_sec == 0 && tv.tv_usec == 0) {
new_blocking = false;
} else {
setsockopt(self->fd, SOL_SOCKET, SO_RCVTIMEO,
&tv, sizeof(struct timeval));
setsockopt(self->fd, SOL_SOCKET, SO_SNDTIMEO,
&tv, sizeof(struct timeval));
}
}
if (self->blocking != new_blocking) {
socket_setblocking(self_in, mp_obj_new_bool(new_blocking));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(socket_settimeout_obj, socket_settimeout);
STATIC mp_obj_t socket_makefile(size_t n_args, const mp_obj_t *args) { STATIC mp_obj_t socket_makefile(size_t n_args, const mp_obj_t *args) {
// TODO: CPython explicitly says that closing returned object doesn't close // TODO: CPython explicitly says that closing returned object doesn't close
// the original socket (Python2 at all says that fd is dup()ed). But we // the original socket (Python2 at all says that fd is dup()ed). But we
@ -368,6 +427,7 @@ STATIC const mp_rom_map_elem_t usocket_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_sendto), MP_ROM_PTR(&socket_sendto_obj) }, { MP_ROM_QSTR(MP_QSTR_sendto), MP_ROM_PTR(&socket_sendto_obj) },
{ MP_ROM_QSTR(MP_QSTR_setsockopt), MP_ROM_PTR(&socket_setsockopt_obj) }, { MP_ROM_QSTR(MP_QSTR_setsockopt), MP_ROM_PTR(&socket_setsockopt_obj) },
{ MP_ROM_QSTR(MP_QSTR_setblocking), MP_ROM_PTR(&socket_setblocking_obj) }, { MP_ROM_QSTR(MP_QSTR_setblocking), MP_ROM_PTR(&socket_setblocking_obj) },
{ MP_ROM_QSTR(MP_QSTR_settimeout), MP_ROM_PTR(&socket_settimeout_obj) },
{ MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_stream_close_obj) }, { MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_stream_close_obj) },
}; };

View File

@ -54,7 +54,7 @@
#define MICROPY_DEBUG_PRINTERS (1) #define MICROPY_DEBUG_PRINTERS (1)
// Printing debug to stderr may give tests which // Printing debug to stderr may give tests which
// check stdout a chance to pass, etc. // check stdout a chance to pass, etc.
#define MICROPY_DEBUG_PRINTER_DEST mp_stderr_print #define MICROPY_DEBUG_PRINTER (&mp_stderr_print)
#define MICROPY_READER_POSIX (1) #define MICROPY_READER_POSIX (1)
#define MICROPY_USE_READLINE_HISTORY (1) #define MICROPY_USE_READLINE_HISTORY (1)
#define MICROPY_HELPER_REPL (1) #define MICROPY_HELPER_REPL (1)
@ -125,7 +125,9 @@
#define MICROPY_PY_UTIMEQ (1) #define MICROPY_PY_UTIMEQ (1)
#define MICROPY_PY_UHASHLIB (1) #define MICROPY_PY_UHASHLIB (1)
#if MICROPY_PY_USSL #if MICROPY_PY_USSL
#define MICROPY_PY_UHASHLIB_MD5 (1)
#define MICROPY_PY_UHASHLIB_SHA1 (1) #define MICROPY_PY_UHASHLIB_SHA1 (1)
#define MICROPY_PY_UCRYPTOLIB (1)
#endif #endif
#define MICROPY_PY_UBINASCII (1) #define MICROPY_PY_UBINASCII (1)
#define MICROPY_PY_UBINASCII_CRC32 (1) #define MICROPY_PY_UBINASCII_CRC32 (1)
@ -133,9 +135,9 @@
#ifndef MICROPY_PY_USELECT_POSIX #ifndef MICROPY_PY_USELECT_POSIX
#define MICROPY_PY_USELECT_POSIX (1) #define MICROPY_PY_USELECT_POSIX (1)
#endif #endif
#define MICROPY_PY_WEBSOCKET (1) #define MICROPY_PY_WEBSOCKET (0)
#define MICROPY_PY_MACHINE (1) #define MICROPY_PY_MACHINE (0)
#define MICROPY_PY_MACHINE_PULSE (1) #define MICROPY_PY_MACHINE_PULSE (0)
#define MICROPY_MACHINE_MEM_GET_READ_ADDR mod_machine_mem_get_addr #define MICROPY_MACHINE_MEM_GET_READ_ADDR mod_machine_mem_get_addr
#define MICROPY_MACHINE_MEM_GET_WRITE_ADDR mod_machine_mem_get_addr #define MICROPY_MACHINE_MEM_GET_WRITE_ADDR mod_machine_mem_get_addr
@ -189,6 +191,11 @@ extern const struct _mp_obj_module_t mp_module_jni;
#else #else
#define MICROPY_PY_FFI_DEF #define MICROPY_PY_FFI_DEF
#endif #endif
#if MICROPY_PY_MACHINE
#define MICROPY_PY_MACHINE_DEF { MP_ROM_QSTR(MP_QSTR_umachine), MP_ROM_PTR(&mp_module_machine) },
#else
#define MICROPY_PY_MACHINE_DEF
#endif
#if MICROPY_PY_JNI #if MICROPY_PY_JNI
#define MICROPY_PY_JNI_DEF { MP_ROM_QSTR(MP_QSTR_jni), MP_ROM_PTR(&mp_module_jni) }, #define MICROPY_PY_JNI_DEF { MP_ROM_QSTR(MP_QSTR_jni), MP_ROM_PTR(&mp_module_jni) },
#else #else
@ -220,7 +227,7 @@ extern const struct _mp_obj_module_t mp_module_jni;
MICROPY_PY_JNI_DEF \ MICROPY_PY_JNI_DEF \
MICROPY_PY_UTIME_DEF \ MICROPY_PY_UTIME_DEF \
MICROPY_PY_SOCKET_DEF \ MICROPY_PY_SOCKET_DEF \
{ MP_ROM_QSTR(MP_QSTR_umachine), MP_ROM_PTR(&mp_module_machine) }, \ MICROPY_PY_MACHINE_DEF \
MICROPY_PY_UOS_DEF \ MICROPY_PY_UOS_DEF \
MICROPY_PY_USELECT_DEF \ MICROPY_PY_USELECT_DEF \
MICROPY_PY_TERMIOS_DEF \ MICROPY_PY_TERMIOS_DEF \

View File

@ -24,11 +24,11 @@ MICROPY_PY_SOCKET = 1
MICROPY_PY_FFI = 1 MICROPY_PY_FFI = 1
# ussl module requires one of the TLS libraries below # ussl module requires one of the TLS libraries below
MICROPY_PY_USSL = 1 MICROPY_PY_USSL = 0
# axTLS has minimal size and fully integrated with MicroPython, but # axTLS has minimal size and fully integrated with MicroPython, but
# implements only a subset of modern TLS functionality, so may have # implements only a subset of modern TLS functionality, so may have
# problems with some servers. # problems with some servers.
MICROPY_SSL_AXTLS = 1 MICROPY_SSL_AXTLS = 0
# mbedTLS is more up to date and complete implementation, but also # mbedTLS is more up to date and complete implementation, but also
# more bloated. Configuring and building of mbedTLS should be done # more bloated. Configuring and building of mbedTLS should be done
# outside of MicroPython, it can just link with mbedTLS library. # outside of MicroPython, it can just link with mbedTLS library.

View File

@ -32,23 +32,32 @@
#include <mpconfigport.h> #include <mpconfigport.h>
#define MICROPY_OPT_MATH_FACTORIAL (1)
#define MICROPY_FLOAT_HIGH_QUALITY_HASH (1) #define MICROPY_FLOAT_HIGH_QUALITY_HASH (1)
#define MICROPY_ENABLE_SCHEDULER (1) #define MICROPY_ENABLE_SCHEDULER (1)
#define MICROPY_READER_VFS (1) #define MICROPY_READER_VFS (1)
#define MICROPY_MODULE_GETATTR (1)
#define MICROPY_PY_DELATTR_SETATTR (1) #define MICROPY_PY_DELATTR_SETATTR (1)
#define MICROPY_PY_REVERSE_SPECIAL_METHODS (1) #define MICROPY_PY_REVERSE_SPECIAL_METHODS (1)
#define MICROPY_PY_BUILTINS_RANGE_BINOP (1) #define MICROPY_PY_BUILTINS_RANGE_BINOP (1)
#define MICROPY_PY_BUILTINS_HELP (1) #define MICROPY_PY_BUILTINS_HELP (1)
#define MICROPY_PY_BUILTINS_HELP_MODULES (1) #define MICROPY_PY_BUILTINS_HELP_MODULES (1)
#define MICROPY_PY_SYS_GETSIZEOF (1) #define MICROPY_PY_SYS_GETSIZEOF (1)
#define MICROPY_PY_MATH_FACTORIAL (1)
#define MICROPY_PY_URANDOM_EXTRA_FUNCS (1) #define MICROPY_PY_URANDOM_EXTRA_FUNCS (1)
#define MICROPY_PY_IO_BUFFEREDWRITER (1) #define MICROPY_PY_IO_BUFFEREDWRITER (1)
#define MICROPY_PY_IO_RESOURCE_STREAM (1) #define MICROPY_PY_IO_RESOURCE_STREAM (1)
#define MICROPY_PY_URE_MATCH_GROUPS (1)
#define MICROPY_PY_URE_MATCH_SPAN_START_END (1)
#define MICROPY_PY_URE_SUB (1)
#define MICROPY_VFS_POSIX (1) #define MICROPY_VFS_POSIX (1)
#undef MICROPY_VFS_FAT #undef MICROPY_VFS_FAT
#define MICROPY_VFS_FAT (1) #define MICROPY_VFS_FAT (1)
#define MICROPY_FATFS_USE_LABEL (1) #define MICROPY_FATFS_USE_LABEL (1)
#define MICROPY_PY_FRAMEBUF (1) #define MICROPY_PY_FRAMEBUF (1)
#define MICROPY_PY_COLLECTIONS_NAMEDTUPLE__ASDICT (1)
#define MICROPY_PY_COLLECTIONS_ORDEREDDICT (1)
#define MICROPY_PY_UCRYPTOLIB (1)
// TODO these should be generic, not bound to fatfs // TODO these should be generic, not bound to fatfs
#define mp_type_fileio mp_type_vfs_posix_fileio #define mp_type_fileio mp_type_vfs_posix_fileio

View File

@ -65,6 +65,8 @@
#define MICROPY_PY_BUILTINS_REVERSED (0) #define MICROPY_PY_BUILTINS_REVERSED (0)
#define MICROPY_PY_BUILTINS_SET (0) #define MICROPY_PY_BUILTINS_SET (0)
#define MICROPY_PY_BUILTINS_SLICE (0) #define MICROPY_PY_BUILTINS_SLICE (0)
#define MICROPY_PY_BUILTINS_STR_COUNT (0)
#define MICROPY_PY_BUILTINS_STR_OP_MODULO (0)
#define MICROPY_PY_BUILTINS_STR_UNICODE (0) #define MICROPY_PY_BUILTINS_STR_UNICODE (0)
#define MICROPY_PY_BUILTINS_PROPERTY (0) #define MICROPY_PY_BUILTINS_PROPERTY (0)
#define MICROPY_PY_BUILTINS_MIN_MAX (0) #define MICROPY_PY_BUILTINS_MIN_MAX (0)

View File

@ -31,27 +31,20 @@
#include "supervisor/shared/translate.h" #include "supervisor/shared/translate.h"
void mp_arg_check_num_sig(size_t n_args, size_t n_kw, uint32_t sig) {
void mp_arg_check_num(size_t n_args, mp_map_t *kw_args, size_t n_args_min, size_t n_args_max, bool takes_kw) {
size_t n_kw = 0;
if (kw_args != NULL) {
n_kw = kw_args->used;
}
mp_arg_check_num_kw_array(n_args, n_kw, n_args_min, n_args_max, takes_kw);
}
void mp_arg_check_num_kw_array(size_t n_args, size_t n_kw, size_t n_args_min, size_t n_args_max, bool takes_kw) {
// NOTE(tannewt): This prevents this function from being optimized away.
// Without it, functions can crash when reading invalid args.
__asm volatile ("");
// TODO maybe take the function name as an argument so we can print nicer error messages // TODO maybe take the function name as an argument so we can print nicer error messages
if (n_kw > 0 && !takes_kw) { // The reverse of MP_OBJ_FUN_MAKE_SIG
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE bool takes_kw = sig & 1;
mp_arg_error_terse_mismatch(); size_t n_args_min = sig >> 17;
#else size_t n_args_max = (sig >> 1) & 0xffff;
mp_raise_TypeError(translate("function does not take keyword arguments"));
#endif if (n_kw && !takes_kw) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_arg_error_terse_mismatch();
} else {
mp_raise_TypeError(translate("function doesn't take keyword arguments"));
}
} }
if (n_args_min == n_args_max) { if (n_args_min == n_args_max) {
@ -85,6 +78,18 @@ void mp_arg_check_num_kw_array(size_t n_args, size_t n_kw, size_t n_args_min, si
} }
} }
inline void mp_arg_check_num(size_t n_args, mp_map_t *kw_args, size_t n_args_min, size_t n_args_max, bool takes_kw) {
size_t n_kw = 0;
if (kw_args != NULL) {
n_kw = kw_args->used;
}
mp_arg_check_num_sig(n_args, n_kw, MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, takes_kw));
}
inline void mp_arg_check_num_kw_array(size_t n_args, size_t n_kw, size_t n_args_min, size_t n_args_max, bool takes_kw) {
mp_arg_check_num_sig(n_args, n_kw, MP_OBJ_FUN_MAKE_SIG(n_args_min, n_args_max, takes_kw));
}
void mp_arg_parse_all(size_t n_pos, const mp_obj_t *pos, mp_map_t *kws, size_t n_allowed, const mp_arg_t *allowed, mp_arg_val_t *out_vals) { void mp_arg_parse_all(size_t n_pos, const mp_obj_t *pos, mp_map_t *kws, size_t n_allowed, const mp_arg_t *allowed, mp_arg_val_t *out_vals) {
size_t pos_found = 0, kws_found = 0; size_t pos_found = 0, kws_found = 0;
for (size_t i = 0; i < n_allowed; i++) { for (size_t i = 0; i < n_allowed; i++) {

View File

@ -273,6 +273,21 @@ void asm_arm_mov_reg_local_addr(asm_arm_t *as, uint rd, int local_num) {
emit_al(as, asm_arm_op_add_imm(rd, ASM_ARM_REG_SP, local_num << 2)); emit_al(as, asm_arm_op_add_imm(rd, ASM_ARM_REG_SP, local_num << 2));
} }
void asm_arm_mov_reg_pcrel(asm_arm_t *as, uint reg_dest, uint label) {
assert(label < as->base.max_num_labels);
mp_uint_t dest = as->base.label_offsets[label];
mp_int_t rel = dest - as->base.code_offset;
rel -= 12 + 8; // adjust for load of rel, and then PC+8 prefetch of add_reg_reg_reg
// To load rel int reg_dest, insert immediate into code and jump over it
emit_al(as, 0x59f0000 | (reg_dest << 12)); // ldr rd, [pc]
emit_al(as, 0xa000000); // b pc
emit(as, rel);
// Do reg_dest += PC
asm_arm_add_reg_reg_reg(as, reg_dest, reg_dest, ASM_ARM_REG_PC);
}
void asm_arm_lsl_reg_reg(asm_arm_t *as, uint rd, uint rs) { void asm_arm_lsl_reg_reg(asm_arm_t *as, uint rd, uint rs) {
// mov rd, rd, lsl rs // mov rd, rd, lsl rs
emit_al(as, 0x1a00010 | (rd << 12) | (rs << 8) | rd); emit_al(as, 0x1a00010 | (rd << 12) | (rs << 8) | rd);
@ -347,19 +362,15 @@ void asm_arm_b_label(asm_arm_t *as, uint label) {
asm_arm_bcc_label(as, ASM_ARM_CC_AL, label); asm_arm_bcc_label(as, ASM_ARM_CC_AL, label);
} }
void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp) { void asm_arm_bl_ind(asm_arm_t *as, uint fun_id, uint reg_temp) {
// If the table offset fits into the ldr instruction // The table offset should fit into the ldr instruction
if (fun_id < (0x1000 / 4)) { assert(fun_id < (0x1000 / 4));
emit_al(as, asm_arm_op_mov_reg(ASM_ARM_REG_LR, ASM_ARM_REG_PC)); // mov lr, pc emit_al(as, asm_arm_op_mov_reg(ASM_ARM_REG_LR, ASM_ARM_REG_PC)); // mov lr, pc
emit_al(as, 0x597f000 | (fun_id << 2)); // ldr pc, [r7, #fun_id*4] emit_al(as, 0x597f000 | (fun_id << 2)); // ldr pc, [r7, #fun_id*4]
return; }
}
emit_al(as, 0x59f0004 | (reg_temp << 12)); // ldr rd, [pc, #4] void asm_arm_bx_reg(asm_arm_t *as, uint reg_src) {
// Set lr after fun_ptr emit_al(as, 0x012fff10 | reg_src);
emit_al(as, asm_arm_op_add_imm(ASM_ARM_REG_LR, ASM_ARM_REG_PC, 4)); // add lr, pc, #4
emit_al(as, asm_arm_op_mov_reg(ASM_ARM_REG_PC, reg_temp)); // mov pc, reg_temp
emit(as, (uint)fun_ptr);
} }
#endif // MICROPY_EMIT_ARM #endif // MICROPY_EMIT_ARM

View File

@ -98,6 +98,7 @@ void asm_arm_and_reg_reg_reg(asm_arm_t *as, uint rd, uint rn, uint rm);
void asm_arm_eor_reg_reg_reg(asm_arm_t *as, uint rd, uint rn, uint rm); void asm_arm_eor_reg_reg_reg(asm_arm_t *as, uint rd, uint rn, uint rm);
void asm_arm_orr_reg_reg_reg(asm_arm_t *as, uint rd, uint rn, uint rm); void asm_arm_orr_reg_reg_reg(asm_arm_t *as, uint rd, uint rn, uint rm);
void asm_arm_mov_reg_local_addr(asm_arm_t *as, uint rd, int local_num); void asm_arm_mov_reg_local_addr(asm_arm_t *as, uint rd, int local_num);
void asm_arm_mov_reg_pcrel(asm_arm_t *as, uint reg_dest, uint label);
void asm_arm_lsl_reg_reg(asm_arm_t *as, uint rd, uint rs); void asm_arm_lsl_reg_reg(asm_arm_t *as, uint rd, uint rs);
void asm_arm_asr_reg_reg(asm_arm_t *as, uint rd, uint rs); void asm_arm_asr_reg_reg(asm_arm_t *as, uint rd, uint rs);
@ -120,7 +121,11 @@ void asm_arm_pop(asm_arm_t *as, uint reglist);
// control flow // control flow
void asm_arm_bcc_label(asm_arm_t *as, int cond, uint label); void asm_arm_bcc_label(asm_arm_t *as, int cond, uint label);
void asm_arm_b_label(asm_arm_t *as, uint label); void asm_arm_b_label(asm_arm_t *as, uint label);
void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp); void asm_arm_bl_ind(asm_arm_t *as, uint fun_id, uint reg_temp);
void asm_arm_bx_reg(asm_arm_t *as, uint reg_src);
// Holds a pointer to mp_fun_table
#define ASM_ARM_REG_FUN_TABLE ASM_ARM_REG_R7
#if defined(GENERIC_ASM_API) && GENERIC_ASM_API #if defined(GENERIC_ASM_API) && GENERIC_ASM_API
@ -144,18 +149,21 @@ void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp);
#define REG_LOCAL_3 ASM_ARM_REG_R6 #define REG_LOCAL_3 ASM_ARM_REG_R6
#define REG_LOCAL_NUM (3) #define REG_LOCAL_NUM (3)
// Holds a pointer to mp_fun_table
#define REG_FUN_TABLE ASM_ARM_REG_FUN_TABLE
#define ASM_T asm_arm_t #define ASM_T asm_arm_t
#define ASM_END_PASS asm_arm_end_pass #define ASM_END_PASS asm_arm_end_pass
#define ASM_ENTRY asm_arm_entry #define ASM_ENTRY asm_arm_entry
#define ASM_EXIT asm_arm_exit #define ASM_EXIT asm_arm_exit
#define ASM_JUMP asm_arm_b_label #define ASM_JUMP asm_arm_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_ZERO(as, reg, label, bool_test) \
do { \ do { \
asm_arm_cmp_reg_i8(as, reg, 0); \ asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \ asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_NONZERO(as, reg, label, bool_test) \
do { \ do { \
asm_arm_cmp_reg_i8(as, reg, 0); \ asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_NE, label); \ asm_arm_bcc_label(as, ASM_ARM_CC_NE, label); \
@ -165,14 +173,15 @@ void asm_arm_bl_ind(asm_arm_t *as, void *fun_ptr, uint fun_id, uint reg_temp);
asm_arm_cmp_reg_reg(as, reg1, reg2); \ asm_arm_cmp_reg_reg(as, reg1, reg2); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \ asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0) } while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_arm_bl_ind(as, ptr, idx, ASM_ARM_REG_R3) #define ASM_JUMP_REG(as, reg) asm_arm_bx_reg((as), (reg))
#define ASM_CALL_IND(as, idx) asm_arm_bl_ind(as, idx, ASM_ARM_REG_R3)
#define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_arm_mov_local_reg((as), (local_num), (reg_src)) #define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_arm_mov_local_reg((as), (local_num), (reg_src))
#define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_arm_mov_reg_i32((as), (reg_dest), (imm)) #define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_arm_mov_reg_i32((as), (reg_dest), (imm))
#define ASM_MOV_REG_ALIGNED_IMM(as, reg_dest, imm) asm_arm_mov_reg_i32((as), (reg_dest), (imm))
#define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_arm_mov_reg_local((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_arm_mov_reg_local((as), (reg_dest), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_arm_mov_reg_reg((as), (reg_dest), (reg_src)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_arm_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_arm_mov_reg_local_addr((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_arm_mov_reg_local_addr((as), (reg_dest), (local_num))
#define ASM_MOV_REG_PCREL(as, reg_dest, label) asm_arm_mov_reg_pcrel((as), (reg_dest), (label))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_arm_lsl_reg_reg((as), (reg_dest), (reg_shift)) #define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_arm_lsl_reg_reg((as), (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_arm_asr_reg_reg((as), (reg_dest), (reg_shift)) #define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_arm_asr_reg_reg((as), (reg_dest), (reg_shift))

View File

@ -36,6 +36,8 @@
#include "py/mphal.h" #include "py/mphal.h"
#include "py/asmthumb.h" #include "py/asmthumb.h"
#define UNSIGNED_FIT5(x) ((uint32_t)(x) < 32)
#define UNSIGNED_FIT7(x) ((uint32_t)(x) < 128)
#define UNSIGNED_FIT8(x) (((x) & 0xffffff00) == 0) #define UNSIGNED_FIT8(x) (((x) & 0xffffff00) == 0)
#define UNSIGNED_FIT16(x) (((x) & 0xffff0000) == 0) #define UNSIGNED_FIT16(x) (((x) & 0xffff0000) == 0)
#define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80) #define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)
@ -43,6 +45,15 @@
#define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800) #define SIGNED_FIT12(x) (((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800)
#define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000) #define SIGNED_FIT23(x) (((x) & 0xffc00000) == 0) || (((x) & 0xffc00000) == 0xffc00000)
// Note: these actually take an imm12 but the high-bit is not encoded here
#define OP_ADD_W_RRI_HI(reg_src) (0xf200 | (reg_src))
#define OP_ADD_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff))
#define OP_SUB_W_RRI_HI(reg_src) (0xf2a0 | (reg_src))
#define OP_SUB_W_RRI_LO(reg_dest, imm11) ((imm11 << 4 & 0x7000) | reg_dest << 8 | (imm11 & 0xff))
#define OP_LDR_W_HI(reg_base) (0xf8d0 | (reg_base))
#define OP_LDR_W_LO(reg_dest, imm12) ((reg_dest) << 12 | (imm12))
static inline byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int n) { static inline byte *asm_thumb_get_cur_to_write_bytes(asm_thumb_t *as, int n) {
return mp_asm_base_get_cur_to_write_bytes(&as->base, n); return mp_asm_base_get_cur_to_write_bytes(&as->base, n);
} }
@ -51,7 +62,7 @@ void asm_thumb_end_pass(asm_thumb_t *as) {
(void)as; (void)as;
// could check labels are resolved... // could check labels are resolved...
#if defined(MCU_SERIES_F7) #if defined(__ICACHE_PRESENT) && __ICACHE_PRESENT == 1
if (as->base.pass == MP_ASM_PASS_EMIT) { if (as->base.pass == MP_ASM_PASS_EMIT) {
// flush D-cache, so the code emitted is stored in memory // flush D-cache, so the code emitted is stored in memory
MP_HAL_CLEAN_DCACHE(as->base.code_base, as->base.code_size); MP_HAL_CLEAN_DCACHE(as->base.code_base, as->base.code_size);
@ -89,6 +100,7 @@ STATIC void asm_thumb_write_word32(asm_thumb_t *as, int w32) {
#define OP_POP_RLIST(rlolist) (0xbc00 | (rlolist)) #define OP_POP_RLIST(rlolist) (0xbc00 | (rlolist))
#define OP_POP_RLIST_PC(rlolist) (0xbc00 | 0x0100 | (rlolist)) #define OP_POP_RLIST_PC(rlolist) (0xbc00 | 0x0100 | (rlolist))
// The number of words must fit in 7 unsigned bits
#define OP_ADD_SP(num_words) (0xb000 | (num_words)) #define OP_ADD_SP(num_words) (0xb000 | (num_words))
#define OP_SUB_SP(num_words) (0xb080 | (num_words)) #define OP_SUB_SP(num_words) (0xb080 | (num_words))
@ -142,7 +154,11 @@ void asm_thumb_entry(asm_thumb_t *as, int num_locals) {
} }
asm_thumb_op16(as, OP_PUSH_RLIST_LR(reglist)); asm_thumb_op16(as, OP_PUSH_RLIST_LR(reglist));
if (stack_adjust > 0) { if (stack_adjust > 0) {
asm_thumb_op16(as, OP_SUB_SP(stack_adjust)); if (UNSIGNED_FIT7(stack_adjust)) {
asm_thumb_op16(as, OP_SUB_SP(stack_adjust));
} else {
asm_thumb_op32(as, OP_SUB_W_RRI_HI(ASM_THUMB_REG_SP), OP_SUB_W_RRI_LO(ASM_THUMB_REG_SP, stack_adjust * 4));
}
} }
as->push_reglist = reglist; as->push_reglist = reglist;
as->stack_adjust = stack_adjust; as->stack_adjust = stack_adjust;
@ -150,7 +166,11 @@ void asm_thumb_entry(asm_thumb_t *as, int num_locals) {
void asm_thumb_exit(asm_thumb_t *as) { void asm_thumb_exit(asm_thumb_t *as) {
if (as->stack_adjust > 0) { if (as->stack_adjust > 0) {
asm_thumb_op16(as, OP_ADD_SP(as->stack_adjust)); if (UNSIGNED_FIT7(as->stack_adjust)) {
asm_thumb_op16(as, OP_ADD_SP(as->stack_adjust));
} else {
asm_thumb_op32(as, OP_ADD_W_RRI_HI(ASM_THUMB_REG_SP), OP_ADD_W_RRI_LO(ASM_THUMB_REG_SP, as->stack_adjust * 4));
}
} }
asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist)); asm_thumb_op16(as, OP_POP_RLIST_PC(as->push_reglist));
} }
@ -269,21 +289,6 @@ void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32) {
} }
} }
// i32 is stored as a full word in the code, and aligned to machine-word boundary
// TODO this is very inefficient, improve it!
void asm_thumb_mov_reg_i32_aligned(asm_thumb_t *as, uint reg_dest, int i32) {
// align on machine-word + 2
if ((as->base.code_offset & 3) == 0) {
asm_thumb_op16(as, ASM_THUMB_OP_NOP);
}
// jump over the i32 value (instruction prefetch adds 2 to PC)
asm_thumb_op16(as, OP_B_N(2));
// store i32 on machine-word aligned boundary
mp_asm_base_data(&as->base, 4, i32);
// do the actual load of the i32 value
asm_thumb_mov_reg_i32_optimised(as, reg_dest, i32);
}
#define OP_STR_TO_SP_OFFSET(rlo_dest, word_offset) (0x9000 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) #define OP_STR_TO_SP_OFFSET(rlo_dest, word_offset) (0x9000 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff))
#define OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset) (0x9800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff)) #define OP_LDR_FROM_SP_OFFSET(rlo_dest, word_offset) (0x9800 | ((rlo_dest) << 8) | ((word_offset) & 0x00ff))
@ -310,6 +315,27 @@ void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num)
asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset)); asm_thumb_op16(as, OP_ADD_REG_SP_OFFSET(rlo_dest, word_offset));
} }
void asm_thumb_mov_reg_pcrel(asm_thumb_t *as, uint rlo_dest, uint label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
rel -= 4 + 4; // adjust for mov_reg_i16 and then PC+4 prefetch of add_reg_reg
rel |= 1; // to stay in Thumb state when jumping to this address
asm_thumb_mov_reg_i16(as, ASM_THUMB_OP_MOVW, rlo_dest, rel); // 4 bytes
asm_thumb_add_reg_reg(as, rlo_dest, ASM_THUMB_REG_R15); // 2 bytes
}
static inline void asm_thumb_ldr_reg_reg_i12(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) {
asm_thumb_op32(as, OP_LDR_W_HI(reg_base), OP_LDR_W_LO(reg_dest, word_offset * 4));
}
void asm_thumb_ldr_reg_reg_i12_optimised(asm_thumb_t *as, uint reg_dest, uint reg_base, uint word_offset) {
if (reg_dest < ASM_THUMB_REG_R8 && reg_base < ASM_THUMB_REG_R8 && UNSIGNED_FIT5(word_offset)) {
asm_thumb_ldr_rlo_rlo_i5(as, reg_dest, reg_base, word_offset);
} else {
asm_thumb_ldr_reg_reg_i12(as, reg_dest, reg_base, word_offset);
}
}
// this could be wrong, because it should have a range of +/- 16MiB... // this could be wrong, because it should have a range of +/- 16MiB...
#define OP_BW_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff)) #define OP_BW_HI(byte_offset) (0xf000 | (((byte_offset) >> 12) & 0x07ff))
#define OP_BW_LO(byte_offset) (0xb800 | (((byte_offset) >> 1) & 0x07ff)) #define OP_BW_LO(byte_offset) (0xb800 | (((byte_offset) >> 1) & 0x07ff))
@ -355,25 +381,10 @@ void asm_thumb_bcc_label(asm_thumb_t *as, int cond, uint label) {
#define OP_BLX(reg) (0x4780 | ((reg) << 3)) #define OP_BLX(reg) (0x4780 | ((reg) << 3))
#define OP_SVC(arg) (0xdf00 | (arg)) #define OP_SVC(arg) (0xdf00 | (arg))
void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp) { void asm_thumb_bl_ind(asm_thumb_t *as, uint fun_id, uint reg_temp) {
/* TODO make this use less bytes // Load ptr to function from table, indexed by fun_id, then call it
uint rlo_base = ASM_THUMB_REG_R3; asm_thumb_ldr_reg_reg_i12_optimised(as, reg_temp, ASM_THUMB_REG_FUN_TABLE, fun_id);
uint rlo_dest = ASM_THUMB_REG_R7; asm_thumb_op16(as, OP_BLX(reg_temp));
uint word_offset = 4;
asm_thumb_op16(as, 0x0000);
asm_thumb_op16(as, 0x6800 | (word_offset << 6) | (rlo_base << 3) | rlo_dest); // ldr rlo_dest, [rlo_base, #offset]
asm_thumb_op16(as, 0x4780 | (ASM_THUMB_REG_R9 << 3)); // blx reg
*/
if (fun_id < 32) {
// load ptr to function from table, indexed by fun_id (must be in range 0-31); 4 bytes
asm_thumb_op16(as, ASM_THUMB_FORMAT_9_10_ENCODE(ASM_THUMB_FORMAT_9_LDR | ASM_THUMB_FORMAT_9_WORD_TRANSFER, reg_temp, ASM_THUMB_REG_R7, fun_id));
asm_thumb_op16(as, OP_BLX(reg_temp));
} else {
// load ptr to function into register using immediate; 6 bytes
asm_thumb_mov_reg_i32(as, reg_temp, (mp_uint_t)fun_ptr);
asm_thumb_op16(as, OP_BLX(reg_temp));
}
} }
#endif // MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB #endif // MICROPY_EMIT_THUMB || MICROPY_EMIT_INLINE_THUMB

View File

@ -46,6 +46,7 @@
#define ASM_THUMB_REG_R13 (13) #define ASM_THUMB_REG_R13 (13)
#define ASM_THUMB_REG_R14 (14) #define ASM_THUMB_REG_R14 (14)
#define ASM_THUMB_REG_R15 (15) #define ASM_THUMB_REG_R15 (15)
#define ASM_THUMB_REG_SP (ASM_THUMB_REG_R13)
#define ASM_THUMB_REG_LR (REG_R14) #define ASM_THUMB_REG_LR (REG_R14)
#define ASM_THUMB_CC_EQ (0x0) #define ASM_THUMB_CC_EQ (0x0)
@ -195,6 +196,26 @@ static inline void asm_thumb_cmp_rlo_rlo(asm_thumb_t *as, uint rlo_dest, uint rl
asm_thumb_format_4(as, ASM_THUMB_FORMAT_4_CMP, rlo_dest, rlo_src); asm_thumb_format_4(as, ASM_THUMB_FORMAT_4_CMP, rlo_dest, rlo_src);
} }
// FORMAT 5: hi register operations (add, cmp, mov, bx)
// For add/cmp/mov, at least one of the args must be a high register
#define ASM_THUMB_FORMAT_5_ADD (0x4400)
#define ASM_THUMB_FORMAT_5_BX (0x4700)
#define ASM_THUMB_FORMAT_5_ENCODE(op, r_dest, r_src) \
((op) | ((r_dest) << 4 & 0x0080) | ((r_src) << 3) | ((r_dest) & 0x0007))
static inline void asm_thumb_format_5(asm_thumb_t *as, uint op, uint r_dest, uint r_src) {
asm_thumb_op16(as, ASM_THUMB_FORMAT_5_ENCODE(op, r_dest, r_src));
}
static inline void asm_thumb_add_reg_reg(asm_thumb_t *as, uint r_dest, uint r_src) {
asm_thumb_format_5(as, ASM_THUMB_FORMAT_5_ADD, r_dest, r_src);
}
static inline void asm_thumb_bx_reg(asm_thumb_t *as, uint r_src) {
asm_thumb_format_5(as, ASM_THUMB_FORMAT_5_BX, 0, r_src);
}
// FORMAT 9: load/store with immediate offset // FORMAT 9: load/store with immediate offset
// For word transfers the offset must be aligned, and >>2 // For word transfers the offset must be aligned, and >>2
@ -251,14 +272,19 @@ bool asm_thumb_bl_label(asm_thumb_t *as, uint label);
void asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32_src); // convenience void asm_thumb_mov_reg_i32(asm_thumb_t *as, uint reg_dest, mp_uint_t i32_src); // convenience
void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32_src); // convenience void asm_thumb_mov_reg_i32_optimised(asm_thumb_t *as, uint reg_dest, int i32_src); // convenience
void asm_thumb_mov_reg_i32_aligned(asm_thumb_t *as, uint reg_dest, int i32); // convenience
void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num_dest, uint rlo_src); // convenience void asm_thumb_mov_local_reg(asm_thumb_t *as, int local_num_dest, uint rlo_src); // convenience
void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num); // convenience void asm_thumb_mov_reg_local(asm_thumb_t *as, uint rlo_dest, int local_num); // convenience
void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num); // convenience void asm_thumb_mov_reg_local_addr(asm_thumb_t *as, uint rlo_dest, int local_num); // convenience
void asm_thumb_mov_reg_pcrel(asm_thumb_t *as, uint rlo_dest, uint label);
void asm_thumb_ldr_reg_reg_i12_optimised(asm_thumb_t *as, uint reg_dest, uint reg_base, uint byte_offset); // convenience
void asm_thumb_b_label(asm_thumb_t *as, uint label); // convenience: picks narrow or wide branch void asm_thumb_b_label(asm_thumb_t *as, uint label); // convenience: picks narrow or wide branch
void asm_thumb_bcc_label(asm_thumb_t *as, int cc, uint label); // convenience: picks narrow or wide branch void asm_thumb_bcc_label(asm_thumb_t *as, int cc, uint label); // convenience: picks narrow or wide branch
void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp); // convenience void asm_thumb_bl_ind(asm_thumb_t *as, uint fun_id, uint reg_temp); // convenience
// Holds a pointer to mp_fun_table
#define ASM_THUMB_REG_FUN_TABLE ASM_THUMB_REG_R7
#if defined(GENERIC_ASM_API) && GENERIC_ASM_API #if defined(GENERIC_ASM_API) && GENERIC_ASM_API
@ -283,18 +309,20 @@ void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp
#define REG_LOCAL_3 ASM_THUMB_REG_R6 #define REG_LOCAL_3 ASM_THUMB_REG_R6
#define REG_LOCAL_NUM (3) #define REG_LOCAL_NUM (3)
#define REG_FUN_TABLE ASM_THUMB_REG_FUN_TABLE
#define ASM_T asm_thumb_t #define ASM_T asm_thumb_t
#define ASM_END_PASS asm_thumb_end_pass #define ASM_END_PASS asm_thumb_end_pass
#define ASM_ENTRY asm_thumb_entry #define ASM_ENTRY asm_thumb_entry
#define ASM_EXIT asm_thumb_exit #define ASM_EXIT asm_thumb_exit
#define ASM_JUMP asm_thumb_b_label #define ASM_JUMP asm_thumb_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_ZERO(as, reg, label, bool_test) \
do { \ do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \ asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_NONZERO(as, reg, label, bool_test) \
do { \ do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \ asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_NE, label); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_NE, label); \
@ -304,14 +332,15 @@ void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp
asm_thumb_cmp_rlo_rlo(as, reg1, reg2); \ asm_thumb_cmp_rlo_rlo(as, reg1, reg2); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \ asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0) } while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_thumb_bl_ind(as, ptr, idx, ASM_THUMB_REG_R3) #define ASM_JUMP_REG(as, reg) asm_thumb_bx_reg((as), (reg))
#define ASM_CALL_IND(as, idx) asm_thumb_bl_ind(as, idx, ASM_THUMB_REG_R3)
#define ASM_MOV_LOCAL_REG(as, local_num, reg) asm_thumb_mov_local_reg((as), (local_num), (reg)) #define ASM_MOV_LOCAL_REG(as, local_num, reg) asm_thumb_mov_local_reg((as), (local_num), (reg))
#define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_thumb_mov_reg_i32_optimised((as), (reg_dest), (imm)) #define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_thumb_mov_reg_i32_optimised((as), (reg_dest), (imm))
#define ASM_MOV_REG_ALIGNED_IMM(as, reg_dest, imm) asm_thumb_mov_reg_i32_aligned((as), (reg_dest), (imm))
#define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_thumb_mov_reg_local((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_thumb_mov_reg_local((as), (reg_dest), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_thumb_mov_reg_reg((as), (reg_dest), (reg_src)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_thumb_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_thumb_mov_reg_local_addr((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_thumb_mov_reg_local_addr((as), (reg_dest), (local_num))
#define ASM_MOV_REG_PCREL(as, rlo_dest, label) asm_thumb_mov_reg_pcrel((as), (rlo_dest), (label))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_LSL, (reg_dest), (reg_shift)) #define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_LSL, (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ASR, (reg_dest), (reg_shift)) #define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ASR, (reg_dest), (reg_shift))
@ -323,7 +352,7 @@ void asm_thumb_bl_ind(asm_thumb_t *as, void *fun_ptr, uint fun_id, uint reg_temp
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_MUL, (reg_dest), (reg_src)) #define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_MUL, (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), (word_offset)) #define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_thumb_ldr_reg_reg_i12_optimised((as), (reg_dest), (reg_base), (word_offset))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrb_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrb_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrh_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrh_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0) #define ASM_LOAD32_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)

View File

@ -3,7 +3,7 @@
* *
* The MIT License (MIT) * The MIT License (MIT)
* *
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2013, 2014 Damien P. George
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -73,8 +73,10 @@
#define OPCODE_CMP_R64_WITH_RM64 (0x39) /* /r */ #define OPCODE_CMP_R64_WITH_RM64 (0x39) /* /r */
// #define OPCODE_CMP_RM32_WITH_R32 (0x3b) // #define OPCODE_CMP_RM32_WITH_R32 (0x3b)
#define OPCODE_TEST_R8_WITH_RM8 (0x84) /* /r */ #define OPCODE_TEST_R8_WITH_RM8 (0x84) /* /r */
#define OPCODE_TEST_R64_WITH_RM64 (0x85) /* /r */
#define OPCODE_JMP_REL8 (0xeb) #define OPCODE_JMP_REL8 (0xeb)
#define OPCODE_JMP_REL32 (0xe9) #define OPCODE_JMP_REL32 (0xe9)
#define OPCODE_JMP_RM64 (0xff) /* /4 */
#define OPCODE_JCC_REL8 (0x70) /* | jcc type */ #define OPCODE_JCC_REL8 (0x70) /* | jcc type */
#define OPCODE_JCC_REL32_A (0x0f) #define OPCODE_JCC_REL32_A (0x0f)
#define OPCODE_JCC_REL32_B (0x80) /* | jcc type */ #define OPCODE_JCC_REL32_B (0x80) /* | jcc type */
@ -181,21 +183,22 @@ STATIC void asm_x64_write_word32_to(asm_x64_t *as, int offset, int w32) {
*/ */
STATIC void asm_x64_write_r64_disp(asm_x64_t *as, int r64, int disp_r64, int disp_offset) { STATIC void asm_x64_write_r64_disp(asm_x64_t *as, int r64, int disp_r64, int disp_offset) {
assert(disp_r64 != ASM_X64_REG_RSP); uint8_t rm_disp;
if (disp_offset == 0 && (disp_r64 & 7) != ASM_X64_REG_RBP) {
if (disp_r64 == ASM_X64_REG_R12) { rm_disp = MODRM_RM_DISP0;
// special case for r12; not fully implemented
assert(SIGNED_FIT8(disp_offset));
asm_x64_write_byte_3(as, MODRM_R64(r64) | MODRM_RM_DISP8 | MODRM_RM_R64(disp_r64), 0x24, IMM32_L0(disp_offset));
return;
}
if (disp_offset == 0 && disp_r64 != ASM_X64_REG_RBP) {
asm_x64_write_byte_1(as, MODRM_R64(r64) | MODRM_RM_DISP0 | MODRM_RM_R64(disp_r64));
} else if (SIGNED_FIT8(disp_offset)) { } else if (SIGNED_FIT8(disp_offset)) {
asm_x64_write_byte_2(as, MODRM_R64(r64) | MODRM_RM_DISP8 | MODRM_RM_R64(disp_r64), IMM32_L0(disp_offset)); rm_disp = MODRM_RM_DISP8;
} else { } else {
asm_x64_write_byte_1(as, MODRM_R64(r64) | MODRM_RM_DISP32 | MODRM_RM_R64(disp_r64)); rm_disp = MODRM_RM_DISP32;
}
asm_x64_write_byte_1(as, MODRM_R64(r64) | rm_disp | MODRM_RM_R64(disp_r64));
if ((disp_r64 & 7) == ASM_X64_REG_RSP) {
// Special case for rsp and r12, they need a SIB byte
asm_x64_write_byte_1(as, 0x24);
}
if (rm_disp == MODRM_RM_DISP8) {
asm_x64_write_byte_1(as, IMM32_L0(disp_offset));
} else if (rm_disp == MODRM_RM_DISP32) {
asm_x64_write_word32(as, disp_offset); asm_x64_write_word32(as, disp_offset);
} }
} }
@ -361,15 +364,6 @@ void asm_x64_mov_i64_to_r64_optimised(asm_x64_t *as, int64_t src_i64, int dest_r
} }
} }
// src_i64 is stored as a full word in the code, and aligned to machine-word boundary
void asm_x64_mov_i64_to_r64_aligned(asm_x64_t *as, int64_t src_i64, int dest_r64) {
// mov instruction uses 2 bytes for the instruction, before the i64
while (((as->base.code_offset + 2) & (WORD_SIZE - 1)) != 0) {
asm_x64_nop(as);
}
asm_x64_mov_i64_to_r64(as, src_i64, dest_r64);
}
void asm_x64_and_r64_r64(asm_x64_t *as, int dest_r64, int src_r64) { void asm_x64_and_r64_r64(asm_x64_t *as, int dest_r64, int src_r64) {
asm_x64_generic_r64_r64(as, dest_r64, src_r64, OPCODE_AND_R64_TO_RM64); asm_x64_generic_r64_r64(as, dest_r64, src_r64, OPCODE_AND_R64_TO_RM64);
} }
@ -465,17 +459,25 @@ void asm_x64_cmp_i32_with_r32(asm_x64_t *as, int src_i32, int src_r32) {
*/ */
void asm_x64_test_r8_with_r8(asm_x64_t *as, int src_r64_a, int src_r64_b) { void asm_x64_test_r8_with_r8(asm_x64_t *as, int src_r64_a, int src_r64_b) {
// TODO implement for other registers assert(src_r64_a < 8);
assert(src_r64_a == ASM_X64_REG_RAX); assert(src_r64_b < 8);
assert(src_r64_b == ASM_X64_REG_RAX);
asm_x64_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R64(src_r64_a) | MODRM_RM_REG | MODRM_RM_R64(src_r64_b)); asm_x64_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R64(src_r64_a) | MODRM_RM_REG | MODRM_RM_R64(src_r64_b));
} }
void asm_x64_test_r64_with_r64(asm_x64_t *as, int src_r64_a, int src_r64_b) {
asm_x64_generic_r64_r64(as, src_r64_b, src_r64_a, OPCODE_TEST_R64_WITH_RM64);
}
void asm_x64_setcc_r8(asm_x64_t *as, int jcc_type, int dest_r8) { void asm_x64_setcc_r8(asm_x64_t *as, int jcc_type, int dest_r8) {
assert(dest_r8 < 8); assert(dest_r8 < 8);
asm_x64_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R64(0) | MODRM_RM_REG | MODRM_RM_R64(dest_r8)); asm_x64_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R64(0) | MODRM_RM_REG | MODRM_RM_R64(dest_r8));
} }
void asm_x64_jmp_reg(asm_x64_t *as, int src_r64) {
assert(src_r64 < 8);
asm_x64_write_byte_2(as, OPCODE_JMP_RM64, MODRM_R64(4) | MODRM_RM_REG | MODRM_RM_R64(src_r64));
}
STATIC mp_uint_t get_label_dest(asm_x64_t *as, mp_uint_t label) { STATIC mp_uint_t get_label_dest(asm_x64_t *as, mp_uint_t label) {
assert(label < as->base.max_num_labels); assert(label < as->base.max_num_labels);
return as->base.label_offsets[label]; return as->base.label_offsets[label];
@ -528,63 +530,72 @@ void asm_x64_jcc_label(asm_x64_t *as, int jcc_type, mp_uint_t label) {
void asm_x64_entry(asm_x64_t *as, int num_locals) { void asm_x64_entry(asm_x64_t *as, int num_locals) {
assert(num_locals >= 0); assert(num_locals >= 0);
asm_x64_push_r64(as, ASM_X64_REG_RBP); asm_x64_push_r64(as, ASM_X64_REG_RBP);
asm_x64_mov_r64_r64(as, ASM_X64_REG_RBP, ASM_X64_REG_RSP);
num_locals |= 1; // make it odd so stack is aligned on 16 byte boundary
asm_x64_sub_r64_i32(as, ASM_X64_REG_RSP, num_locals * WORD_SIZE);
asm_x64_push_r64(as, ASM_X64_REG_RBX); asm_x64_push_r64(as, ASM_X64_REG_RBX);
asm_x64_push_r64(as, ASM_X64_REG_R12); asm_x64_push_r64(as, ASM_X64_REG_R12);
asm_x64_push_r64(as, ASM_X64_REG_R13); asm_x64_push_r64(as, ASM_X64_REG_R13);
num_locals |= 1; // make it odd so stack is aligned on 16 byte boundary
asm_x64_sub_r64_i32(as, ASM_X64_REG_RSP, num_locals * WORD_SIZE);
as->num_locals = num_locals; as->num_locals = num_locals;
} }
void asm_x64_exit(asm_x64_t *as) { void asm_x64_exit(asm_x64_t *as) {
asm_x64_sub_r64_i32(as, ASM_X64_REG_RSP, -as->num_locals * WORD_SIZE);
asm_x64_pop_r64(as, ASM_X64_REG_R13); asm_x64_pop_r64(as, ASM_X64_REG_R13);
asm_x64_pop_r64(as, ASM_X64_REG_R12); asm_x64_pop_r64(as, ASM_X64_REG_R12);
asm_x64_pop_r64(as, ASM_X64_REG_RBX); asm_x64_pop_r64(as, ASM_X64_REG_RBX);
asm_x64_write_byte_1(as, OPCODE_LEAVE); asm_x64_pop_r64(as, ASM_X64_REG_RBP);
asm_x64_ret(as); asm_x64_ret(as);
} }
// locals: // locals:
// - stored on the stack in ascending order // - stored on the stack in ascending order
// - numbered 0 through as->num_locals-1 // - numbered 0 through as->num_locals-1
// - RBP points above the last local // - RSP points to the first local
// //
// | RBP // | RSP
// v // v
// l0 l1 l2 ... l(n-1) // l0 l1 l2 ... l(n-1)
// ^ ^ // ^ ^
// | low address | high address in RAM // | low address | high address in RAM
// //
STATIC int asm_x64_local_offset_from_ebp(asm_x64_t *as, int local_num) { STATIC int asm_x64_local_offset_from_rsp(asm_x64_t *as, int local_num) {
return (-as->num_locals + local_num) * WORD_SIZE; (void)as;
// Stack is full descending, RSP points to local0
return local_num * WORD_SIZE;
} }
void asm_x64_mov_local_to_r64(asm_x64_t *as, int src_local_num, int dest_r64) { void asm_x64_mov_local_to_r64(asm_x64_t *as, int src_local_num, int dest_r64) {
asm_x64_mov_mem64_to_r64(as, ASM_X64_REG_RBP, asm_x64_local_offset_from_ebp(as, src_local_num), dest_r64); asm_x64_mov_mem64_to_r64(as, ASM_X64_REG_RSP, asm_x64_local_offset_from_rsp(as, src_local_num), dest_r64);
} }
void asm_x64_mov_r64_to_local(asm_x64_t *as, int src_r64, int dest_local_num) { void asm_x64_mov_r64_to_local(asm_x64_t *as, int src_r64, int dest_local_num) {
asm_x64_mov_r64_to_mem64(as, src_r64, ASM_X64_REG_RBP, asm_x64_local_offset_from_ebp(as, dest_local_num)); asm_x64_mov_r64_to_mem64(as, src_r64, ASM_X64_REG_RSP, asm_x64_local_offset_from_rsp(as, dest_local_num));
} }
void asm_x64_mov_local_addr_to_r64(asm_x64_t *as, int local_num, int dest_r64) { void asm_x64_mov_local_addr_to_r64(asm_x64_t *as, int local_num, int dest_r64) {
int offset = asm_x64_local_offset_from_ebp(as, local_num); int offset = asm_x64_local_offset_from_rsp(as, local_num);
if (offset == 0) { if (offset == 0) {
asm_x64_mov_r64_r64(as, dest_r64, ASM_X64_REG_RBP); asm_x64_mov_r64_r64(as, dest_r64, ASM_X64_REG_RSP);
} else { } else {
asm_x64_lea_disp_to_r64(as, ASM_X64_REG_RBP, offset, dest_r64); asm_x64_lea_disp_to_r64(as, ASM_X64_REG_RSP, offset, dest_r64);
} }
} }
void asm_x64_mov_reg_pcrel(asm_x64_t *as, int dest_r64, mp_uint_t label) {
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - (as->base.code_offset + 7);
asm_x64_write_byte_3(as, REX_PREFIX | REX_W | REX_R_FROM_R64(dest_r64), OPCODE_LEA_MEM_TO_R64, MODRM_R64(dest_r64) | MODRM_RM_R64(5));
asm_x64_write_word32(as, rel);
}
/* /*
void asm_x64_push_local(asm_x64_t *as, int local_num) { void asm_x64_push_local(asm_x64_t *as, int local_num) {
asm_x64_push_disp(as, ASM_X64_REG_RBP, asm_x64_local_offset_from_ebp(as, local_num)); asm_x64_push_disp(as, ASM_X64_REG_RSP, asm_x64_local_offset_from_rsp(as, local_num));
} }
void asm_x64_push_local_addr(asm_x64_t *as, int local_num, int temp_r64) { void asm_x64_push_local_addr(asm_x64_t *as, int local_num, int temp_r64) {
asm_x64_mov_r64_r64(as, temp_r64, ASM_X64_REG_RBP); asm_x64_mov_r64_r64(as, temp_r64, ASM_X64_REG_RSP);
asm_x64_add_i32_to_r32(as, asm_x64_local_offset_from_ebp(as, local_num), temp_r64); asm_x64_add_i32_to_r32(as, asm_x64_local_offset_from_rsp(as, local_num), temp_r64);
asm_x64_push_r64(as, temp_r64); asm_x64_push_r64(as, temp_r64);
} }
*/ */
@ -610,21 +621,10 @@ void asm_x64_call_i1(asm_x64_t *as, void* func, int i1) {
} }
*/ */
void asm_x64_call_ind(asm_x64_t *as, void *ptr, int temp_r64) { void asm_x64_call_ind(asm_x64_t *as, size_t fun_id, int temp_r64) {
assert(temp_r64 < 8); assert(temp_r64 < 8);
#ifdef __LP64__ asm_x64_mov_mem64_to_r64(as, ASM_X64_REG_FUN_TABLE, fun_id * WORD_SIZE, temp_r64);
asm_x64_mov_i64_to_r64_optimised(as, (int64_t)ptr, temp_r64);
#else
// If we get here, sizeof(int) == sizeof(void*).
asm_x64_mov_i64_to_r64_optimised(as, (int64_t)(unsigned int)ptr, temp_r64);
#endif
asm_x64_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R64(2) | MODRM_RM_REG | MODRM_RM_R64(temp_r64)); asm_x64_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R64(2) | MODRM_RM_REG | MODRM_RM_R64(temp_r64));
// this reduces code size by 2 bytes per call, but doesn't seem to speed it up at all
// doesn't work anymore because calls are 64 bits away
/*
asm_x64_write_byte_1(as, OPCODE_CALL_REL32);
asm_x64_write_word32(as, ptr - (void*)(as->code_base + as->code_offset + 4));
*/
} }
#endif // MICROPY_EMIT_X64 #endif // MICROPY_EMIT_X64

View File

@ -3,7 +3,7 @@
* *
* The MIT License (MIT) * The MIT License (MIT)
* *
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2013, 2014 Damien P. George
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
@ -85,7 +85,6 @@ void asm_x64_pop_r64(asm_x64_t *as, int dest_r64);
void asm_x64_mov_r64_r64(asm_x64_t *as, int dest_r64, int src_r64); void asm_x64_mov_r64_r64(asm_x64_t *as, int dest_r64, int src_r64);
void asm_x64_mov_i64_to_r64(asm_x64_t *as, int64_t src_i64, int dest_r64); void asm_x64_mov_i64_to_r64(asm_x64_t *as, int64_t src_i64, int dest_r64);
void asm_x64_mov_i64_to_r64_optimised(asm_x64_t *as, int64_t src_i64, int dest_r64); void asm_x64_mov_i64_to_r64_optimised(asm_x64_t *as, int64_t src_i64, int dest_r64);
void asm_x64_mov_i64_to_r64_aligned(asm_x64_t *as, int64_t src_i64, int dest_r64);
void asm_x64_mov_r8_to_mem8(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp); void asm_x64_mov_r8_to_mem8(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp);
void asm_x64_mov_r16_to_mem16(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp); void asm_x64_mov_r16_to_mem16(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp);
void asm_x64_mov_r32_to_mem32(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp); void asm_x64_mov_r32_to_mem32(asm_x64_t *as, int src_r64, int dest_r64, int dest_disp);
@ -104,7 +103,9 @@ void asm_x64_sub_r64_r64(asm_x64_t *as, int dest_r64, int src_r64);
void asm_x64_mul_r64_r64(asm_x64_t *as, int dest_r64, int src_r64); void asm_x64_mul_r64_r64(asm_x64_t *as, int dest_r64, int src_r64);
void asm_x64_cmp_r64_with_r64(asm_x64_t *as, int src_r64_a, int src_r64_b); void asm_x64_cmp_r64_with_r64(asm_x64_t *as, int src_r64_a, int src_r64_b);
void asm_x64_test_r8_with_r8(asm_x64_t *as, int src_r64_a, int src_r64_b); void asm_x64_test_r8_with_r8(asm_x64_t *as, int src_r64_a, int src_r64_b);
void asm_x64_test_r64_with_r64(asm_x64_t *as, int src_r64_a, int src_r64_b);
void asm_x64_setcc_r8(asm_x64_t *as, int jcc_type, int dest_r8); void asm_x64_setcc_r8(asm_x64_t *as, int jcc_type, int dest_r8);
void asm_x64_jmp_reg(asm_x64_t *as, int src_r64);
void asm_x64_jmp_label(asm_x64_t *as, mp_uint_t label); void asm_x64_jmp_label(asm_x64_t *as, mp_uint_t label);
void asm_x64_jcc_label(asm_x64_t *as, int jcc_type, mp_uint_t label); void asm_x64_jcc_label(asm_x64_t *as, int jcc_type, mp_uint_t label);
void asm_x64_entry(asm_x64_t *as, int num_locals); void asm_x64_entry(asm_x64_t *as, int num_locals);
@ -112,7 +113,11 @@ void asm_x64_exit(asm_x64_t *as);
void asm_x64_mov_local_to_r64(asm_x64_t *as, int src_local_num, int dest_r64); void asm_x64_mov_local_to_r64(asm_x64_t *as, int src_local_num, int dest_r64);
void asm_x64_mov_r64_to_local(asm_x64_t *as, int src_r64, int dest_local_num); void asm_x64_mov_r64_to_local(asm_x64_t *as, int src_r64, int dest_local_num);
void asm_x64_mov_local_addr_to_r64(asm_x64_t *as, int local_num, int dest_r64); void asm_x64_mov_local_addr_to_r64(asm_x64_t *as, int local_num, int dest_r64);
void asm_x64_call_ind(asm_x64_t *as, void *ptr, int temp_r32); void asm_x64_mov_reg_pcrel(asm_x64_t *as, int dest_r64, mp_uint_t label);
void asm_x64_call_ind(asm_x64_t *as, size_t fun_id, int temp_r32);
// Holds a pointer to mp_fun_table
#define ASM_X64_REG_FUN_TABLE ASM_X64_REG_RBP
#if defined(GENERIC_ASM_API) && GENERIC_ASM_API #if defined(GENERIC_ASM_API) && GENERIC_ASM_API
@ -139,20 +144,31 @@ void asm_x64_call_ind(asm_x64_t *as, void *ptr, int temp_r32);
#define REG_LOCAL_3 ASM_X64_REG_R13 #define REG_LOCAL_3 ASM_X64_REG_R13
#define REG_LOCAL_NUM (3) #define REG_LOCAL_NUM (3)
// Holds a pointer to mp_fun_table
#define REG_FUN_TABLE ASM_X64_REG_FUN_TABLE
#define ASM_T asm_x64_t #define ASM_T asm_x64_t
#define ASM_END_PASS asm_x64_end_pass #define ASM_END_PASS asm_x64_end_pass
#define ASM_ENTRY asm_x64_entry #define ASM_ENTRY asm_x64_entry
#define ASM_EXIT asm_x64_exit #define ASM_EXIT asm_x64_exit
#define ASM_JUMP asm_x64_jmp_label #define ASM_JUMP asm_x64_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_ZERO(as, reg, label, bool_test) \
do { \ do { \
asm_x64_test_r8_with_r8(as, reg, reg); \ if (bool_test) { \
asm_x64_test_r8_with_r8((as), (reg), (reg)); \
} else { \
asm_x64_test_r64_with_r64((as), (reg), (reg)); \
} \
asm_x64_jcc_label(as, ASM_X64_CC_JZ, label); \ asm_x64_jcc_label(as, ASM_X64_CC_JZ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_NONZERO(as, reg, label, bool_test) \
do { \ do { \
asm_x64_test_r8_with_r8(as, reg, reg); \ if (bool_test) { \
asm_x64_test_r8_with_r8((as), (reg), (reg)); \
} else { \
asm_x64_test_r64_with_r64((as), (reg), (reg)); \
} \
asm_x64_jcc_label(as, ASM_X64_CC_JNZ, label); \ asm_x64_jcc_label(as, ASM_X64_CC_JNZ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
@ -160,14 +176,15 @@ void asm_x64_call_ind(asm_x64_t *as, void *ptr, int temp_r32);
asm_x64_cmp_r64_with_r64(as, reg1, reg2); \ asm_x64_cmp_r64_with_r64(as, reg1, reg2); \
asm_x64_jcc_label(as, ASM_X64_CC_JE, label); \ asm_x64_jcc_label(as, ASM_X64_CC_JE, label); \
} while (0) } while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x64_call_ind(as, ptr, ASM_X64_REG_RAX) #define ASM_JUMP_REG(as, reg) asm_x64_jmp_reg((as), (reg))
#define ASM_CALL_IND(as, idx) asm_x64_call_ind(as, idx, ASM_X64_REG_RAX)
#define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_x64_mov_r64_to_local((as), (reg_src), (local_num)) #define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_x64_mov_r64_to_local((as), (reg_src), (local_num))
#define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_x64_mov_i64_to_r64_optimised((as), (imm), (reg_dest)) #define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_x64_mov_i64_to_r64_optimised((as), (imm), (reg_dest))
#define ASM_MOV_REG_ALIGNED_IMM(as, reg_dest, imm) asm_x64_mov_i64_to_r64_aligned((as), (imm), (reg_dest))
#define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_x64_mov_local_to_r64((as), (local_num), (reg_dest)) #define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_x64_mov_local_to_r64((as), (local_num), (reg_dest))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x64_mov_r64_r64((as), (reg_dest), (reg_src)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x64_mov_r64_r64((as), (reg_dest), (reg_src))
#define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_x64_mov_local_addr_to_r64((as), (local_num), (reg_dest)) #define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_x64_mov_local_addr_to_r64((as), (local_num), (reg_dest))
#define ASM_MOV_REG_PCREL(as, reg_dest, label) asm_x64_mov_reg_pcrel((as), (reg_dest), (label))
#define ASM_LSL_REG(as, reg) asm_x64_shl_r64_cl((as), (reg)) #define ASM_LSL_REG(as, reg) asm_x64_shl_r64_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x64_sar_r64_cl((as), (reg)) #define ASM_ASR_REG(as, reg) asm_x64_sar_r64_cl((as), (reg))

View File

@ -73,8 +73,10 @@
#define OPCODE_CMP_R32_WITH_RM32 (0x39) #define OPCODE_CMP_R32_WITH_RM32 (0x39)
// #define OPCODE_CMP_RM32_WITH_R32 (0x3b) // #define OPCODE_CMP_RM32_WITH_R32 (0x3b)
#define OPCODE_TEST_R8_WITH_RM8 (0x84) /* /r */ #define OPCODE_TEST_R8_WITH_RM8 (0x84) /* /r */
#define OPCODE_TEST_R32_WITH_RM32 (0x85) /* /r */
#define OPCODE_JMP_REL8 (0xeb) #define OPCODE_JMP_REL8 (0xeb)
#define OPCODE_JMP_REL32 (0xe9) #define OPCODE_JMP_REL32 (0xe9)
#define OPCODE_JMP_RM32 (0xff) /* /4 */
#define OPCODE_JCC_REL8 (0x70) /* | jcc type */ #define OPCODE_JCC_REL8 (0x70) /* | jcc type */
#define OPCODE_JCC_REL32_A (0x0f) #define OPCODE_JCC_REL32_A (0x0f)
#define OPCODE_JCC_REL32_B (0x80) /* | jcc type */ #define OPCODE_JCC_REL32_B (0x80) /* | jcc type */
@ -135,14 +137,22 @@ STATIC void asm_x86_write_word32(asm_x86_t *as, int w32) {
} }
STATIC void asm_x86_write_r32_disp(asm_x86_t *as, int r32, int disp_r32, int disp_offset) { STATIC void asm_x86_write_r32_disp(asm_x86_t *as, int r32, int disp_r32, int disp_offset) {
assert(disp_r32 != ASM_X86_REG_ESP); uint8_t rm_disp;
if (disp_offset == 0 && disp_r32 != ASM_X86_REG_EBP) { if (disp_offset == 0 && disp_r32 != ASM_X86_REG_EBP) {
asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP0 | MODRM_RM_R32(disp_r32)); rm_disp = MODRM_RM_DISP0;
} else if (SIGNED_FIT8(disp_offset)) { } else if (SIGNED_FIT8(disp_offset)) {
asm_x86_write_byte_2(as, MODRM_R32(r32) | MODRM_RM_DISP8 | MODRM_RM_R32(disp_r32), IMM32_L0(disp_offset)); rm_disp = MODRM_RM_DISP8;
} else { } else {
asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP32 | MODRM_RM_R32(disp_r32)); rm_disp = MODRM_RM_DISP32;
}
asm_x86_write_byte_1(as, MODRM_R32(r32) | rm_disp | MODRM_RM_R32(disp_r32));
if (disp_r32 == ASM_X86_REG_ESP) {
// Special case for esp, it needs a SIB byte
asm_x86_write_byte_1(as, 0x24);
}
if (rm_disp == MODRM_RM_DISP8) {
asm_x86_write_byte_1(as, IMM32_L0(disp_offset));
} else if (rm_disp == MODRM_RM_DISP32) {
asm_x86_write_word32(as, disp_offset); asm_x86_write_word32(as, disp_offset);
} }
} }
@ -151,9 +161,11 @@ STATIC void asm_x86_generic_r32_r32(asm_x86_t *as, int dest_r32, int src_r32, in
asm_x86_write_byte_2(as, op, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); asm_x86_write_byte_2(as, op, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
} }
#if 0
STATIC void asm_x86_nop(asm_x86_t *as) { STATIC void asm_x86_nop(asm_x86_t *as) {
asm_x86_write_byte_1(as, OPCODE_NOP); asm_x86_write_byte_1(as, OPCODE_NOP);
} }
#endif
STATIC void asm_x86_push_r32(asm_x86_t *as, int src_r32) { STATIC void asm_x86_push_r32(asm_x86_t *as, int src_r32) {
asm_x86_write_byte_1(as, OPCODE_PUSH_R32 | src_r32); asm_x86_write_byte_1(as, OPCODE_PUSH_R32 | src_r32);
@ -229,15 +241,6 @@ void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32) {
asm_x86_write_word32(as, src_i32); asm_x86_write_word32(as, src_i32);
} }
// src_i32 is stored as a full word in the code, and aligned to machine-word boundary
void asm_x86_mov_i32_to_r32_aligned(asm_x86_t *as, int32_t src_i32, int dest_r32) {
// mov instruction uses 1 byte for the instruction, before the i32
while (((as->base.code_offset + 1) & (WORD_SIZE - 1)) != 0) {
asm_x86_nop(as);
}
asm_x86_mov_i32_to_r32(as, src_i32, dest_r32);
}
void asm_x86_and_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) { void asm_x86_and_r32_r32(asm_x86_t *as, int dest_r32, int src_r32) {
asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_AND_R32_TO_RM32); asm_x86_generic_r32_r32(as, dest_r32, src_r32, OPCODE_AND_R32_TO_RM32);
} }
@ -312,7 +315,7 @@ void asm_x86_sar_r32_by_imm(asm_x86_t *as, int r32, int imm) {
#endif #endif
void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b) { void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b) {
asm_x86_write_byte_2(as, OPCODE_CMP_R32_WITH_RM32, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b)); asm_x86_generic_r32_r32(as, src_r32_b, src_r32_a, OPCODE_CMP_R32_WITH_RM32);
} }
#if 0 #if 0
@ -328,16 +331,21 @@ void asm_x86_cmp_i32_with_r32(asm_x86_t *as, int src_i32, int src_r32) {
#endif #endif
void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b) { void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b) {
// TODO implement for other registers
assert(src_r32_a == ASM_X86_REG_EAX);
assert(src_r32_b == ASM_X86_REG_EAX);
asm_x86_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b)); asm_x86_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b));
} }
void asm_x86_test_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b) {
asm_x86_generic_r32_r32(as, src_r32_b, src_r32_a, OPCODE_TEST_R32_WITH_RM32);
}
void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8) { void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8) {
asm_x86_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r8)); asm_x86_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r8));
} }
void asm_x86_jmp_reg(asm_x86_t *as, int src_r32) {
asm_x86_write_byte_2(as, OPCODE_JMP_RM32, MODRM_R32(4) | MODRM_RM_REG | MODRM_RM_R32(src_r32));
}
STATIC mp_uint_t get_label_dest(asm_x86_t *as, mp_uint_t label) { STATIC mp_uint_t get_label_dest(asm_x86_t *as, mp_uint_t label) {
assert(label < as->base.max_num_labels); assert(label < as->base.max_num_labels);
return as->base.label_offsets[label]; return as->base.label_offsets[label];
@ -390,86 +398,102 @@ void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label) {
void asm_x86_entry(asm_x86_t *as, int num_locals) { void asm_x86_entry(asm_x86_t *as, int num_locals) {
assert(num_locals >= 0); assert(num_locals >= 0);
asm_x86_push_r32(as, ASM_X86_REG_EBP); asm_x86_push_r32(as, ASM_X86_REG_EBP);
asm_x86_mov_r32_r32(as, ASM_X86_REG_EBP, ASM_X86_REG_ESP);
if (num_locals > 0) {
asm_x86_sub_r32_i32(as, ASM_X86_REG_ESP, num_locals * WORD_SIZE);
}
asm_x86_push_r32(as, ASM_X86_REG_EBX); asm_x86_push_r32(as, ASM_X86_REG_EBX);
asm_x86_push_r32(as, ASM_X86_REG_ESI); asm_x86_push_r32(as, ASM_X86_REG_ESI);
asm_x86_push_r32(as, ASM_X86_REG_EDI); asm_x86_push_r32(as, ASM_X86_REG_EDI);
// TODO align stack on 16-byte boundary num_locals |= 1; // make it odd so stack is aligned on 16 byte boundary
asm_x86_sub_r32_i32(as, ASM_X86_REG_ESP, num_locals * WORD_SIZE);
as->num_locals = num_locals; as->num_locals = num_locals;
} }
void asm_x86_exit(asm_x86_t *as) { void asm_x86_exit(asm_x86_t *as) {
asm_x86_sub_r32_i32(as, ASM_X86_REG_ESP, -as->num_locals * WORD_SIZE);
asm_x86_pop_r32(as, ASM_X86_REG_EDI); asm_x86_pop_r32(as, ASM_X86_REG_EDI);
asm_x86_pop_r32(as, ASM_X86_REG_ESI); asm_x86_pop_r32(as, ASM_X86_REG_ESI);
asm_x86_pop_r32(as, ASM_X86_REG_EBX); asm_x86_pop_r32(as, ASM_X86_REG_EBX);
asm_x86_write_byte_1(as, OPCODE_LEAVE); asm_x86_pop_r32(as, ASM_X86_REG_EBP);
asm_x86_ret(as); asm_x86_ret(as);
} }
STATIC int asm_x86_arg_offset_from_esp(asm_x86_t *as, size_t arg_num) {
// Above esp are: locals, 4 saved registers, return eip, arguments
return (as->num_locals + 4 + 1 + arg_num) * WORD_SIZE;
}
#if 0 #if 0
void asm_x86_push_arg(asm_x86_t *as, int src_arg_num) { void asm_x86_push_arg(asm_x86_t *as, int src_arg_num) {
asm_x86_push_disp(as, ASM_X86_REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE); asm_x86_push_disp(as, ASM_X86_REG_ESP, asm_x86_arg_offset_from_esp(as, src_arg_num));
} }
#endif #endif
void asm_x86_mov_arg_to_r32(asm_x86_t *as, int src_arg_num, int dest_r32) { void asm_x86_mov_arg_to_r32(asm_x86_t *as, int src_arg_num, int dest_r32) {
asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE, dest_r32); asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_ESP, asm_x86_arg_offset_from_esp(as, src_arg_num), dest_r32);
} }
#if 0 #if 0
void asm_x86_mov_r32_to_arg(asm_x86_t *as, int src_r32, int dest_arg_num) { void asm_x86_mov_r32_to_arg(asm_x86_t *as, int src_r32, int dest_arg_num) {
asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_EBP, 2 * WORD_SIZE + dest_arg_num * WORD_SIZE); asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_ESP, asm_x86_arg_offset_from_esp(as, dest_arg_num));
} }
#endif #endif
// locals: // locals:
// - stored on the stack in ascending order // - stored on the stack in ascending order
// - numbered 0 through as->num_locals-1 // - numbered 0 through as->num_locals-1
// - EBP points above the last local // - ESP points to the first local
// //
// | EBP // | ESP
// v // v
// l0 l1 l2 ... l(n-1) // l0 l1 l2 ... l(n-1)
// ^ ^ // ^ ^
// | low address | high address in RAM // | low address | high address in RAM
// //
STATIC int asm_x86_local_offset_from_ebp(asm_x86_t *as, int local_num) { STATIC int asm_x86_local_offset_from_esp(asm_x86_t *as, int local_num) {
return (-as->num_locals + local_num) * WORD_SIZE; (void)as;
// Stack is full descending, ESP points to local0
return local_num * WORD_SIZE;
} }
void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32) { void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32) {
asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, src_local_num), dest_r32); asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_ESP, asm_x86_local_offset_from_esp(as, src_local_num), dest_r32);
} }
void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num) { void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num) {
asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, dest_local_num)); asm_x86_mov_r32_to_mem32(as, src_r32, ASM_X86_REG_ESP, asm_x86_local_offset_from_esp(as, dest_local_num));
} }
void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32) { void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32) {
int offset = asm_x86_local_offset_from_ebp(as, local_num); int offset = asm_x86_local_offset_from_esp(as, local_num);
if (offset == 0) { if (offset == 0) {
asm_x86_mov_r32_r32(as, dest_r32, ASM_X86_REG_EBP); asm_x86_mov_r32_r32(as, dest_r32, ASM_X86_REG_ESP);
} else { } else {
asm_x86_lea_disp_to_r32(as, ASM_X86_REG_EBP, offset, dest_r32); asm_x86_lea_disp_to_r32(as, ASM_X86_REG_ESP, offset, dest_r32);
} }
} }
void asm_x86_mov_reg_pcrel(asm_x86_t *as, int dest_r32, mp_uint_t label) {
asm_x86_write_byte_1(as, OPCODE_CALL_REL32);
asm_x86_write_word32(as, 0);
mp_uint_t dest = get_label_dest(as, label);
mp_int_t rel = dest - as->base.code_offset;
asm_x86_pop_r32(as, dest_r32);
// PC rel is usually a forward reference, so need to assume it's large
asm_x86_write_byte_2(as, OPCODE_ADD_I32_TO_RM32, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r32));
asm_x86_write_word32(as, rel);
}
#if 0 #if 0
void asm_x86_push_local(asm_x86_t *as, int local_num) { void asm_x86_push_local(asm_x86_t *as, int local_num) {
asm_x86_push_disp(as, ASM_X86_REG_EBP, asm_x86_local_offset_from_ebp(as, local_num)); asm_x86_push_disp(as, ASM_X86_REG_ESP, asm_x86_local_offset_from_esp(as, local_num));
} }
void asm_x86_push_local_addr(asm_x86_t *as, int local_num, int temp_r32) { void asm_x86_push_local_addr(asm_x86_t *as, int local_num, int temp_r32) {
asm_x86_mov_r32_r32(as, temp_r32, ASM_X86_REG_EBP); asm_x86_mov_r32_r32(as, temp_r32, ASM_X86_REG_ESP);
asm_x86_add_i32_to_r32(as, asm_x86_local_offset_from_ebp(as, local_num), temp_r32); asm_x86_add_i32_to_r32(as, asm_x86_local_offset_from_esp(as, local_num), temp_r32);
asm_x86_push_r32(as, temp_r32); asm_x86_push_r32(as, temp_r32);
} }
#endif #endif
void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32) { void asm_x86_call_ind(asm_x86_t *as, size_t fun_id, mp_uint_t n_args, int temp_r32) {
// TODO align stack on 16-byte boundary before the call // TODO align stack on 16-byte boundary before the call
assert(n_args <= 5); assert(n_args <= 5);
if (n_args > 4) { if (n_args > 4) {
@ -487,20 +511,10 @@ void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32)
if (n_args > 0) { if (n_args > 0) {
asm_x86_push_r32(as, ASM_X86_REG_ARG_1); asm_x86_push_r32(as, ASM_X86_REG_ARG_1);
} }
#ifdef __LP64__
// We wouldn't run x86 code on an x64 machine. This is here to enable // Load the pointer to the function and make the call
// testing of the x86 emitter only. asm_x86_mov_mem32_to_r32(as, ASM_X86_REG_FUN_TABLE, fun_id * WORD_SIZE, temp_r32);
asm_x86_mov_i32_to_r32(as, (int32_t)(int64_t)ptr, temp_r32);
#else
// If we get here, sizeof(int) == sizeof(void*).
asm_x86_mov_i32_to_r32(as, (int32_t)ptr, temp_r32);
#endif
asm_x86_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R32(2) | MODRM_RM_REG | MODRM_RM_R32(temp_r32)); asm_x86_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R32(2) | MODRM_RM_REG | MODRM_RM_R32(temp_r32));
// this reduces code size by 2 bytes per call, but doesn't seem to speed it up at all
/*
asm_x86_write_byte_1(as, OPCODE_CALL_REL32);
asm_x86_write_word32(as, ptr - (void*)(as->code_base + as->base.code_offset + 4));
*/
// the caller must clean up the stack // the caller must clean up the stack
if (n_args > 0) { if (n_args > 0) {

View File

@ -84,7 +84,6 @@ static inline void asm_x86_end_pass(asm_x86_t *as) {
void asm_x86_mov_r32_r32(asm_x86_t *as, int dest_r32, int src_r32); void asm_x86_mov_r32_r32(asm_x86_t *as, int dest_r32, int src_r32);
void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32); void asm_x86_mov_i32_to_r32(asm_x86_t *as, int32_t src_i32, int dest_r32);
void asm_x86_mov_i32_to_r32_aligned(asm_x86_t *as, int32_t src_i32, int dest_r32);
void asm_x86_mov_r8_to_mem8(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp); void asm_x86_mov_r8_to_mem8(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp);
void asm_x86_mov_r16_to_mem16(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp); void asm_x86_mov_r16_to_mem16(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp);
void asm_x86_mov_r32_to_mem32(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp); void asm_x86_mov_r32_to_mem32(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp);
@ -101,7 +100,9 @@ void asm_x86_sub_r32_r32(asm_x86_t *as, int dest_r32, int src_r32);
void asm_x86_mul_r32_r32(asm_x86_t *as, int dest_r32, int src_r32); void asm_x86_mul_r32_r32(asm_x86_t *as, int dest_r32, int src_r32);
void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b); void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b);
void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b); void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b);
void asm_x86_test_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b);
void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8); void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8);
void asm_x86_jmp_reg(asm_x86_t *as, int src_r86);
void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label); void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label);
void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label); void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label);
void asm_x86_entry(asm_x86_t *as, int num_locals); void asm_x86_entry(asm_x86_t *as, int num_locals);
@ -110,7 +111,11 @@ void asm_x86_mov_arg_to_r32(asm_x86_t *as, int src_arg_num, int dest_r32);
void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32); void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32);
void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num); void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num);
void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32); void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32);
void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32); void asm_x86_mov_reg_pcrel(asm_x86_t *as, int dest_r64, mp_uint_t label);
void asm_x86_call_ind(asm_x86_t *as, size_t fun_id, mp_uint_t n_args, int temp_r32);
// Holds a pointer to mp_fun_table
#define ASM_X86_REG_FUN_TABLE ASM_X86_REG_EBP
#if defined(GENERIC_ASM_API) && GENERIC_ASM_API #if defined(GENERIC_ASM_API) && GENERIC_ASM_API
@ -137,20 +142,31 @@ void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32);
#define REG_LOCAL_3 ASM_X86_REG_EDI #define REG_LOCAL_3 ASM_X86_REG_EDI
#define REG_LOCAL_NUM (3) #define REG_LOCAL_NUM (3)
// Holds a pointer to mp_fun_table
#define REG_FUN_TABLE ASM_X86_REG_FUN_TABLE
#define ASM_T asm_x86_t #define ASM_T asm_x86_t
#define ASM_END_PASS asm_x86_end_pass #define ASM_END_PASS asm_x86_end_pass
#define ASM_ENTRY asm_x86_entry #define ASM_ENTRY asm_x86_entry
#define ASM_EXIT asm_x86_exit #define ASM_EXIT asm_x86_exit
#define ASM_JUMP asm_x86_jmp_label #define ASM_JUMP asm_x86_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_ZERO(as, reg, label, bool_test) \
do { \ do { \
asm_x86_test_r8_with_r8(as, reg, reg); \ if (bool_test) { \
asm_x86_test_r8_with_r8(as, reg, reg); \
} else { \
asm_x86_test_r32_with_r32(as, reg, reg); \
} \
asm_x86_jcc_label(as, ASM_X86_CC_JZ, label); \ asm_x86_jcc_label(as, ASM_X86_CC_JZ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_NONZERO(as, reg, label, bool_test) \
do { \ do { \
asm_x86_test_r8_with_r8(as, reg, reg); \ if (bool_test) { \
asm_x86_test_r8_with_r8(as, reg, reg); \
} else { \
asm_x86_test_r32_with_r32(as, reg, reg); \
} \
asm_x86_jcc_label(as, ASM_X86_CC_JNZ, label); \ asm_x86_jcc_label(as, ASM_X86_CC_JNZ, label); \
} while (0) } while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
@ -158,14 +174,15 @@ void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32);
asm_x86_cmp_r32_with_r32(as, reg1, reg2); \ asm_x86_cmp_r32_with_r32(as, reg1, reg2); \
asm_x86_jcc_label(as, ASM_X86_CC_JE, label); \ asm_x86_jcc_label(as, ASM_X86_CC_JE, label); \
} while (0) } while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x86_call_ind(as, ptr, mp_f_n_args[idx], ASM_X86_REG_EAX) #define ASM_JUMP_REG(as, reg) asm_x86_jmp_reg((as), (reg))
#define ASM_CALL_IND(as, idx) asm_x86_call_ind(as, idx, mp_f_n_args[idx], ASM_X86_REG_EAX)
#define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_x86_mov_r32_to_local((as), (reg_src), (local_num)) #define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_x86_mov_r32_to_local((as), (reg_src), (local_num))
#define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_x86_mov_i32_to_r32((as), (imm), (reg_dest)) #define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_x86_mov_i32_to_r32((as), (imm), (reg_dest))
#define ASM_MOV_REG_ALIGNED_IMM(as, reg_dest, imm) asm_x86_mov_i32_to_r32_aligned((as), (imm), (reg_dest))
#define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_x86_mov_local_to_r32((as), (local_num), (reg_dest)) #define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_x86_mov_local_to_r32((as), (local_num), (reg_dest))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x86_mov_r32_r32((as), (reg_dest), (reg_src)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x86_mov_r32_r32((as), (reg_dest), (reg_src))
#define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_x86_mov_local_addr_to_r32((as), (local_num), (reg_dest)) #define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_x86_mov_local_addr_to_r32((as), (local_num), (reg_dest))
#define ASM_MOV_REG_PCREL(as, reg_dest, label) asm_x86_mov_reg_pcrel((as), (reg_dest), (label))
#define ASM_LSL_REG(as, reg) asm_x86_shl_r32_cl((as), (reg)) #define ASM_LSL_REG(as, reg) asm_x86_shl_r32_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x86_sar_r32_cl((as), (reg)) #define ASM_ASR_REG(as, reg) asm_x86_sar_r32_cl((as), (reg))

View File

@ -37,6 +37,7 @@
#define WORD_SIZE (4) #define WORD_SIZE (4)
#define SIGNED_FIT8(x) ((((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80)) #define SIGNED_FIT8(x) ((((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80))
#define SIGNED_FIT12(x) ((((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800)) #define SIGNED_FIT12(x) ((((x) & 0xfffff800) == 0) || (((x) & 0xfffff800) == 0xfffff800))
#define NUM_REGS_SAVED (5)
void asm_xtensa_end_pass(asm_xtensa_t *as) { void asm_xtensa_end_pass(asm_xtensa_t *as) {
as->num_const = as->cur_const; as->num_const = as->cur_const;
@ -67,26 +68,37 @@ void asm_xtensa_entry(asm_xtensa_t *as, int num_locals) {
mp_asm_base_get_cur_to_write_bytes(&as->base, 1); // padding/alignment byte mp_asm_base_get_cur_to_write_bytes(&as->base, 1); // padding/alignment byte
as->const_table = (uint32_t *)mp_asm_base_get_cur_to_write_bytes(&as->base, as->num_const * 4); as->const_table = (uint32_t *)mp_asm_base_get_cur_to_write_bytes(&as->base, as->num_const * 4);
// adjust the stack-pointer to store a0, a12, a13, a14 and locals, 16-byte aligned // adjust the stack-pointer to store a0, a12, a13, a14, a15 and locals, 16-byte aligned
as->stack_adjust = (((4 + num_locals) * WORD_SIZE) + 15) & ~15; as->stack_adjust = (((NUM_REGS_SAVED + num_locals) * WORD_SIZE) + 15) & ~15;
asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, -as->stack_adjust); if (SIGNED_FIT8(-as->stack_adjust)) {
asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, -as->stack_adjust);
} else {
asm_xtensa_op_movi(as, ASM_XTENSA_REG_A9, as->stack_adjust);
asm_xtensa_op_sub(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A9);
}
// save return value (a0) and callee-save registers (a12, a13, a14) // save return value (a0) and callee-save registers (a12, a13, a14, a15)
asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0); asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0);
asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A12, ASM_XTENSA_REG_A1, 1); for (int i = 1; i < NUM_REGS_SAVED; ++i) {
asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A13, ASM_XTENSA_REG_A1, 2); asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A11 + i, ASM_XTENSA_REG_A1, i);
asm_xtensa_op_s32i_n(as, ASM_XTENSA_REG_A14, ASM_XTENSA_REG_A1, 3); }
} }
void asm_xtensa_exit(asm_xtensa_t *as) { void asm_xtensa_exit(asm_xtensa_t *as) {
// restore registers // restore registers
asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A14, ASM_XTENSA_REG_A1, 3); for (int i = NUM_REGS_SAVED - 1; i >= 1; --i) {
asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A13, ASM_XTENSA_REG_A1, 2); asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A11 + i, ASM_XTENSA_REG_A1, i);
asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A12, ASM_XTENSA_REG_A1, 1); }
asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0); asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_A1, 0);
// restore stack-pointer and return // restore stack-pointer and return
asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, as->stack_adjust); if (SIGNED_FIT8(as->stack_adjust)) {
asm_xtensa_op_addi(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, as->stack_adjust);
} else {
asm_xtensa_op_movi(as, ASM_XTENSA_REG_A9, as->stack_adjust);
asm_xtensa_op_add_n(as, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A1, ASM_XTENSA_REG_A9);
}
asm_xtensa_op_ret_n(as); asm_xtensa_op_ret_n(as);
} }
@ -149,7 +161,8 @@ void asm_xtensa_mov_reg_i32(asm_xtensa_t *as, uint reg_dest, uint32_t i32) {
asm_xtensa_op_movi(as, reg_dest, i32); asm_xtensa_op_movi(as, reg_dest, i32);
} else { } else {
// load the constant // load the constant
asm_xtensa_op_l32r(as, reg_dest, as->base.code_offset, 4 + as->cur_const * WORD_SIZE); uint32_t const_table_offset = (uint8_t *)as->const_table - as->base.code_base;
asm_xtensa_op_l32r(as, reg_dest, as->base.code_offset, const_table_offset + as->cur_const * WORD_SIZE);
// store the constant in the table // store the constant in the table
if (as->const_table != NULL) { if (as->const_table != NULL) {
as->const_table[as->cur_const] = i32; as->const_table[as->cur_const] = i32;
@ -159,16 +172,52 @@ void asm_xtensa_mov_reg_i32(asm_xtensa_t *as, uint reg_dest, uint32_t i32) {
} }
void asm_xtensa_mov_local_reg(asm_xtensa_t *as, int local_num, uint reg_src) { void asm_xtensa_mov_local_reg(asm_xtensa_t *as, int local_num, uint reg_src) {
asm_xtensa_op_s32i(as, reg_src, ASM_XTENSA_REG_A1, 4 + local_num); asm_xtensa_op_s32i(as, reg_src, ASM_XTENSA_REG_A1, NUM_REGS_SAVED + local_num);
} }
void asm_xtensa_mov_reg_local(asm_xtensa_t *as, uint reg_dest, int local_num) { void asm_xtensa_mov_reg_local(asm_xtensa_t *as, uint reg_dest, int local_num) {
asm_xtensa_op_l32i(as, reg_dest, ASM_XTENSA_REG_A1, 4 + local_num); asm_xtensa_op_l32i(as, reg_dest, ASM_XTENSA_REG_A1, NUM_REGS_SAVED + local_num);
} }
void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_num) { void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_num) {
asm_xtensa_op_mov_n(as, reg_dest, ASM_XTENSA_REG_A1); uint off = (NUM_REGS_SAVED + local_num) * WORD_SIZE;
asm_xtensa_op_addi(as, reg_dest, reg_dest, (4 + local_num) * WORD_SIZE); if (SIGNED_FIT8(off)) {
asm_xtensa_op_addi(as, reg_dest, ASM_XTENSA_REG_A1, off);
} else {
asm_xtensa_op_movi(as, reg_dest, off);
asm_xtensa_op_add_n(as, reg_dest, reg_dest, ASM_XTENSA_REG_A1);
}
}
void asm_xtensa_mov_reg_pcrel(asm_xtensa_t *as, uint reg_dest, uint label) {
// Get relative offset from PC
uint32_t dest = get_label_dest(as, label);
int32_t rel = dest - as->base.code_offset;
rel -= 3 + 3; // account for 3 bytes of movi instruction, 3 bytes call0 adjustment
asm_xtensa_op_movi(as, reg_dest, rel); // imm has 12-bit range
// Use call0 to get PC+3 into a0
// call0 destination must be aligned on 4 bytes:
// - code_offset&3=0: off=0, pad=1
// - code_offset&3=1: off=0, pad=0
// - code_offset&3=2: off=1, pad=3
// - code_offset&3=3: off=1, pad=2
uint32_t off = as->base.code_offset >> 1 & 1;
uint32_t pad = (5 - as->base.code_offset) & 3;
asm_xtensa_op_call0(as, off);
mp_asm_base_get_cur_to_write_bytes(&as->base, pad);
// Add PC to relative offset
asm_xtensa_op_add_n(as, reg_dest, reg_dest, ASM_XTENSA_REG_A0);
}
void asm_xtensa_call_ind(asm_xtensa_t *as, uint idx) {
if (idx < 16) {
asm_xtensa_op_l32i_n(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_FUN_TABLE, idx);
} else {
asm_xtensa_op_l32i(as, ASM_XTENSA_REG_A0, ASM_XTENSA_REG_FUN_TABLE, idx);
}
asm_xtensa_op_callx0(as, ASM_XTENSA_REG_A0);
} }
#endif // MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA #endif // MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA

View File

@ -113,12 +113,12 @@ void asm_xtensa_op24(asm_xtensa_t *as, uint32_t op);
// raw instructions // raw instructions
static inline void asm_xtensa_op_add(asm_xtensa_t *as, uint reg_dest, uint reg_src_a, uint reg_src_b) { static inline void asm_xtensa_op_add_n(asm_xtensa_t *as, uint reg_dest, uint reg_src_a, uint reg_src_b) {
asm_xtensa_op24(as, ASM_XTENSA_ENCODE_RRR(0, 0, 8, reg_dest, reg_src_a, reg_src_b)); asm_xtensa_op16(as, ASM_XTENSA_ENCODE_RRRN(10, reg_dest, reg_src_a, reg_src_b));
} }
static inline void asm_xtensa_op_addi(asm_xtensa_t *as, uint reg_dest, uint reg_src, int imm8) { static inline void asm_xtensa_op_addi(asm_xtensa_t *as, uint reg_dest, uint reg_src, int imm8) {
asm_xtensa_op24(as, ASM_XTENSA_ENCODE_RRI8(2, 12, reg_dest, reg_src, imm8 & 0xff)); asm_xtensa_op24(as, ASM_XTENSA_ENCODE_RRI8(2, 12, reg_src, reg_dest, imm8 & 0xff));
} }
static inline void asm_xtensa_op_and(asm_xtensa_t *as, uint reg_dest, uint reg_src_a, uint reg_src_b) { static inline void asm_xtensa_op_and(asm_xtensa_t *as, uint reg_dest, uint reg_src_a, uint reg_src_b) {
@ -133,6 +133,10 @@ static inline void asm_xtensa_op_bccz(asm_xtensa_t *as, uint cond, uint reg_src,
asm_xtensa_op24(as, ASM_XTENSA_ENCODE_BRI12(6, reg_src, cond, 1, rel12 & 0xfff)); asm_xtensa_op24(as, ASM_XTENSA_ENCODE_BRI12(6, reg_src, cond, 1, rel12 & 0xfff));
} }
static inline void asm_xtensa_op_call0(asm_xtensa_t *as, int32_t rel18) {
asm_xtensa_op24(as, ASM_XTENSA_ENCODE_CALL(5, 0, rel18 & 0x3ffff));
}
static inline void asm_xtensa_op_callx0(asm_xtensa_t *as, uint reg) { static inline void asm_xtensa_op_callx0(asm_xtensa_t *as, uint reg) {
asm_xtensa_op24(as, ASM_XTENSA_ENCODE_CALLX(0, 0, 0, 0, reg, 3, 0)); asm_xtensa_op24(as, ASM_XTENSA_ENCODE_CALLX(0, 0, 0, 0, reg, 3, 0));
} }
@ -238,6 +242,11 @@ void asm_xtensa_mov_reg_i32(asm_xtensa_t *as, uint reg_dest, uint32_t i32);
void asm_xtensa_mov_local_reg(asm_xtensa_t *as, int local_num, uint reg_src); void asm_xtensa_mov_local_reg(asm_xtensa_t *as, int local_num, uint reg_src);
void asm_xtensa_mov_reg_local(asm_xtensa_t *as, uint reg_dest, int local_num); void asm_xtensa_mov_reg_local(asm_xtensa_t *as, uint reg_dest, int local_num);
void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_num); void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_num);
void asm_xtensa_mov_reg_pcrel(asm_xtensa_t *as, uint reg_dest, uint label);
void asm_xtensa_call_ind(asm_xtensa_t *as, uint idx);
// Holds a pointer to mp_fun_table
#define ASM_XTENSA_REG_FUN_TABLE ASM_XTENSA_REG_A15
#if defined(GENERIC_ASM_API) && GENERIC_ASM_API #if defined(GENERIC_ASM_API) && GENERIC_ASM_API
@ -262,30 +271,29 @@ void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_nu
#define REG_LOCAL_3 ASM_XTENSA_REG_A14 #define REG_LOCAL_3 ASM_XTENSA_REG_A14
#define REG_LOCAL_NUM (3) #define REG_LOCAL_NUM (3)
#define REG_FUN_TABLE ASM_XTENSA_REG_FUN_TABLE
#define ASM_T asm_xtensa_t #define ASM_T asm_xtensa_t
#define ASM_END_PASS asm_xtensa_end_pass #define ASM_END_PASS asm_xtensa_end_pass
#define ASM_ENTRY asm_xtensa_entry #define ASM_ENTRY asm_xtensa_entry
#define ASM_EXIT asm_xtensa_exit #define ASM_EXIT asm_xtensa_exit
#define ASM_JUMP asm_xtensa_j_label #define ASM_JUMP asm_xtensa_j_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_ZERO(as, reg, label, bool_test) \
asm_xtensa_bccz_reg_label(as, ASM_XTENSA_CCZ_EQ, reg, label) asm_xtensa_bccz_reg_label(as, ASM_XTENSA_CCZ_EQ, reg, label)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \ #define ASM_JUMP_IF_REG_NONZERO(as, reg, label, bool_test) \
asm_xtensa_bccz_reg_label(as, ASM_XTENSA_CCZ_NE, reg, label) asm_xtensa_bccz_reg_label(as, ASM_XTENSA_CCZ_NE, reg, label)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \ #define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
asm_xtensa_bcc_reg_reg_label(as, ASM_XTENSA_CC_EQ, reg1, reg2, label) asm_xtensa_bcc_reg_reg_label(as, ASM_XTENSA_CC_EQ, reg1, reg2, label)
#define ASM_CALL_IND(as, ptr, idx) \ #define ASM_JUMP_REG(as, reg) asm_xtensa_op_jx((as), (reg))
do { \ #define ASM_CALL_IND(as, idx) asm_xtensa_call_ind((as), (idx))
asm_xtensa_mov_reg_i32(as, ASM_XTENSA_REG_A0, (uint32_t)ptr); \
asm_xtensa_op_callx0(as, ASM_XTENSA_REG_A0); \
} while (0)
#define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_xtensa_mov_local_reg((as), (local_num), (reg_src)) #define ASM_MOV_LOCAL_REG(as, local_num, reg_src) asm_xtensa_mov_local_reg((as), (local_num), (reg_src))
#define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_xtensa_mov_reg_i32((as), (reg_dest), (imm)) #define ASM_MOV_REG_IMM(as, reg_dest, imm) asm_xtensa_mov_reg_i32((as), (reg_dest), (imm))
#define ASM_MOV_REG_ALIGNED_IMM(as, reg_dest, imm) asm_xtensa_mov_reg_i32((as), (reg_dest), (imm))
#define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_xtensa_mov_reg_local((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL(as, reg_dest, local_num) asm_xtensa_mov_reg_local((as), (reg_dest), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_mov_n((as), (reg_dest), (reg_src)) #define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_mov_n((as), (reg_dest), (reg_src))
#define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_xtensa_mov_reg_local_addr((as), (reg_dest), (local_num)) #define ASM_MOV_REG_LOCAL_ADDR(as, reg_dest, local_num) asm_xtensa_mov_reg_local_addr((as), (reg_dest), (local_num))
#define ASM_MOV_REG_PCREL(as, reg_dest, label) asm_xtensa_mov_reg_pcrel((as), (reg_dest), (label))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) \ #define ASM_LSL_REG_REG(as, reg_dest, reg_shift) \
do { \ do { \
@ -300,7 +308,7 @@ void asm_xtensa_mov_reg_local_addr(asm_xtensa_t *as, uint reg_dest, int local_nu
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_or((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_or((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_xor((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_xor((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_and((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_and((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_add((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_add_n((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_sub((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_sub((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_mull((as), (reg_dest), (reg_dest), (reg_src)) #define ASM_MUL_REG_REG(as, reg_dest, reg_src) asm_xtensa_op_mull((as), (reg_dest), (reg_dest), (reg_src))

16
py/bc.c
View File

@ -302,7 +302,7 @@ void mp_setup_code_state(mp_code_state_t *code_state, size_t n_args, size_t n_kw
// MP_BC_MAKE_CLOSURE_DEFARGS // MP_BC_MAKE_CLOSURE_DEFARGS
// MP_BC_RAISE_VARARGS // MP_BC_RAISE_VARARGS
// There are 4 special opcodes that have an extra byte only when // There are 4 special opcodes that have an extra byte only when
// MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE is enabled: // MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE is enabled (and they take a qstr):
// MP_BC_LOAD_NAME // MP_BC_LOAD_NAME
// MP_BC_LOAD_GLOBAL // MP_BC_LOAD_GLOBAL
// MP_BC_LOAD_ATTR // MP_BC_LOAD_ATTR
@ -396,18 +396,20 @@ uint mp_opcode_format(const byte *ip, size_t *opcode_size) {
uint f = (opcode_format_table[*ip >> 2] >> (2 * (*ip & 3))) & 3; uint f = (opcode_format_table[*ip >> 2] >> (2 * (*ip & 3))) & 3;
const byte *ip_start = ip; const byte *ip_start = ip;
if (f == MP_OPCODE_QSTR) { if (f == MP_OPCODE_QSTR) {
if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
if (*ip == MP_BC_LOAD_NAME
|| *ip == MP_BC_LOAD_GLOBAL
|| *ip == MP_BC_LOAD_ATTR
|| *ip == MP_BC_STORE_ATTR) {
ip += 1;
}
}
ip += 3; ip += 3;
} else { } else {
int extra_byte = ( int extra_byte = (
*ip == MP_BC_RAISE_VARARGS *ip == MP_BC_RAISE_VARARGS
|| *ip == MP_BC_MAKE_CLOSURE || *ip == MP_BC_MAKE_CLOSURE
|| *ip == MP_BC_MAKE_CLOSURE_DEFARGS || *ip == MP_BC_MAKE_CLOSURE_DEFARGS
#if MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE
|| *ip == MP_BC_LOAD_NAME
|| *ip == MP_BC_LOAD_GLOBAL
|| *ip == MP_BC_LOAD_ATTR
|| *ip == MP_BC_STORE_ATTR
#endif
); );
ip += 1; ip += 1;
if (f == MP_OPCODE_VAR_UINT) { if (f == MP_OPCODE_VAR_UINT) {

View File

@ -106,6 +106,7 @@ extern const mp_obj_module_t mp_module_ujson;
extern const mp_obj_module_t mp_module_ure; extern const mp_obj_module_t mp_module_ure;
extern const mp_obj_module_t mp_module_uheapq; extern const mp_obj_module_t mp_module_uheapq;
extern const mp_obj_module_t mp_module_uhashlib; extern const mp_obj_module_t mp_module_uhashlib;
extern const mp_obj_module_t mp_module_ucryptolib;
extern const mp_obj_module_t mp_module_ubinascii; extern const mp_obj_module_t mp_module_ubinascii;
extern const mp_obj_module_t mp_module_urandom; extern const mp_obj_module_t mp_module_urandom;
extern const mp_obj_module_t mp_module_uselect; extern const mp_obj_module_t mp_module_uselect;

View File

@ -167,13 +167,13 @@ STATIC void mp_help_print_obj(const mp_obj_t obj) {
mp_map_t *map = NULL; mp_map_t *map = NULL;
if (type == &mp_type_module) { if (type == &mp_type_module) {
map = mp_obj_dict_get_map(mp_obj_module_get_globals(obj)); map = &mp_obj_module_get_globals(obj)->map;
} else { } else {
if (type == &mp_type_type) { if (type == &mp_type_type) {
type = MP_OBJ_TO_PTR(obj); type = MP_OBJ_TO_PTR(obj);
} }
if (type->locals_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)) { if (type->locals_dict != NULL) {
map = mp_obj_dict_get_map(type->locals_dict); map = &type->locals_dict->map;
} }
} }
if (map != NULL) { if (map != NULL) {

View File

@ -172,7 +172,18 @@ STATIC uint comp_next_label(compiler_t *comp) {
return comp->next_label++; return comp->next_label++;
} }
STATIC void compile_increase_except_level(compiler_t *comp) { #if MICROPY_EMIT_NATIVE
STATIC void reserve_labels_for_native(compiler_t *comp, int n) {
if (comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
comp->next_label += n;
}
}
#else
#define reserve_labels_for_native(comp, n)
#endif
STATIC void compile_increase_except_level(compiler_t *comp, uint label, int kind) {
EMIT_ARG(setup_block, label, kind);
comp->cur_except_level += 1; comp->cur_except_level += 1;
if (comp->cur_except_level > comp->scope_cur->exc_stack_size) { if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
comp->scope_cur->exc_stack_size = comp->cur_except_level; comp->scope_cur->exc_stack_size = comp->cur_except_level;
@ -182,6 +193,8 @@ STATIC void compile_increase_except_level(compiler_t *comp) {
STATIC void compile_decrease_except_level(compiler_t *comp) { STATIC void compile_decrease_except_level(compiler_t *comp) {
assert(comp->cur_except_level > 0); assert(comp->cur_except_level > 0);
comp->cur_except_level -= 1; comp->cur_except_level -= 1;
EMIT(end_finally);
reserve_labels_for_native(comp, 1);
} }
STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) { STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
@ -556,6 +569,11 @@ STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int
} }
this_scope->num_def_pos_args = n_pos_defaults; this_scope->num_def_pos_args = n_pos_defaults;
#if MICROPY_EMIT_NATIVE
// When creating a function/closure it will take a reference to the current globals
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS | MP_SCOPE_FLAG_HASCONSTS;
#endif
// make closed over variables, if any // make closed over variables, if any
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython) // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
int nfree = 0; int nfree = 0;
@ -1173,23 +1191,24 @@ STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
} }
} }
STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst, bool added, id_info_t *id_info) { STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) { if (id_info->kind != ID_INFO_KIND_UNDECIDED && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
compile_syntax_error(comp, pn, translate("identifier redefined as global")); compile_syntax_error(comp, pn, translate("identifier redefined as global"));
return; return;
} }
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
// if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
id_info = scope_find_global(comp->scope_cur, qst); id_info = scope_find_global(comp->scope_cur, id_info->qst);
if (id_info != NULL) { if (id_info != NULL) {
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
} }
} }
STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst, bool added, id_info_t *id_info) { STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, id_info_t *id_info) {
if (added) { if (id_info->kind == ID_INFO_KIND_UNDECIDED) {
scope_find_local_and_close_over(comp->scope_cur, id_info, qst); id_info->kind = ID_INFO_KIND_GLOBAL_IMPLICIT;
scope_check_to_close_over(comp->scope_cur, id_info);
if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
compile_syntax_error(comp, pn, translate("no binding for nonlocal found")); compile_syntax_error(comp, pn, translate("no binding for nonlocal found"));
} }
@ -1211,12 +1230,11 @@ STATIC void compile_global_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes); int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]); qstr qst = MP_PARSE_NODE_LEAF_ARG(nodes[i]);
bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, ID_INFO_KIND_UNDECIDED);
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
if (is_global) { if (is_global) {
compile_declare_global(comp, (mp_parse_node_t)pns, qst, added, id_info); compile_declare_global(comp, (mp_parse_node_t)pns, id_info);
} else { } else {
compile_declare_nonlocal(comp, (mp_parse_node_t)pns, qst, added, id_info); compile_declare_nonlocal(comp, (mp_parse_node_t)pns, id_info);
} }
} }
} }
@ -1524,8 +1542,7 @@ STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_
uint l1 = comp_next_label(comp); uint l1 = comp_next_label(comp);
uint success_label = comp_next_label(comp); uint success_label = comp_next_label(comp);
EMIT_ARG(setup_block, l1, MP_EMIT_SETUP_BLOCK_EXCEPT); compile_increase_except_level(comp, l1, MP_EMIT_SETUP_BLOCK_EXCEPT);
compile_increase_except_level(comp);
compile_node(comp, pn_body); // body compile_node(comp, pn_body); // body
EMIT(pop_block); EMIT(pop_block);
@ -1579,8 +1596,7 @@ STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_
uint l3 = 0; uint l3 = 0;
if (qstr_exception_local != 0) { if (qstr_exception_local != 0) {
l3 = comp_next_label(comp); l3 = comp_next_label(comp);
EMIT_ARG(setup_block, l3, MP_EMIT_SETUP_BLOCK_FINALLY); compile_increase_except_level(comp, l3, MP_EMIT_SETUP_BLOCK_FINALLY);
compile_increase_except_level(comp);
} }
compile_node(comp, pns_except->nodes[1]); compile_node(comp, pns_except->nodes[1]);
if (qstr_exception_local != 0) { if (qstr_exception_local != 0) {
@ -1595,7 +1611,6 @@ STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_
compile_delete_id(comp, qstr_exception_local); compile_delete_id(comp, qstr_exception_local);
compile_decrease_except_level(comp); compile_decrease_except_level(comp);
EMIT(end_finally);
} }
EMIT_ARG(jump, l2); EMIT_ARG(jump, l2);
EMIT_ARG(label_assign, end_finally_label); EMIT_ARG(label_assign, end_finally_label);
@ -1603,7 +1618,6 @@ STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_
} }
compile_decrease_except_level(comp); compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler); EMIT(end_except_handler);
EMIT_ARG(label_assign, success_label); EMIT_ARG(label_assign, success_label);
@ -1614,8 +1628,7 @@ STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_
STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) { STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
uint l_finally_block = comp_next_label(comp); uint l_finally_block = comp_next_label(comp);
EMIT_ARG(setup_block, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY); compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
compile_increase_except_level(comp);
if (n_except == 0) { if (n_except == 0) {
assert(MP_PARSE_NODE_IS_NULL(pn_else)); assert(MP_PARSE_NODE_IS_NULL(pn_else));
@ -1631,7 +1644,6 @@ STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n
compile_node(comp, pn_finally); compile_node(comp, pn_finally);
compile_decrease_except_level(comp); compile_decrease_except_level(comp);
EMIT(end_finally);
} }
STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) { STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
@ -1667,30 +1679,24 @@ STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *n
compile_node(comp, body); compile_node(comp, body);
} else { } else {
uint l_end = comp_next_label(comp); uint l_end = comp_next_label(comp);
if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
// we need to allocate an extra label for the native emitter
// it will use l_end+1 as an auxiliary label
comp_next_label(comp);
}
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
// this pre-bit is of the form "a as b" // this pre-bit is of the form "a as b"
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0]; mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
compile_node(comp, pns->nodes[0]); compile_node(comp, pns->nodes[0]);
EMIT_ARG(setup_block, l_end, MP_EMIT_SETUP_BLOCK_WITH); compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
c_assign(comp, pns->nodes[1], ASSIGN_STORE); c_assign(comp, pns->nodes[1], ASSIGN_STORE);
} else { } else {
// this pre-bit is just an expression // this pre-bit is just an expression
compile_node(comp, nodes[0]); compile_node(comp, nodes[0]);
EMIT_ARG(setup_block, l_end, MP_EMIT_SETUP_BLOCK_WITH); compile_increase_except_level(comp, l_end, MP_EMIT_SETUP_BLOCK_WITH);
EMIT(pop_top); EMIT(pop_top);
} }
compile_increase_except_level(comp);
// compile additional pre-bits and the body // compile additional pre-bits and the body
compile_with_stmt_helper(comp, n - 1, nodes + 1, body); compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
// finish this with block // finish this with block
EMIT_ARG(with_cleanup, l_end); EMIT_ARG(with_cleanup, l_end);
reserve_labels_for_native(comp, 3); // used by native's with_cleanup
compile_decrease_except_level(comp); compile_decrease_except_level(comp);
EMIT(end_finally);
} }
} }
@ -1708,6 +1714,7 @@ STATIC void compile_yield_from(compiler_t *comp) {
EMIT_ARG(get_iter, false); EMIT_ARG(get_iter, false);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(yield, MP_EMIT_YIELD_FROM); EMIT_ARG(yield, MP_EMIT_YIELD_FROM);
reserve_labels_for_native(comp, 3);
} }
#if MICROPY_PY_ASYNC_AWAIT #if MICROPY_PY_ASYNC_AWAIT
@ -1749,8 +1756,7 @@ STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns
EMIT_ARG(label_assign, continue_label); EMIT_ARG(label_assign, continue_label);
EMIT_ARG(setup_block, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT); compile_increase_except_level(comp, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT);
compile_increase_except_level(comp);
compile_load_id(comp, context); compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___anext__); compile_await_object_method(comp, MP_QSTR___anext__);
@ -1771,7 +1777,6 @@ STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns
EMIT_ARG(label_assign, try_finally_label); EMIT_ARG(label_assign, try_finally_label);
EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
compile_decrease_except_level(comp); compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler); EMIT(end_except_handler);
EMIT_ARG(label_assign, try_else_label); EMIT_ARG(label_assign, try_else_label);
@ -1792,46 +1797,70 @@ STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_nod
// no more pre-bits, compile the body of the with // no more pre-bits, compile the body of the with
compile_node(comp, body); compile_node(comp, body);
} else { } else {
uint try_exception_label = comp_next_label(comp); uint l_finally_block = comp_next_label(comp);
uint no_reraise_label = comp_next_label(comp); uint l_aexit_no_exc = comp_next_label(comp);
uint try_else_label = comp_next_label(comp); uint l_ret_unwind_jump = comp_next_label(comp);
uint end_label = comp_next_label(comp); uint l_end = comp_next_label(comp);
qstr context;
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) { if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
// this pre-bit is of the form "a as b" // this pre-bit is of the form "a as b"
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0]; mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)nodes[0];
compile_node(comp, pns->nodes[0]); compile_node(comp, pns->nodes[0]);
context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); EMIT(dup_top);
compile_store_id(comp, context);
compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___aenter__); compile_await_object_method(comp, MP_QSTR___aenter__);
c_assign(comp, pns->nodes[1], ASSIGN_STORE); c_assign(comp, pns->nodes[1], ASSIGN_STORE);
} else { } else {
// this pre-bit is just an expression // this pre-bit is just an expression
compile_node(comp, nodes[0]); compile_node(comp, nodes[0]);
context = MP_PARSE_NODE_LEAF_ARG(nodes[0]); EMIT(dup_top);
compile_store_id(comp, context);
compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___aenter__); compile_await_object_method(comp, MP_QSTR___aenter__);
EMIT(pop_top); EMIT(pop_top);
} }
compile_load_id(comp, context); // To keep the Python stack size down, and because we can't access values on
EMIT_ARG(load_method, MP_QSTR___aexit__, false); // this stack further down than 3 elements (via rot_three), we don't preload
// __aexit__ (as per normal with) but rather wait until we need it below.
EMIT_ARG(setup_block, try_exception_label, MP_EMIT_SETUP_BLOCK_EXCEPT); // Start the try-finally statement
compile_increase_except_level(comp); compile_increase_except_level(comp, l_finally_block, MP_EMIT_SETUP_BLOCK_FINALLY);
// compile additional pre-bits and the body
// Compile any additional pre-bits of the "async with", and also the body
EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body); compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
// finish this with block EMIT_ARG(adjust_stack_size, -3);
// Finish the "try" block
EMIT(pop_block); EMIT(pop_block);
EMIT_ARG(jump, try_else_label); // jump over exception handler
EMIT_ARG(label_assign, try_exception_label); // start of exception handler // At this point, after the with body has executed, we have 3 cases:
EMIT(start_except_handler); // 1. no exception, we just fall through to this point; stack: (..., ctx_mgr)
// 2. exception propagating out, we get to the finally block; stack: (..., ctx_mgr, exc)
// 3. return or unwind jump, we get to the finally block; stack: (..., ctx_mgr, X, INT)
// at this point the stack contains: ..., __aexit__, self, exc // Handle case 1: call __aexit__
// Stack: (..., ctx_mgr)
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // to tell end_finally there's no exception
EMIT(rot_two);
EMIT_ARG(jump, l_aexit_no_exc); // jump to code below to call __aexit__
// Start of "finally" block
// At this point we have case 2 or 3, we detect which one by the TOS being an exception or not
EMIT_ARG(label_assign, l_finally_block);
// Detect if TOS an exception or not
EMIT(dup_top);
EMIT_LOAD_GLOBAL(MP_QSTR_Exception);
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
EMIT_ARG(pop_jump_if, false, l_ret_unwind_jump); // if not an exception then we have case 3
// Handle case 2: call __aexit__ and either swallow or re-raise the exception
// Stack: (..., ctx_mgr, exc)
EMIT(dup_top);
EMIT(rot_three);
EMIT(rot_two);
EMIT_ARG(load_method, MP_QSTR___aexit__, false);
EMIT(rot_three);
EMIT(rot_three);
EMIT(dup_top); EMIT(dup_top);
#if MICROPY_CPYTHON_COMPAT #if MICROPY_CPYTHON_COMPAT
EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc) EMIT_ARG(attr, MP_QSTR___class__, MP_EMIT_ATTR_LOAD); // get type(exc)
@ -1842,32 +1871,37 @@ STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_nod
#endif #endif
EMIT(rot_two); EMIT(rot_two);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
// at this point the stack contains: ..., __aexit__, self, type(exc), exc, None // Stack: (..., exc, __aexit__, ctx_mgr, type(exc), exc, None)
EMIT_ARG(call_method, 3, 0, 0); EMIT_ARG(call_method, 3, 0, 0);
compile_yield_from(comp); compile_yield_from(comp);
EMIT_ARG(pop_jump_if, true, no_reraise_label); EMIT_ARG(pop_jump_if, false, l_end);
EMIT_ARG(raise_varargs, 0); EMIT(pop_top); // pop exception
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // replace with None to swallow exception
EMIT_ARG(jump, l_end);
EMIT_ARG(adjust_stack_size, 2);
EMIT_ARG(label_assign, no_reraise_label); // Handle case 3: call __aexit__
EMIT(pop_except); // Stack: (..., ctx_mgr, X, INT)
EMIT_ARG(jump, end_label); EMIT_ARG(label_assign, l_ret_unwind_jump);
EMIT(rot_three);
EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc EMIT(rot_three);
compile_decrease_except_level(comp); EMIT_ARG(label_assign, l_aexit_no_exc);
EMIT(end_finally); EMIT_ARG(load_method, MP_QSTR___aexit__, false);
EMIT(end_except_handler);
EMIT_ARG(label_assign, try_else_label); // start of try-else handler
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(dup_top); EMIT(dup_top);
EMIT(dup_top); EMIT(dup_top);
EMIT_ARG(call_method, 3, 0, 0); EMIT_ARG(call_method, 3, 0, 0);
compile_yield_from(comp); compile_yield_from(comp);
EMIT(pop_top); EMIT(pop_top);
EMIT_ARG(adjust_stack_size, -1);
EMIT_ARG(label_assign, end_label); // End of "finally" block
// Stack can have one of three configurations:
// a. (..., None) - from either case 1, or case 2 with swallowed exception
// b. (..., exc) - from case 2 with re-raised exception
// c. (..., X, INT) - from case 3
EMIT_ARG(label_assign, l_end);
compile_decrease_except_level(comp);
} }
} }
@ -2688,6 +2722,7 @@ STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) { if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
reserve_labels_for_native(comp, 1);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) { } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
pns = (mp_parse_node_struct_t *)pns->nodes[0]; pns = (mp_parse_node_struct_t *)pns->nodes[0];
#if MICROPY_PY_ASYNC_AWAIT #if MICROPY_PY_ASYNC_AWAIT
@ -2701,6 +2736,7 @@ STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
} else { } else {
compile_node(comp, pns->nodes[0]); compile_node(comp, pns->nodes[0]);
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
reserve_labels_for_native(comp, 1);
} }
} }
@ -2733,6 +2769,9 @@ STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
} }
STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) { STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
#if MICROPY_EMIT_NATIVE
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS;
#endif
EMIT_ARG(load_const_obj, get_const_object(pns)); EMIT_ARG(load_const_obj, get_const_object(pns));
} }
@ -2755,7 +2794,7 @@ STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
#if MICROPY_DYNAMIC_COMPILER #if MICROPY_DYNAMIC_COMPILER
mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1)); mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1));
if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) { if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
// integer fits in target runtime's small-int // integer fits in target runtime's small-int
EMIT_ARG(load_const_small_int, arg); EMIT_ARG(load_const_small_int, arg);
@ -2767,6 +2806,9 @@ STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
} else { } else {
EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg)); EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
} }
#if MICROPY_EMIT_NATIVE
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS;
#endif
} }
#else #else
EMIT_ARG(load_const_small_int, arg); EMIT_ARG(load_const_small_int, arg);
@ -2789,6 +2831,9 @@ STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
const byte *data = qstr_data(arg, &len); const byte *data = qstr_data(arg, &len);
EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len)); EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
} }
#if MICROPY_EMIT_NATIVE
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_HASCONSTS;
#endif
break; break;
case MP_PARSE_NODE_TOKEN: case MP_PARSE_NODE_TOKEN:
default: default:
@ -2810,6 +2855,25 @@ STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
} }
} }
#if MICROPY_EMIT_NATIVE
STATIC int compile_viper_type_annotation(compiler_t *comp, mp_parse_node_t pn_annotation) {
int native_type = MP_NATIVE_TYPE_OBJ;
if (MP_PARSE_NODE_IS_NULL(pn_annotation)) {
// No annotation, type defaults to object
} else if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr type_name = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
native_type = mp_native_type_from_qstr(type_name);
if (native_type < 0) {
comp->compile_error = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, translate("unknown type '%q'"), type_name);
native_type = 0;
}
} else {
compile_syntax_error(comp, pn_annotation, translate("annotation must be an identifier"));
}
return native_type;
}
#endif
STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) { STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
// check that **kw is last // check that **kw is last
if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
@ -2819,6 +2883,7 @@ STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn
qstr param_name = MP_QSTR_NULL; qstr param_name = MP_QSTR_NULL;
uint param_flag = ID_FLAG_IS_PARAM; uint param_flag = ID_FLAG_IS_PARAM;
mp_parse_node_struct_t *pns = NULL;
if (MP_PARSE_NODE_IS_ID(pn)) { if (MP_PARSE_NODE_IS_ID(pn)) {
param_name = MP_PARSE_NODE_LEAF_ARG(pn); param_name = MP_PARSE_NODE_LEAF_ARG(pn);
if (comp->have_star) { if (comp->have_star) {
@ -2830,8 +2895,9 @@ STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn
} }
} else { } else {
assert(MP_PARSE_NODE_IS_STRUCT(pn)); assert(MP_PARSE_NODE_IS_STRUCT(pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; pns = (mp_parse_node_struct_t *)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) { if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
// named parameter with possible annotation
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
if (comp->have_star) { if (comp->have_star) {
// comes after a star, so counts as a keyword-only parameter // comes after a star, so counts as a keyword-only parameter
@ -2852,10 +2918,12 @@ STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn
// bare star // bare star
// TODO see http://www.python.org/dev/peps/pep-3102/ // TODO see http://www.python.org/dev/peps/pep-3102/
// assert(comp->scope_cur->num_dict_params == 0); // assert(comp->scope_cur->num_dict_params == 0);
pns = NULL;
} else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) { } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
// named star // named star
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS; comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
pns = NULL;
} else { } else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
// named star with possible annotation // named star with possible annotation
@ -2864,6 +2932,7 @@ STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
} }
} else { } else {
// double star with possible annotation
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM; param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
@ -2872,14 +2941,21 @@ STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn
} }
if (param_name != MP_QSTR_NULL) { if (param_name != MP_QSTR_NULL) {
bool added; id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, ID_INFO_KIND_UNDECIDED);
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added); if (id_info->kind != ID_INFO_KIND_UNDECIDED) {
if (!added) {
compile_syntax_error(comp, pn, translate("name reused for argument")); compile_syntax_error(comp, pn, translate("name reused for argument"));
return; return;
} }
id_info->kind = ID_INFO_KIND_LOCAL; id_info->kind = ID_INFO_KIND_LOCAL;
id_info->flags = param_flag; id_info->flags = param_flag;
#if MICROPY_EMIT_NATIVE
if (comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER && pn_name == PN_typedargslist_name && pns != NULL) {
id_info->flags |= compile_viper_type_annotation(comp, pns->nodes[1]) << ID_FLAG_VIPER_TYPE_POS;
}
#else
(void)pns;
#endif
} }
} }
@ -2891,49 +2967,6 @@ STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star); compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
} }
#if MICROPY_EMIT_NATIVE
STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) {
if (!MP_PARSE_NODE_IS_STRUCT(pn)) {
// no annotation
return;
}
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) {
// named parameter with possible annotation
// fallthrough
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
// named star with possible annotation
pns = (mp_parse_node_struct_t *)pns->nodes[0];
// fallthrough
} else {
// no annotation
return;
}
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star);
// double star with possible annotation
// fallthrough
}
mp_parse_node_t pn_annotation = pns->nodes[1];
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
id_info_t *id_info = scope_find(comp->scope_cur, param_name);
assert(id_info != NULL);
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
} else {
compile_syntax_error(comp, pn_annotation, translate("parameter annotation must be an identifier"));
}
}
}
#endif // MICROPY_EMIT_NATIVE
STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) { STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
uint l_top = comp_next_label(comp); uint l_top = comp_next_label(comp);
uint l_end = comp_next_label(comp); uint l_end = comp_next_label(comp);
@ -2948,6 +2981,7 @@ tail_recursion:
compile_node(comp, pn_inner_expr); compile_node(comp, pn_inner_expr);
if (comp->scope_cur->kind == SCOPE_GEN_EXPR) { if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
EMIT_ARG(yield, MP_EMIT_YIELD_VALUE); EMIT_ARG(yield, MP_EMIT_YIELD_VALUE);
reserve_labels_for_native(comp, 1);
EMIT(pop_top); EMIT(pop_top);
} else { } else {
EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5); EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
@ -3022,6 +3056,7 @@ STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->scope_cur = scope; comp->scope_cur = scope;
comp->next_label = 0; comp->next_label = 0;
EMIT_ARG(start_pass, pass, scope); EMIT_ARG(start_pass, pass, scope);
reserve_labels_for_native(comp, 6); // used by native's start_pass
if (comp->pass == MP_PASS_SCOPE) { if (comp->pass == MP_PASS_SCOPE) {
// reset maximum stack sizes in scope // reset maximum stack sizes in scope
@ -3053,28 +3088,14 @@ STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
if (comp->pass == MP_PASS_SCOPE) { if (comp->pass == MP_PASS_SCOPE) {
comp->have_star = false; comp->have_star = false;
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param); apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
}
#if MICROPY_EMIT_NATIVE
else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
// compile annotations; only needed on latter compiler passes
// only needed for viper emitter
// argument annotations #if MICROPY_EMIT_NATIVE
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations); if (scope->emit_options == MP_EMIT_OPT_VIPER) {
// Compile return type; pns->nodes[2] is return/whole function annotation
// pns->nodes[2] is return/whole function annotation scope->scope_flags |= compile_viper_type_annotation(comp, pns->nodes[2]) << MP_SCOPE_FLAG_VIPERRET_POS;
mp_parse_node_t pn_annotation = pns->nodes[2];
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
// nodes[2] can be null or a test-expr
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
} else {
compile_syntax_error(comp, pn_annotation, translate("return annotation must be an identifier"));
}
} }
#endif // MICROPY_EMIT_NATIVE
} }
#endif // MICROPY_EMIT_NATIVE
compile_node(comp, pns->nodes[3]); // 3 is function body compile_node(comp, pns->nodes[3]); // 3 is function body
// emit return if it wasn't the last opcode // emit return if it wasn't the last opcode
@ -3117,10 +3138,7 @@ STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
// so we use the blank qstr. // so we use the blank qstr.
qstr qstr_arg = MP_QSTR_; qstr qstr_arg = MP_QSTR_;
if (comp->pass == MP_PASS_SCOPE) { if (comp->pass == MP_PASS_SCOPE) {
bool added; scope_find_or_add_id(comp->scope_cur, qstr_arg, ID_INFO_KIND_LOCAL);
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
scope->num_pos_args = 1; scope->num_pos_args = 1;
} }
@ -3160,10 +3178,7 @@ STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef); assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
if (comp->pass == MP_PASS_SCOPE) { if (comp->pass == MP_PASS_SCOPE) {
bool added; scope_find_or_add_id(scope, MP_QSTR___class__, ID_INFO_KIND_LOCAL);
id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
} }
compile_load_id(comp, MP_QSTR___name__); compile_load_id(comp, MP_QSTR___name__);
@ -3393,6 +3408,17 @@ STATIC void scope_compute_things(scope_t *scope) {
if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) { if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT; id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
} }
#if MICROPY_EMIT_NATIVE
if (id->kind == ID_INFO_KIND_GLOBAL_EXPLICIT) {
// This function makes a reference to a global variable
if (scope->emit_options == MP_EMIT_OPT_VIPER
&& mp_native_type_from_qstr(id->qst) >= MP_NATIVE_TYPE_INT) {
// A casting operator in viper mode, not a real global reference
} else {
scope->scope_flags |= MP_SCOPE_FLAG_REFGLOBALS;
}
}
#endif
// params always count for 1 local, even if they are a cell // params always count for 1 local, even if they are a cell
if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) { if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
id->local_num = scope->num_locals++; id->local_num = scope->num_locals++;
@ -3476,6 +3502,14 @@ mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_f
#endif #endif
} else { } else {
compile_scope(comp, s, MP_PASS_SCOPE); compile_scope(comp, s, MP_PASS_SCOPE);
// Check if any implicitly declared variables should be closed over
for (size_t i = 0; i < s->id_info_len; ++i) {
id_info_t *id = &s->id_info[i];
if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
scope_check_to_close_over(s, id);
}
}
} }
// update maximim number of labels needed // update maximim number of labels needed
@ -3530,11 +3564,10 @@ mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_f
case MP_EMIT_OPT_NATIVE_PYTHON: case MP_EMIT_OPT_NATIVE_PYTHON:
case MP_EMIT_OPT_VIPER: case MP_EMIT_OPT_VIPER:
if (emit_native == NULL) { if (emit_native == NULL) {
emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels); emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels);
} }
comp->emit_method_table = &NATIVE_EMITTER(method_table); comp->emit_method_table = &NATIVE_EMITTER(method_table);
comp->emit = emit_native; comp->emit = emit_native;
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
break; break;
#endif // MICROPY_EMIT_NATIVE #endif // MICROPY_EMIT_NATIVE

View File

@ -30,15 +30,6 @@
#include "py/parse.h" #include "py/parse.h"
#include "py/emitglue.h" #include "py/emitglue.h"
// These must fit in 8 bits; see scope.h
enum {
MP_EMIT_OPT_NONE,
MP_EMIT_OPT_BYTECODE,
MP_EMIT_OPT_NATIVE_PYTHON,
MP_EMIT_OPT_VIPER,
MP_EMIT_OPT_ASM,
};
// the compiler will raise an exception if an error occurred // the compiler will raise an exception if an error occurred
// the compiler will clear the parse tree before it returns // the compiler will clear the parse tree before it returns
mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl); mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl);

View File

@ -51,10 +51,6 @@ typedef enum {
#define MP_EMIT_BREAK_FROM_FOR (0x8000) #define MP_EMIT_BREAK_FROM_FOR (0x8000)
#define MP_EMIT_NATIVE_TYPE_ENABLE (0)
#define MP_EMIT_NATIVE_TYPE_RETURN (1)
#define MP_EMIT_NATIVE_TYPE_ARG (2)
// Kind for emit_id_ops->local() // Kind for emit_id_ops->local()
#define MP_EMIT_IDOP_LOCAL_FAST (0) #define MP_EMIT_IDOP_LOCAL_FAST (0)
#define MP_EMIT_IDOP_LOCAL_DEREF (1) #define MP_EMIT_IDOP_LOCAL_DEREF (1)
@ -102,7 +98,6 @@ typedef struct _mp_emit_method_table_id_ops_t {
} mp_emit_method_table_id_ops_t; } mp_emit_method_table_id_ops_t;
typedef struct _emit_method_table_t { typedef struct _emit_method_table_t {
void (*set_native_type)(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2);
void (*start_pass)(emit_t *emit, pass_kind_t pass, scope_t *scope); void (*start_pass)(emit_t *emit, pass_kind_t pass, scope_t *scope);
void (*end_pass)(emit_t *emit); void (*end_pass)(emit_t *emit);
bool (*last_emit_was_return_value)(emit_t *emit); bool (*last_emit_was_return_value)(emit_t *emit);
@ -162,7 +157,12 @@ typedef struct _emit_method_table_t {
void (*end_except_handler)(emit_t *emit); void (*end_except_handler)(emit_t *emit);
} emit_method_table_t; } emit_method_table_t;
void mp_emit_common_get_id_for_load(scope_t *scope, qstr qst); int mp_native_type_from_qstr(qstr qst);
static inline void mp_emit_common_get_id_for_load(scope_t *scope, qstr qst) {
scope_find_or_add_id(scope, qst, ID_INFO_KIND_GLOBAL_IMPLICIT);
}
void mp_emit_common_get_id_for_modification(scope_t *scope, qstr qst); void mp_emit_common_get_id_for_modification(scope_t *scope, qstr qst);
void mp_emit_common_id_op(emit_t *emit, const mp_emit_method_table_id_ops_t *emit_method_table, scope_t *scope, qstr qst); void mp_emit_common_id_op(emit_t *emit, const mp_emit_method_table_id_ops_t *emit_method_table, scope_t *scope, qstr qst);
@ -178,11 +178,11 @@ extern const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_store_id_ops;
extern const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops; extern const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops;
emit_t *emit_bc_new(void); emit_t *emit_bc_new(void);
emit_t *emit_native_x64_new(mp_obj_t *error_slot, mp_uint_t max_num_labels); emit_t *emit_native_x64_new(mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels);
emit_t *emit_native_x86_new(mp_obj_t *error_slot, mp_uint_t max_num_labels); emit_t *emit_native_x86_new(mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels);
emit_t *emit_native_thumb_new(mp_obj_t *error_slot, mp_uint_t max_num_labels); emit_t *emit_native_thumb_new(mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels);
emit_t *emit_native_arm_new(mp_obj_t *error_slot, mp_uint_t max_num_labels); emit_t *emit_native_arm_new(mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels);
emit_t *emit_native_xtensa_new(mp_obj_t *error_slot, mp_uint_t max_num_labels); emit_t *emit_native_xtensa_new(mp_obj_t *error_slot, uint *label_slot, mp_uint_t max_num_labels);
void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels); void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels);

View File

@ -331,6 +331,10 @@ void mp_emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
// the highest slot in the state (fastn[0], see vm.c). // the highest slot in the state (fastn[0], see vm.c).
n_state = 1; n_state = 1;
} }
#if MICROPY_DEBUG_VM_STACK_OVERFLOW
// An extra slot in the stack is needed to detect VM stack overflow
n_state += 1;
#endif
emit_write_code_info_uint(emit, n_state); emit_write_code_info_uint(emit, n_state);
emit_write_code_info_uint(emit, scope->exc_stack_size); emit_write_code_info_uint(emit, scope->exc_stack_size);
} }
@ -916,7 +920,6 @@ void mp_emit_bc_end_except_handler(emit_t *emit) {
#if MICROPY_EMIT_NATIVE #if MICROPY_EMIT_NATIVE
const emit_method_table_t emit_bc_method_table = { const emit_method_table_t emit_bc_method_table = {
NULL, // set_native_type is never called when emitting bytecode
mp_emit_bc_start_pass, mp_emit_bc_start_pass,
mp_emit_bc_end_pass, mp_emit_bc_end_pass,
mp_emit_bc_last_emit_was_return_value, mp_emit_bc_last_emit_was_return_value,

View File

@ -30,26 +30,10 @@
#if MICROPY_ENABLE_COMPILER #if MICROPY_ENABLE_COMPILER
void mp_emit_common_get_id_for_load(scope_t *scope, qstr qst) {
// name adding/lookup
bool added;
id_info_t *id = scope_find_or_add_id(scope, qst, &added);
if (added) {
scope_find_local_and_close_over(scope, id, qst);
}
}
void mp_emit_common_get_id_for_modification(scope_t *scope, qstr qst) { void mp_emit_common_get_id_for_modification(scope_t *scope, qstr qst) {
// name adding/lookup // name adding/lookup
bool added; id_info_t *id = scope_find_or_add_id(scope, qst, ID_INFO_KIND_GLOBAL_IMPLICIT);
id_info_t *id = scope_find_or_add_id(scope, qst, &added); if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
if (added) {
if (SCOPE_IS_FUNC_LIKE(scope->kind)) {
id->kind = ID_INFO_KIND_LOCAL;
} else {
id->kind = ID_INFO_KIND_GLOBAL_IMPLICIT;
}
} else if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
// rebind as a local variable // rebind as a local variable
id->kind = ID_INFO_KIND_LOCAL; id->kind = ID_INFO_KIND_LOCAL;
} }

View File

@ -76,6 +76,9 @@ void mp_emit_glue_assign_bytecode(mp_raw_code_t *rc, const byte *code,
#endif #endif
#ifdef DEBUG_PRINT #ifdef DEBUG_PRINT
#if !MICROPY_DEBUG_PRINTERS
const size_t len = 0;
#endif
DEBUG_printf("assign byte code: code=%p len=" UINT_FMT " flags=%x\n", code, len, (uint)scope_flags); DEBUG_printf("assign byte code: code=%p len=" UINT_FMT " flags=%x\n", code, len, (uint)scope_flags);
#endif #endif
#if MICROPY_DEBUG_PRINTERS #if MICROPY_DEBUG_PRINTERS
@ -131,10 +134,8 @@ mp_obj_t mp_make_function_from_raw_code(const mp_raw_code_t *rc, mp_obj_t def_ar
switch (rc->kind) { switch (rc->kind) {
#if MICROPY_EMIT_NATIVE #if MICROPY_EMIT_NATIVE
case MP_CODE_NATIVE_PY: case MP_CODE_NATIVE_PY:
fun = mp_obj_new_fun_native(def_args, def_kw_args, rc->data.u_native.fun_data, rc->data.u_native.const_table);
break;
case MP_CODE_NATIVE_VIPER: case MP_CODE_NATIVE_VIPER:
fun = mp_obj_new_fun_viper(rc->n_pos_args, rc->data.u_native.fun_data, rc->data.u_native.type_sig); fun = mp_obj_new_fun_native(def_args, def_kw_args, rc->data.u_native.fun_data, rc->data.u_native.const_table);
break; break;
#endif #endif
#if MICROPY_EMIT_INLINE_ASM #if MICROPY_EMIT_INLINE_ASM

View File

@ -30,6 +30,15 @@
// These variables and functions glue the code emitters to the runtime. // These variables and functions glue the code emitters to the runtime.
// These must fit in 8 bits; see scope.h
enum {
MP_EMIT_OPT_NONE,
MP_EMIT_OPT_BYTECODE,
MP_EMIT_OPT_NATIVE_PYTHON,
MP_EMIT_OPT_VIPER,
MP_EMIT_OPT_ASM,
};
typedef enum { typedef enum {
MP_CODE_UNUSED, MP_CODE_UNUSED,
MP_CODE_RESERVED, MP_CODE_RESERVED,

View File

@ -8,6 +8,11 @@
#define GENERIC_ASM_API (1) #define GENERIC_ASM_API (1)
#include "py/asmarm.h" #include "py/asmarm.h"
// Word indices of REG_LOCAL_x in nlr_buf_t
#define NLR_BUF_IDX_LOCAL_1 (3) // r4
#define NLR_BUF_IDX_LOCAL_2 (4) // r5
#define NLR_BUF_IDX_LOCAL_3 (5) // r6
#define N_ARM (1) #define N_ARM (1)
#define EXPORT_FUN(name) emit_native_arm_##name #define EXPORT_FUN(name) emit_native_arm_##name
#include "py/emitnative.c" #include "py/emitnative.c"

File diff suppressed because it is too large Load Diff

View File

@ -8,6 +8,11 @@
#define GENERIC_ASM_API (1) #define GENERIC_ASM_API (1)
#include "py/asmthumb.h" #include "py/asmthumb.h"
// Word indices of REG_LOCAL_x in nlr_buf_t
#define NLR_BUF_IDX_LOCAL_1 (3) // r4
#define NLR_BUF_IDX_LOCAL_2 (4) // r5
#define NLR_BUF_IDX_LOCAL_3 (5) // r6
#define N_THUMB (1) #define N_THUMB (1)
#define EXPORT_FUN(name) emit_native_thumb_##name #define EXPORT_FUN(name) emit_native_thumb_##name
#include "py/emitnative.c" #include "py/emitnative.c"

View File

@ -8,6 +8,11 @@
#define GENERIC_ASM_API (1) #define GENERIC_ASM_API (1)
#include "py/asmx64.h" #include "py/asmx64.h"
// Word indices of REG_LOCAL_x in nlr_buf_t
#define NLR_BUF_IDX_LOCAL_1 (5) // rbx
#define NLR_BUF_IDX_LOCAL_2 (6) // r12
#define NLR_BUF_IDX_LOCAL_3 (7) // r13
#define N_X64 (1) #define N_X64 (1)
#define EXPORT_FUN(name) emit_native_x64_##name #define EXPORT_FUN(name) emit_native_x64_##name
#include "py/emitnative.c" #include "py/emitnative.c"

View File

@ -9,10 +9,16 @@
#define GENERIC_ASM_API (1) #define GENERIC_ASM_API (1)
#include "py/asmx86.h" #include "py/asmx86.h"
// Word indices of REG_LOCAL_x in nlr_buf_t
#define NLR_BUF_IDX_LOCAL_1 (5) // ebx
#define NLR_BUF_IDX_LOCAL_2 (7) // esi
#define NLR_BUF_IDX_LOCAL_3 (6) // edi
// x86 needs a table to know how many args a given function has // x86 needs a table to know how many args a given function has
STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = { STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = {
[MP_F_CONVERT_OBJ_TO_NATIVE] = 2, [MP_F_CONVERT_OBJ_TO_NATIVE] = 2,
[MP_F_CONVERT_NATIVE_TO_OBJ] = 2, [MP_F_CONVERT_NATIVE_TO_OBJ] = 2,
[MP_F_NATIVE_SWAP_GLOBALS] = 1,
[MP_F_LOAD_NAME] = 1, [MP_F_LOAD_NAME] = 1,
[MP_F_LOAD_GLOBAL] = 1, [MP_F_LOAD_GLOBAL] = 1,
[MP_F_LOAD_BUILD_CLASS] = 0, [MP_F_LOAD_BUILD_CLASS] = 0,
@ -56,9 +62,11 @@ STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = {
[MP_F_DELETE_GLOBAL] = 1, [MP_F_DELETE_GLOBAL] = 1,
[MP_F_NEW_CELL] = 1, [MP_F_NEW_CELL] = 1,
[MP_F_MAKE_CLOSURE_FROM_RAW_CODE] = 3, [MP_F_MAKE_CLOSURE_FROM_RAW_CODE] = 3,
[MP_F_SETUP_CODE_STATE] = 5, [MP_F_ARG_CHECK_NUM_SIG] = 3,
[MP_F_SETUP_CODE_STATE] = 4,
[MP_F_SMALL_INT_FLOOR_DIVIDE] = 2, [MP_F_SMALL_INT_FLOOR_DIVIDE] = 2,
[MP_F_SMALL_INT_MODULO] = 2, [MP_F_SMALL_INT_MODULO] = 2,
[MP_F_NATIVE_YIELD_FROM] = 3,
}; };
#define N_X86 (1) #define N_X86 (1)

View File

@ -8,6 +8,11 @@
#define GENERIC_ASM_API (1) #define GENERIC_ASM_API (1)
#include "py/asmxtensa.h" #include "py/asmxtensa.h"
// Word indices of REG_LOCAL_x in nlr_buf_t
#define NLR_BUF_IDX_LOCAL_1 (8) // a12
#define NLR_BUF_IDX_LOCAL_2 (9) // a13
#define NLR_BUF_IDX_LOCAL_3 (10) // a14
#define N_XTENSA (1) #define N_XTENSA (1)
#define EXPORT_FUN(name) emit_native_xtensa_##name #define EXPORT_FUN(name) emit_native_xtensa_##name
#include "py/emitnative.c" #include "py/emitnative.c"

Some files were not shown because too many files have changed in this diff Show More