Merge pull request #3046 from jepler/same51

Add basic SAM E54  support and SAM E54 Xplained board
This commit is contained in:
Jeff Epler 2020-06-25 06:55:27 -05:00 committed by GitHub
commit 076a96ccc6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
48 changed files with 13461 additions and 154 deletions

View File

@ -238,6 +238,7 @@ jobs:
- "pyruler" - "pyruler"
- "robohatmm1_m4" - "robohatmm1_m4"
- "sam32" - "sam32"
- "same54_xplained"
- "seeeduino_xiao" - "seeeduino_xiao"
- "serpente" - "serpente"
- "shirtty" - "shirtty"

View File

@ -86,17 +86,27 @@ INC += -I. \
# NDEBUG disables assert() statements. This reduces code size pretty dramatically, per tannewt. # NDEBUG disables assert() statements. This reduces code size pretty dramatically, per tannewt.
ifeq ($(CHIP_FAMILY), samd21) ifeq ($(CHIP_FAMILY), samd21)
PERIPHERALS_CHIP_FAMILY=samd21
CFLAGS += -Os -DNDEBUG CFLAGS += -Os -DNDEBUG
# TinyUSB defines # TinyUSB defines
CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_SAMD21 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_CDC_RX_BUFSIZE=128 -DCFG_TUD_MIDI_TX_BUFSIZE=128 -DCFG_TUD_CDC_TX_BUFSIZE=128 -DCFG_TUD_MSC_BUFSIZE=512 CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_SAMD21 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_CDC_RX_BUFSIZE=128 -DCFG_TUD_MIDI_TX_BUFSIZE=128 -DCFG_TUD_CDC_TX_BUFSIZE=128 -DCFG_TUD_MSC_BUFSIZE=512
endif endif
ifeq ($(CHIP_FAMILY), samd51) ifeq ($(CHIP_FAMILY), samd51)
PERIPHERALS_CHIP_FAMILY=sam_d5x_e5x
CFLAGS += -Os -DNDEBUG CFLAGS += -Os -DNDEBUG
# TinyUSB defines # TinyUSB defines
CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_SAMD51 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_CDC_RX_BUFSIZE=256 -DCFG_TUD_MIDI_TX_BUFSIZE=128 -DCFG_TUD_CDC_TX_BUFSIZE=256 -DCFG_TUD_MSC_BUFSIZE=1024 CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_SAMD51 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_CDC_RX_BUFSIZE=256 -DCFG_TUD_MIDI_TX_BUFSIZE=128 -DCFG_TUD_CDC_TX_BUFSIZE=256 -DCFG_TUD_MSC_BUFSIZE=1024
endif endif
ifeq ($(CHIP_FAMILY), same54)
PERIPHERALS_CHIP_FAMILY=sam_d5x_e5x
CFLAGS += -Os -DNDEBUG
# TinyUSB defines
CFLAGS += -DCFG_TUSB_MCU=OPT_MCU_SAMD51 -DCFG_TUD_MIDI_RX_BUFSIZE=128 -DCFG_TUD_CDC_RX_BUFSIZE=256 -DCFG_TUD_MIDI_TX_BUFSIZE=128 -DCFG_TUD_CDC_TX_BUFSIZE=256 -DCFG_TUD_MSC_BUFSIZE=1024
endif
$(echo PERIPHERALS_CHIP_FAMILY=$(PERIPHERALS_CHIP_FAMILY))
#Debugging/Optimization #Debugging/Optimization
ifeq ($(DEBUG), 1) ifeq ($(DEBUG), 1)
CFLAGS += -ggdb CFLAGS += -ggdb
@ -152,7 +162,16 @@ CFLAGS += \
-mcpu=cortex-m4 \ -mcpu=cortex-m4 \
-mfloat-abi=hard \ -mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \ -mfpu=fpv4-sp-d16 \
-DSAMD51 -DSAM_D5X_E5X -DSAMD51
endif
ifeq ($(CHIP_FAMILY), same54)
CFLAGS += \
-mthumb \
-mabi=aapcs-linux \
-mcpu=cortex-m4 \
-mfloat-abi=hard \
-mfpu=fpv4-sp-d16 \
-DSAM_D5X_E5X -DSAME54
endif endif
@ -171,6 +190,9 @@ BOOTLOADER_SIZE := 0x2000
else ifeq ($(CHIP_FAMILY), samd51) else ifeq ($(CHIP_FAMILY), samd51)
LDFLAGS += -mthumb -mcpu=cortex-m4 LDFLAGS += -mthumb -mcpu=cortex-m4
BOOTLOADER_SIZE := 0x4000 BOOTLOADER_SIZE := 0x4000
else ifeq ($(CHIP_FAMILY), same54)
LDFLAGS += -mthumb -mcpu=cortex-m4
BOOTLOADER_SIZE := 0x4000
endif endif
SRC_ASF := \ SRC_ASF := \
@ -213,6 +235,15 @@ SRC_ASF += \
hpl/oscctrl/hpl_oscctrl.c \ hpl/oscctrl/hpl_oscctrl.c \
hpl/trng/hpl_trng.c \ hpl/trng/hpl_trng.c \
else ifeq ($(CHIP_FAMILY), same54)
SRC_ASF += \
hal/src/hal_rand_sync.c \
hpl/core/hpl_core_m4.c \
hpl/mclk/hpl_mclk.c \
hpl/osc32kctrl/hpl_osc32kctrl.c \
hpl/oscctrl/hpl_oscctrl.c \
hpl/trng/hpl_trng.c \
endif endif
SRC_ASF := $(addprefix asf4/$(CHIP_FAMILY)/, $(SRC_ASF)) SRC_ASF := $(addprefix asf4/$(CHIP_FAMILY)/, $(SRC_ASF))
@ -240,15 +271,15 @@ SRC_C = \
lib/utils/stdout_helpers.c \ lib/utils/stdout_helpers.c \
lib/utils/sys_stdio_mphal.c \ lib/utils/sys_stdio_mphal.c \
mphalport.c \ mphalport.c \
peripherals/samd/$(CHIP_FAMILY)/adc.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/adc.c \
peripherals/samd/$(CHIP_FAMILY)/cache.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/cache.c \
peripherals/samd/$(CHIP_FAMILY)/clocks.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/clocks.c \
peripherals/samd/$(CHIP_FAMILY)/dma.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/dma.c \
peripherals/samd/$(CHIP_FAMILY)/events.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/events.c \
peripherals/samd/$(CHIP_FAMILY)/external_interrupts.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/external_interrupts.c \
peripherals/samd/$(CHIP_FAMILY)/pins.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/pins.c \
peripherals/samd/$(CHIP_FAMILY)/sercom.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/sercom.c \
peripherals/samd/$(CHIP_FAMILY)/timers.c \ peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/timers.c \
peripherals/samd/clocks.c \ peripherals/samd/clocks.c \
peripherals/samd/dma.c \ peripherals/samd/dma.c \
peripherals/samd/events.c \ peripherals/samd/events.c \
@ -288,7 +319,7 @@ endif
# The smallest SAMD51 packages don't have I2S. Everything else does. # The smallest SAMD51 packages don't have I2S. Everything else does.
ifeq ($(CIRCUITPY_AUDIOBUSIO),1) ifeq ($(CIRCUITPY_AUDIOBUSIO),1)
SRC_C += peripherals/samd/i2s.c peripherals/samd/$(CHIP_FAMILY)/i2s.c SRC_C += peripherals/samd/i2s.c peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/i2s.c
endif endif
SRC_COMMON_HAL_EXPANDED = $(addprefix shared-bindings/, $(SRC_COMMON_HAL)) \ SRC_COMMON_HAL_EXPANDED = $(addprefix shared-bindings/, $(SRC_COMMON_HAL)) \
@ -317,7 +348,7 @@ OBJ += $(addprefix $(BUILD)/, $(SRC_MOD:.c=.o))
SRC_QSTR += $(SRC_C) $(SRC_SUPERVISOR) $(SRC_COMMON_HAL_EXPANDED) $(SRC_SHARED_MODULE_EXPANDED) SRC_QSTR += $(SRC_C) $(SRC_SUPERVISOR) $(SRC_COMMON_HAL_EXPANDED) $(SRC_SHARED_MODULE_EXPANDED)
# Sources that only hold QSTRs after pre-processing. # Sources that only hold QSTRs after pre-processing.
SRC_QSTR_PREPROCESSOR += peripherals/samd/$(CHIP_FAMILY)/clocks.c SRC_QSTR_PREPROCESSOR += peripherals/samd/$(PERIPHERALS_CHIP_FAMILY)/clocks.c
all: $(BUILD)/firmware.bin $(BUILD)/firmware.uf2 all: $(BUILD)/firmware.bin $(BUILD)/firmware.uf2

@ -1 +1 @@
Subproject commit 039b5f3bbc3f4ba4421e581db290560d59fef625 Subproject commit c0eef7b75124fc946af5f75e12d82d6d01315ab1

View File

@ -0,0 +1,303 @@
/* Auto-generated config file hpl_adc_config.h */
#ifndef HPL_ADC_CONFIG_H
#define HPL_ADC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#ifndef CONF_ADC_0_ENABLE
#define CONF_ADC_0_ENABLE 1
#endif
// <h> Basic Configuration
// <o> Conversion Result Resolution
// <0x0=>12-bit
// <0x1=>16-bit (averaging must be enabled)
// <0x2=>10-bit
// <0x3=>8-bit
// <i> Defines the bit resolution for the ADC sample values (RESSEL)
// <id> adc_resolution
#ifndef CONF_ADC_0_RESSEL
#define CONF_ADC_0_RESSEL 0x0
#endif
// <o> Reference Selection
// <0x0=>Internal bandgap reference
// <0x2=>1/2 VDDANA (only for VDDANA > 2.0V)
// <0x3=>VDDANA
// <0x4=>External reference A
// <0x5=>External reference B
// <0x6=>External reference C
// <i> Select the reference for the ADC (REFSEL)
// <id> adc_reference
#ifndef CONF_ADC_0_REFSEL
#define CONF_ADC_0_REFSEL 0x0
#endif
// <o> Prescaler configuration
// <0x0=>Peripheral clock divided by 2
// <0x1=>Peripheral clock divided by 4
// <0x2=>Peripheral clock divided by 8
// <0x3=>Peripheral clock divided by 16
// <0x4=>Peripheral clock divided by 32
// <0x5=>Peripheral clock divided by 64
// <0x6=>Peripheral clock divided by 128
// <0x7=>Peripheral clock divided by 256
// <i> These bits define the ADC clock relative to the peripheral clock (PRESCALER)
// <id> adc_prescaler
#ifndef CONF_ADC_0_PRESCALER
#define CONF_ADC_0_PRESCALER 0x3
#endif
// <q> Free Running Mode
// <i> When enabled, the ADC is in free running mode and a new conversion will be initiated when a previous conversion completes. (FREERUN)
// <id> adc_freerunning_mode
#ifndef CONF_ADC_0_FREERUN
#define CONF_ADC_0_FREERUN 0
#endif
// <q> Differential Mode
// <i> In differential mode, the voltage difference between the MUXPOS and MUXNEG inputs will be converted by the ADC. (DIFFMODE)
// <id> adc_differential_mode
#ifndef CONF_ADC_0_DIFFMODE
#define CONF_ADC_0_DIFFMODE 0
#endif
// <o> Positive Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x08=>ADC AIN8 pin
// <0x09=>ADC AIN9 pin
// <0x0A=>ADC AIN10 pin
// <0x0B=>ADC AIN11 pin
// <0x0C=>ADC AIN12 pin
// <0x0D=>ADC AIN13 pin
// <0x0E=>ADC AIN14 pin
// <0x0F=>ADC AIN15 pin
// <0x18=>1/4 scaled core supply
// <0x19=>1/4 Scaled VBAT Supply
// <0x1A=>1/4 scaled I/O supply
// <0x1B=>Bandgap voltage
// <0x1C=>Temperature reference (PTAT)
// <0x1D=>Temperature reference (CTAT)
// <0x1E=>DAC Output
// <i> These bits define the Mux selection for the positive ADC input. (MUXPOS)
// <id> adc_pinmux_positive
#ifndef CONF_ADC_0_MUXPOS
#define CONF_ADC_0_MUXPOS 0x0
#endif
// <o> Negative Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x18=>Internal ground
// <0x19=>I/O ground
// <i> These bits define the Mux selection for the negative ADC input. (MUXNEG)
// <id> adc_pinmux_negative
#ifndef CONF_ADC_0_MUXNEG
#define CONF_ADC_0_MUXNEG 0x0
#endif
// </h>
// <e> Advanced Configuration
// <id> adc_advanced_settings
#ifndef CONF_ADC_0_ADVANCED
#define CONF_ADC_0_ADVANCED 0
#endif
// <q> Run in standby
// <i> Indicates whether the ADC will continue running in standby sleep mode or not (RUNSTDBY)
// <id> adc_arch_runstdby
#ifndef CONF_ADC_0_RUNSTDBY
#define CONF_ADC_0_RUNSTDBY 0
#endif
// <q>Debug Run
// <i> If enabled, the ADC is running if the CPU is halted by an external debugger. (DBGRUN)
// <id> adc_arch_dbgrun
#ifndef CONF_ADC_0_DBGRUN
#define CONF_ADC_0_DBGRUN 0
#endif
// <q> On Demand Control
// <i> Will keep the ADC peripheral running if requested by other peripherals (ONDEMAND)
// <id> adc_arch_ondemand
#ifndef CONF_ADC_0_ONDEMAND
#define CONF_ADC_0_ONDEMAND 0
#endif
// <q> Left-Adjusted Result
// <i> When enabled, the ADC conversion result is left-adjusted in the RESULT register. The high byte of the 12-bit result will be present in the upper part of the result register. (LEFTADJ)
// <id> adc_arch_leftadj
#ifndef CONF_ADC_0_LEFTADJ
#define CONF_ADC_0_LEFTADJ 0
#endif
// <q> Reference Buffer Offset Compensation Enable
// <i> The accuracy of the gain stage can be increased by enabling the reference buffer offset compensation. This will decrease the input impedance and thus increase the start-up time of the reference. (REFCOMP)
// <id> adc_arch_refcomp
#ifndef CONF_ADC_0_REFCOMP
#define CONF_ADC_0_REFCOMP 0
#endif
// <q>Comparator Offset Compensation Enable
// <i> This bit indicates whether the Comparator Offset Compensation is enabled or not (OFFCOMP)
// <id> adc_arch_offcomp
#ifndef CONF_ADC_0_OFFCOMP
#define CONF_ADC_0_OFFCOMP 0
#endif
// <q> Digital Correction Logic Enabled
// <i> When enabled, the ADC conversion result in the RESULT register is then corrected for gain and offset based on the values in the GAINCAL and OFFSETCAL registers. (CORREN)
// <id> adc_arch_corren
#ifndef CONF_ADC_0_CORREN
#define CONF_ADC_0_CORREN 0
#endif
// <o> Offset Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for offset error before being written to the Result register. (OFFSETCORR)
// <id> adc_arch_offsetcorr
#ifndef CONF_ADC_0_OFFSETCORR
#define CONF_ADC_0_OFFSETCORR 0
#endif
// <o> Gain Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for gain error before being written to the result register. (GAINCORR)
// <id> adc_arch_gaincorr
#ifndef CONF_ADC_0_GAINCORR
#define CONF_ADC_0_GAINCORR 0
#endif
// <o> Adjusting Result / Division Coefficient <0-7>
// <i> These bits define the division coefficient in 2n steps. (ADJRES)
// <id> adc_arch_adjres
#ifndef CONF_ADC_0_ADJRES
#define CONF_ADC_0_ADJRES 0x0
#endif
// <o.0..10> Number of Samples to be Collected
// <0x0=>1 sample
// <0x1=>2 samples
// <0x2=>4 samples
// <0x3=>8 samples
// <0x4=>16 samples
// <0x5=>32 samples
// <0x6=>64 samples
// <0x7=>128 samples
// <0x8=>256 samples
// <0x9=>512 samples
// <0xA=>1024 samples
// <i> Define how many samples should be added together.The result will be available in the Result register (SAMPLENUM)
// <id> adc_arch_samplenum
#ifndef CONF_ADC_0_SAMPLENUM
#define CONF_ADC_0_SAMPLENUM 0x0
#endif
// <o> Sampling Time Length <0-63>
// <i> These bits control the ADC sampling time in number of half CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. (SAMPLEN)
// <id> adc_arch_samplen
#ifndef CONF_ADC_0_SAMPLEN
#define CONF_ADC_0_SAMPLEN 0
#endif
// <o> Window Monitor Mode
// <0x0=>No window mode
// <0x1=>Mode 1: RESULT above lower threshold
// <0x2=>Mode 2: RESULT beneath upper threshold
// <0x3=>Mode 3: RESULT inside lower and upper threshold
// <0x4=>Mode 4: RESULT outside lower and upper threshold
// <i> These bits enable and define the window monitor mode. (WINMODE)
// <id> adc_arch_winmode
#ifndef CONF_ADC_0_WINMODE
#define CONF_ADC_0_WINMODE 0x0
#endif
// <o> Window Monitor Lower Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINLT)
// <id> adc_arch_winlt
#ifndef CONF_ADC_0_WINLT
#define CONF_ADC_0_WINLT 0
#endif
// <o> Window Monitor Upper Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINUT)
// <id> adc_arch_winut
#ifndef CONF_ADC_0_WINUT
#define CONF_ADC_0_WINUT 0
#endif
// <o> Bitmask for positive input sequence <0-4294967295>
// <i> Use this parameter to input the bitmask for positive input sequence control (refer to datasheet for the device).
// <id> adc_arch_seqen
#ifndef CONF_ADC_0_SEQEN
#define CONF_ADC_0_SEQEN 0x0
#endif
// </e>
// <e> Event Control
// <id> adc_arch_event_settings
#ifndef CONF_ADC_0_EVENT_CONTROL
#define CONF_ADC_0_EVENT_CONTROL 0
#endif
// <q> Window Monitor Event Out
// <i> Enables event output on window event (WINMONEO)
// <id> adc_arch_winmoneo
#ifndef CONF_ADC_0_WINMONEO
#define CONF_ADC_0_WINMONEO 0
#endif
// <q> Result Ready Event Out
// <i> Enables event output on result ready event (RESRDEO)
// <id> adc_arch_resrdyeo
#ifndef CONF_ADC_0_RESRDYEO
#define CONF_ADC_0_RESRDYEO 0
#endif
// <q> Invert flush Event Signal
// <i> Invert the flush event input signal (FLUSHINV)
// <id> adc_arch_flushinv
#ifndef CONF_ADC_0_FLUSHINV
#define CONF_ADC_0_FLUSHINV 0
#endif
// <q> Trigger Flush On Event
// <i> Trigger an ADC pipeline flush on event (FLUSHEI)
// <id> adc_arch_flushei
#ifndef CONF_ADC_0_FLUSHEI
#define CONF_ADC_0_FLUSHEI 0
#endif
// <q> Invert Start Conversion Event Signal
// <i> Invert the start conversion event input signal (STARTINV)
// <id> adc_arch_startinv
#ifndef CONF_ADC_0_STARTINV
#define CONF_ADC_0_STARTINV 0
#endif
// <q> Trigger Conversion On Event
// <i> Trigger a conversion on event. (STARTEI)
// <id> adc_arch_startei
#ifndef CONF_ADC_0_STARTEI
#define CONF_ADC_0_STARTEI 0
#endif
// </e>
// <<< end of configuration section >>>
#endif // HPL_ADC_CONFIG_H

View File

@ -0,0 +1,169 @@
/* Auto-generated config file hpl_dac_config.h */
#ifndef HPL_DAC_CONFIG_H
#define HPL_DAC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Basic configuration
// <o> Reference Selection
// <0x00=> Unbuffered external voltage reference
// <0x01=> Voltage supply
// <0x02=> Buffered external voltage reference
// <0x03=> Internal bandgap reference
// <id> dac_arch_refsel
#ifndef CONF_DAC_REFSEL
#define CONF_DAC_REFSEL 0
#endif
// <q> Differential mode
// <i> Indicates whether the differential mode is enabled or not
// <id> dac_arch_diff
#ifndef CONF_DAC_DIFF
#define CONF_DAC_DIFF 0
#endif
// </h>
// <e> Advanced Configuration
// <id> dac_advanced_settings
#ifndef CONF_DAC_ADVANCED_CONFIG
#define CONF_DAC_ADVANCED_CONFIG 0
#endif
// <q> Debug Run
// <i> Indicate whether running when CPU is halted
// <id> adc_arch_dbgrun
#ifndef CONF_DAC_DBGRUN
#define CONF_DAC_DBGRUN 1
#endif
// <h> Channel 0 configuration
// <q> Left Adjusted Data
// <i> Indicate how the data is adjusted in the Data and Data Buffer register
// <id> dac0_arch_leftadj
#ifndef CONF_DAC0_LEFTADJ
#define CONF_DAC0_LEFTADJ 1
#endif
// <o> Current control
// <0=> GCLK_DAC <= 1.2MHz (100kSPS)
// <1=> 1.2MHz < GCLK_DAC <= 6MHz (500kSPS)
// <2=> 6MHz < GCLK_DAC <= 12MHz (1MSPS)
// <i> This defines the current in output buffer according to conversion rate
// <id> dac0_arch_cctrl
#ifndef CONF_DAC0_CCTRL
#define CONF_DAC0_CCTRL 0
#endif
// <q> Run in standby
// <i> Indicates whether the DAC channel will continue running in standby sleep mode or not
// <id> dac0_arch_runstdby
#ifndef CONF_DAC0_RUNSTDBY
#define CONF_DAC0_RUNSTDBY 0
#endif
// <q> Dithering Mode
// <i> Indicate whether dithering mode is enabled
// <id> dac0_arch_ditrher
#ifndef CONF_DAC0_DITHER
#define CONF_DAC0_DITHER 0
#endif
// <o> Refresh period <0x00-0xFF>
// <i> This defines the refresh period. If it is 0, the refresh mode is disabled, else the refresh period is: value * 500us
// <id> dac0_arch_refresh
#ifndef CONF_DAC0_REFRESH
#define CONF_DAC0_REFRESH 2
#endif
// </h>
// <h> Channel 1 configuration
// <q> Left Adjusted Data
// <i> Indicate how the data is adjusted in the Data and Data Buffer register
// <id> dac1_arch_leftadj
#ifndef CONF_DAC1_LEFTADJ
#define CONF_DAC1_LEFTADJ 1
#endif
// <o> Current control
// <0=> GCLK_DAC <= 1.2MHz (100kSPS)
// <1=> 1.2MHz < GCLK_DAC <= 6MHz (500kSPS)
// <2=> 6MHz < GCLK_DAC <= 12MHz (1MSPS)
// <i> This defines the current in output buffer according to conversion rate
// <id> dac1_arch_cctrl
#ifndef CONF_DAC1_CCTRL
#define CONF_DAC1_CCTRL 0
#endif
// <q> Run in standby
// <i> Indicates whether the DAC channel will continue running in standby sleep mode or not
// <id> dac1_arch_runstdby
#ifndef CONF_DAC1_RUNSTDBY
#define CONF_DAC1_RUNSTDBY 0
#endif
// <q> Dithering Mode
// <i> Indicate whether dithering mode is enabled
// <id> dac1_arch_ditrher
#ifndef CONF_DAC1_DITHER
#define CONF_DAC1_DITHER 0
#endif
// <o> Refresh period <0x00-0xFF>
// <i> This defines the refresh period. If it is 0, the refresh mode is disabled, else the refresh period is: value * 500us
// <id> dac1_arch_refresh
#ifndef CONF_DAC1_REFRESH
#define CONF_DAC1_REFRESH 2
#endif
// </h>
// <h> Event configuration
// <o> Inversion of DAC 0 event
// <0=> Detection on rising edge pf the input event
// <1=> Detection on falling edge pf the input event
// <i> This defines the edge detection of the input event
// <id> dac_arch_invei0
#ifndef CONF_DAC_INVEI0
#define CONF_DAC_INVEI0 0
#endif
// <q> Data Buffer of DAC 0 Empty Event Output
// <i> Indicate whether Data Buffer Empty Event is enabled and generated when the Data Buffer register is empty or not
// <id> dac_arch_emptyeo_0
#ifndef CONF_DAC_EMPTYEO0
#define CONF_DAC_EMPTYEO0 0
#endif
// <q> Start Conversion Event Input DAC 0
// <i> Indicate whether Start input event is enabled
// <id> dac_arch_startei_0
#ifndef CONF_DAC_STARTEI0
#define CONF_DAC_STARTEI0 0
#endif
// <o> Inversion of DAC 1 event
// <0=> Detection on rising edge pf the input event
// <1=> Detection on falling edge pf the input event
// <i> This defines the edge detection of the input event
// <id> dac_arch_invei1
#ifndef CONF_DAC_INVEI1
#define CONF_DAC_INVEI1 0
#endif
// <q> Data Buffer of DAC 1 Empty Event Output
// <i> Indicate whether Data Buffer Empty Event is enabled and generated when the Data Buffer register is empty or not
// <id> dac_arch_emptyeo_1
#ifndef CONF_DAC_EMPTYEO1
#define CONF_DAC_EMPTYEO1 0
#endif
// <q> Start Conversion Event Input DAC 1
// <i> Indicate whether Start input event is enabled
// <id> dac_arch_startei_1
#ifndef CONF_DAC_STARTEI1
#define CONF_DAC_STARTEI1 0
#endif
// </h>
// </e>
// <<< end of configuration section >>>
#endif // HPL_DAC_CONFIG_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,924 @@
// Circuit Python SAMD51 clock tree:
// DFLL48M (with USBCRM on to sync with external USB ref) -> GCLK1, GCLK5, GCLK6
// GCLK1 (48MHz) -> 48 MHz peripherals
// GCLK5 (48 MHz divided down to 2 MHz) -> DPLL0
// DPLL0 (multiplied up to 120 MHz) -> GCLK0, GCLK4 (output for monitoring)
// GCLK6 (48 MHz divided down to 12 MHz) -> DAC
// We'd like to use XOSC32K as a ref for DFLL48M on boards with a 32kHz crystal,
// but haven't figured that out yet.
// Used in hpl/core/hpl_init.c to define which clocks should be initialized first.
// Not clear why all these need to be specified, but it doesn't work properly otherwise.
//#define CIRCUITPY_GCLK_INIT_1ST (1 << 0 | 1 << 1 | 1 << 3 | 1 <<5)
#define CIRCUITPY_GCLK_INIT_1ST 0xffff
/* Auto-generated config file hpl_gclk_config.h */
#ifndef HPL_GCLK_CONFIG_H
#define HPL_GCLK_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <e> Generic clock generator 0 configuration
// <i> Indicates whether generic clock 0 configuration is enabled or not
// <id> enable_gclk_gen_0
#ifndef CONF_GCLK_GENERATOR_0_CONFIG
#define CONF_GCLK_GENERATOR_0_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 0 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 0
// <id> gclk_gen_0_oscillator
#ifndef CONF_GCLK_GEN_0_SOURCE
#define CONF_GCLK_GEN_0_SOURCE GCLK_GENCTRL_SRC_DPLL0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_0_runstdby
#ifndef CONF_GCLK_GEN_0_RUNSTDBY
#define CONF_GCLK_GEN_0_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_0_div_sel
#ifndef CONF_GCLK_GEN_0_DIVSEL
#define CONF_GCLK_GEN_0_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_0_oe
#ifndef CONF_GCLK_GEN_0_OE
#define CONF_GCLK_GEN_0_OE 1
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_0_oov
#ifndef CONF_GCLK_GEN_0_OOV
#define CONF_GCLK_GEN_0_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_0_idc
#ifndef CONF_GCLK_GEN_0_IDC
#define CONF_GCLK_GEN_0_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_0_enable
#ifndef CONF_GCLK_GEN_0_GENEN
#define CONF_GCLK_GEN_0_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 0 division <0x0000-0xFFFF>
// <id> gclk_gen_0_div
#ifndef CONF_GCLK_GEN_0_DIV
#define CONF_GCLK_GEN_0_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 1 configuration
// <i> Indicates whether generic clock 1 configuration is enabled or not
// <id> enable_gclk_gen_1
#ifndef CONF_GCLK_GENERATOR_1_CONFIG
#define CONF_GCLK_GENERATOR_1_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 1 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 1
// <id> gclk_gen_1_oscillator
#ifndef CONF_GCLK_GEN_1_SOURCE
#define CONF_GCLK_GEN_1_SOURCE GCLK_GENCTRL_SRC_DFLL
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_1_runstdby
#ifndef CONF_GCLK_GEN_1_RUNSTDBY
#define CONF_GCLK_GEN_1_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_1_div_sel
#ifndef CONF_GCLK_GEN_1_DIVSEL
#define CONF_GCLK_GEN_1_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_1_oe
#ifndef CONF_GCLK_GEN_1_OE
#define CONF_GCLK_GEN_1_OE 1
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_1_oov
#ifndef CONF_GCLK_GEN_1_OOV
#define CONF_GCLK_GEN_1_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_1_idc
#ifndef CONF_GCLK_GEN_1_IDC
#define CONF_GCLK_GEN_1_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_1_enable
#ifndef CONF_GCLK_GEN_1_GENEN
#define CONF_GCLK_GEN_1_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 1 division <0x0000-0xFFFF>
// <id> gclk_gen_1_div
#ifndef CONF_GCLK_GEN_1_DIV
#define CONF_GCLK_GEN_1_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 2 configuration
// <i> Indicates whether generic clock 2 configuration is enabled or not
// <id> enable_gclk_gen_2
#ifndef CONF_GCLK_GENERATOR_2_CONFIG
#define CONF_GCLK_GENERATOR_2_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 2 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 2
// <id> gclk_gen_2_oscillator
#ifndef CONF_GCLK_GEN_2_SOURCE
#define CONF_GCLK_GEN_2_SOURCE GCLK_GENCTRL_SRC_OSCULP32K
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_2_runstdby
#ifndef CONF_GCLK_GEN_2_RUNSTDBY
#define CONF_GCLK_GEN_2_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_2_div_sel
#ifndef CONF_GCLK_GEN_2_DIVSEL
#define CONF_GCLK_GEN_2_DIVSEL 1
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_2_oe
#ifndef CONF_GCLK_GEN_2_OE
#define CONF_GCLK_GEN_2_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_2_oov
#ifndef CONF_GCLK_GEN_2_OOV
#define CONF_GCLK_GEN_2_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_2_idc
#ifndef CONF_GCLK_GEN_2_IDC
#define CONF_GCLK_GEN_2_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_2_enable
#ifndef CONF_GCLK_GEN_2_GENEN
#define CONF_GCLK_GEN_2_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 2 division <0x0000-0xFFFF>
// <id> gclk_gen_2_div
#ifndef CONF_GCLK_GEN_2_DIV
#define CONF_GCLK_GEN_2_DIV 4
#endif
// </h>
// </e>
// <e> Generic clock generator 3 configuration
// <i> Indicates whether generic clock 3 configuration is enabled or not
// <id> enable_gclk_gen_3
#ifndef CONF_GCLK_GENERATOR_3_CONFIG
#define CONF_GCLK_GENERATOR_3_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 3 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 3
// <id> gclk_gen_3_oscillator
#ifndef CONF_GCLK_GEN_3_SOURCE
#define CONF_GCLK_GEN_3_SOURCE GCLK_GENCTRL_SRC_XOSC32K
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_3_runstdby
#ifndef CONF_GCLK_GEN_3_RUNSTDBY
#define CONF_GCLK_GEN_3_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_3_div_sel
#ifndef CONF_GCLK_GEN_3_DIVSEL
#define CONF_GCLK_GEN_3_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_3_oe
#ifndef CONF_GCLK_GEN_3_OE
#define CONF_GCLK_GEN_3_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_3_oov
#ifndef CONF_GCLK_GEN_3_OOV
#define CONF_GCLK_GEN_3_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_3_idc
#ifndef CONF_GCLK_GEN_3_IDC
#define CONF_GCLK_GEN_3_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_3_enable
#ifndef CONF_GCLK_GEN_3_GENEN
#define CONF_GCLK_GEN_3_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 3 division <0x0000-0xFFFF>
// <id> gclk_gen_3_div
#ifndef CONF_GCLK_GEN_3_DIV
#define CONF_GCLK_GEN_3_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 4 configuration
// <i> Indicates whether generic clock 4 configuration is enabled or not
// <id> enable_gclk_gen_4
#ifndef CONF_GCLK_GENERATOR_4_CONFIG
#define CONF_GCLK_GENERATOR_4_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 4 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 4
// <id> gclk_gen_4_oscillator
#ifndef CONF_GCLK_GEN_4_SOURCE
#define CONF_GCLK_GEN_4_SOURCE GCLK_GENCTRL_SRC_DPLL0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_4_runstdby
#ifndef CONF_GCLK_GEN_4_RUNSTDBY
#define CONF_GCLK_GEN_4_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_4_div_sel
#ifndef CONF_GCLK_GEN_4_DIVSEL
#define CONF_GCLK_GEN_4_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_4_oe
#ifndef CONF_GCLK_GEN_4_OE
#define CONF_GCLK_GEN_4_OE 1
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_4_oov
#ifndef CONF_GCLK_GEN_4_OOV
#define CONF_GCLK_GEN_4_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_4_idc
#ifndef CONF_GCLK_GEN_4_IDC
#define CONF_GCLK_GEN_4_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_4_enable
#ifndef CONF_GCLK_GEN_4_GENEN
#define CONF_GCLK_GEN_4_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 4 division <0x0000-0xFFFF>
// <id> gclk_gen_4_div
#ifndef CONF_GCLK_GEN_4_DIV
#define CONF_GCLK_GEN_4_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 5 configuration
// <i> Indicates whether generic clock 5 configuration is enabled or not
// <id> enable_gclk_gen_5
#ifndef CONF_GCLK_GENERATOR_5_CONFIG
#define CONF_GCLK_GENERATOR_5_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 5 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 5
// <id> gclk_gen_5_oscillator
#ifndef CONF_GCLK_GEN_5_SOURCE
#define CONF_GCLK_GEN_5_SOURCE GCLK_GENCTRL_SRC_DFLL
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_5_runstdby
#ifndef CONF_GCLK_GEN_5_RUNSTDBY
#define CONF_GCLK_GEN_5_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_5_div_sel
#ifndef CONF_GCLK_GEN_5_DIVSEL
#define CONF_GCLK_GEN_5_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_5_oe
#ifndef CONF_GCLK_GEN_5_OE
#define CONF_GCLK_GEN_5_OE 1
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_5_oov
#ifndef CONF_GCLK_GEN_5_OOV
#define CONF_GCLK_GEN_5_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_5_idc
#ifndef CONF_GCLK_GEN_5_IDC
#define CONF_GCLK_GEN_5_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_5_enable
#ifndef CONF_GCLK_GEN_5_GENEN
#define CONF_GCLK_GEN_5_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 5 division <0x0000-0xFFFF>
// <id> gclk_gen_5_div
#ifndef CONF_GCLK_GEN_5_DIV
#define CONF_GCLK_GEN_5_DIV 24
#endif
// </h>
// </e>
// <e> Generic clock generator 6 configuration
// <i> Indicates whether generic clock 6 configuration is enabled or not
// <id> enable_gclk_gen_6
#ifndef CONF_GCLK_GENERATOR_6_CONFIG
#define CONF_GCLK_GENERATOR_6_CONFIG 1
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 6 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 6
// <id> gclk_gen_6_oscillator
#ifndef CONF_GCLK_GEN_6_SOURCE
#define CONF_GCLK_GEN_6_SOURCE GCLK_GENCTRL_SRC_DFLL
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_6_runstdby
#ifndef CONF_GCLK_GEN_6_RUNSTDBY
#define CONF_GCLK_GEN_6_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_6_div_sel
#ifndef CONF_GCLK_GEN_6_DIVSEL
#define CONF_GCLK_GEN_6_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_6_oe
#ifndef CONF_GCLK_GEN_6_OE
#define CONF_GCLK_GEN_6_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_6_oov
#ifndef CONF_GCLK_GEN_6_OOV
#define CONF_GCLK_GEN_6_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_6_idc
#ifndef CONF_GCLK_GEN_6_IDC
#define CONF_GCLK_GEN_6_IDC 1
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_6_enable
#ifndef CONF_GCLK_GEN_6_GENEN
#define CONF_GCLK_GEN_6_GENEN 1
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 6 division <0x0000-0xFFFF>
// <id> gclk_gen_6_div
#ifndef CONF_GCLK_GEN_6_DIV
#define CONF_GCLK_GEN_6_DIV 4
#endif
// </h>
// </e>
// <e> Generic clock generator 7 configuration
// <i> Indicates whether generic clock 7 configuration is enabled or not
// <id> enable_gclk_gen_7
#ifndef CONF_GCLK_GENERATOR_7_CONFIG
#define CONF_GCLK_GENERATOR_7_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 7 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 7
// <id> gclk_gen_7_oscillator
#ifndef CONF_GCLK_GEN_7_SOURCE
#define CONF_GCLK_GEN_7_SOURCE GCLK_GENCTRL_SRC_XOSC1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_7_runstdby
#ifndef CONF_GCLK_GEN_7_RUNSTDBY
#define CONF_GCLK_GEN_7_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_7_div_sel
#ifndef CONF_GCLK_GEN_7_DIVSEL
#define CONF_GCLK_GEN_7_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_7_oe
#ifndef CONF_GCLK_GEN_7_OE
#define CONF_GCLK_GEN_7_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_7_oov
#ifndef CONF_GCLK_GEN_7_OOV
#define CONF_GCLK_GEN_7_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_7_idc
#ifndef CONF_GCLK_GEN_7_IDC
#define CONF_GCLK_GEN_7_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_7_enable
#ifndef CONF_GCLK_GEN_7_GENEN
#define CONF_GCLK_GEN_7_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 7 division <0x0000-0xFFFF>
// <id> gclk_gen_7_div
#ifndef CONF_GCLK_GEN_7_DIV
#define CONF_GCLK_GEN_7_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 8 configuration
// <i> Indicates whether generic clock 8 configuration is enabled or not
// <id> enable_gclk_gen_8
#ifndef CONF_GCLK_GENERATOR_8_CONFIG
#define CONF_GCLK_GENERATOR_8_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 8 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 8
// <id> gclk_gen_8_oscillator
#ifndef CONF_GCLK_GEN_8_SOURCE
#define CONF_GCLK_GEN_8_SOURCE GCLK_GENCTRL_SRC_XOSC1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_8_runstdby
#ifndef CONF_GCLK_GEN_8_RUNSTDBY
#define CONF_GCLK_GEN_8_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_8_div_sel
#ifndef CONF_GCLK_GEN_8_DIVSEL
#define CONF_GCLK_GEN_8_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_8_oe
#ifndef CONF_GCLK_GEN_8_OE
#define CONF_GCLK_GEN_8_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_8_oov
#ifndef CONF_GCLK_GEN_8_OOV
#define CONF_GCLK_GEN_8_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_8_idc
#ifndef CONF_GCLK_GEN_8_IDC
#define CONF_GCLK_GEN_8_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_8_enable
#ifndef CONF_GCLK_GEN_8_GENEN
#define CONF_GCLK_GEN_8_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 8 division <0x0000-0xFFFF>
// <id> gclk_gen_8_div
#ifndef CONF_GCLK_GEN_8_DIV
#define CONF_GCLK_GEN_8_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 9 configuration
// <i> Indicates whether generic clock 9 configuration is enabled or not
// <id> enable_gclk_gen_9
#ifndef CONF_GCLK_GENERATOR_9_CONFIG
#define CONF_GCLK_GENERATOR_9_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 9 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 9
// <id> gclk_gen_9_oscillator
#ifndef CONF_GCLK_GEN_9_SOURCE
#define CONF_GCLK_GEN_9_SOURCE GCLK_GENCTRL_SRC_XOSC1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_9_runstdby
#ifndef CONF_GCLK_GEN_9_RUNSTDBY
#define CONF_GCLK_GEN_9_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_9_div_sel
#ifndef CONF_GCLK_GEN_9_DIVSEL
#define CONF_GCLK_GEN_9_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_9_oe
#ifndef CONF_GCLK_GEN_9_OE
#define CONF_GCLK_GEN_9_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_9_oov
#ifndef CONF_GCLK_GEN_9_OOV
#define CONF_GCLK_GEN_9_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_9_idc
#ifndef CONF_GCLK_GEN_9_IDC
#define CONF_GCLK_GEN_9_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_9_enable
#ifndef CONF_GCLK_GEN_9_GENEN
#define CONF_GCLK_GEN_9_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 9 division <0x0000-0xFFFF>
// <id> gclk_gen_9_div
#ifndef CONF_GCLK_GEN_9_DIV
#define CONF_GCLK_GEN_9_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 10 configuration
// <i> Indicates whether generic clock 10 configuration is enabled or not
// <id> enable_gclk_gen_10
#ifndef CONF_GCLK_GENERATOR_10_CONFIG
#define CONF_GCLK_GENERATOR_10_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 10 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 10
// <id> gclk_gen_10_oscillator
#ifndef CONF_GCLK_GEN_10_SOURCE
#define CONF_GCLK_GEN_10_SOURCE GCLK_GENCTRL_SRC_XOSC1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_10_runstdby
#ifndef CONF_GCLK_GEN_10_RUNSTDBY
#define CONF_GCLK_GEN_10_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_10_div_sel
#ifndef CONF_GCLK_GEN_10_DIVSEL
#define CONF_GCLK_GEN_10_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_10_oe
#ifndef CONF_GCLK_GEN_10_OE
#define CONF_GCLK_GEN_10_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_10_oov
#ifndef CONF_GCLK_GEN_10_OOV
#define CONF_GCLK_GEN_10_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_10_idc
#ifndef CONF_GCLK_GEN_10_IDC
#define CONF_GCLK_GEN_10_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_10_enable
#ifndef CONF_GCLK_GEN_10_GENEN
#define CONF_GCLK_GEN_10_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 10 division <0x0000-0xFFFF>
// <id> gclk_gen_10_div
#ifndef CONF_GCLK_GEN_10_DIV
#define CONF_GCLK_GEN_10_DIV 1
#endif
// </h>
// </e>
// <e> Generic clock generator 11 configuration
// <i> Indicates whether generic clock 11 configuration is enabled or not
// <id> enable_gclk_gen_11
#ifndef CONF_GCLK_GENERATOR_11_CONFIG
#define CONF_GCLK_GENERATOR_11_CONFIG 0
#endif
// <h> Generic Clock Generator Control
// <y> Generic clock generator 11 source// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_GENCTRL_SRC_GCLKIN"> Generic clock generator input pad
// <GCLK_GENCTRL_SRC_GCLKGEN1"> Generic clock generator 1
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_DFLL"> Digital Frequency Locked Loop (DFLL48M)
// <GCLK_GENCTRL_SRC_DPLL0"> Digital Phase Locked Loop (DPLL0)
// <GCLK_GENCTRL_SRC_DPLL1"> Digital Phase Locked Loop (DPLL1)
// <i> This defines the clock source for generic clock generator 11
// <id> gclk_gen_11_oscillator
#ifndef CONF_GCLK_GEN_11_SOURCE
#define CONF_GCLK_GEN_11_SOURCE GCLK_GENCTRL_SRC_XOSC1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> gclk_arch_gen_11_runstdby
#ifndef CONF_GCLK_GEN_11_RUNSTDBY
#define CONF_GCLK_GEN_11_RUNSTDBY 0
#endif
// <q> Divide Selection
// <i> Indicates whether Divide Selection is enabled or not
//<id> gclk_gen_11_div_sel
#ifndef CONF_GCLK_GEN_11_DIVSEL
#define CONF_GCLK_GEN_11_DIVSEL 0
#endif
// <q> Output Enable
// <i> Indicates whether Output Enable is enabled or not
// <id> gclk_arch_gen_11_oe
#ifndef CONF_GCLK_GEN_11_OE
#define CONF_GCLK_GEN_11_OE 0
#endif
// <q> Output Off Value
// <i> Indicates whether Output Off Value is enabled or not
// <id> gclk_arch_gen_11_oov
#ifndef CONF_GCLK_GEN_11_OOV
#define CONF_GCLK_GEN_11_OOV 0
#endif
// <q> Improve Duty Cycle
// <i> Indicates whether Improve Duty Cycle is enabled or not
// <id> gclk_arch_gen_11_idc
#ifndef CONF_GCLK_GEN_11_IDC
#define CONF_GCLK_GEN_11_IDC 0
#endif
// <q> Generic Clock Generator Enable
// <i> Indicates whether Generic Clock Generator Enable is enabled or not
// <id> gclk_arch_gen_11_enable
#ifndef CONF_GCLK_GEN_11_GENEN
#define CONF_GCLK_GEN_11_GENEN 0
#endif
// </h>
//<h> Generic Clock Generator Division
//<o> Generic clock generator 11 division <0x0000-0xFFFF>
// <id> gclk_gen_11_div
#ifndef CONF_GCLK_GEN_11_DIV
#define CONF_GCLK_GEN_11_DIV 1
#endif
// </h>
// </e>
// <<< end of configuration section >>>
#endif // HPL_GCLK_CONFIG_H

View File

@ -0,0 +1,104 @@
/* Auto-generated config file hpl_mclk_config.h */
#ifndef HPL_MCLK_CONFIG_H
#define HPL_MCLK_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#include <peripheral_clk_config.h>
// <e> System Configuration
// <i> Indicates whether configuration for system is enabled or not
// <id> enable_cpu_clock
#ifndef CONF_SYSTEM_CONFIG
#define CONF_SYSTEM_CONFIG 1
#endif
// <h> Basic settings
// <y> CPU Clock source
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <i> This defines the clock source for the CPU
// <id> cpu_clock_source
#ifndef CONF_CPU_SRC
#define CONF_CPU_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
// <y> CPU Clock Division Factor
// <MCLK_CPUDIV_DIV_DIV1_Val"> 1
// <MCLK_CPUDIV_DIV_DIV2_Val"> 2
// <MCLK_CPUDIV_DIV_DIV4_Val"> 4
// <MCLK_CPUDIV_DIV_DIV8_Val"> 8
// <MCLK_CPUDIV_DIV_DIV16_Val"> 16
// <MCLK_CPUDIV_DIV_DIV32_Val"> 32
// <MCLK_CPUDIV_DIV_DIV64_Val"> 64
// <MCLK_CPUDIV_DIV_DIV128_Val"> 128
// <i> Prescalar for CPU clock
// <id> cpu_div
#ifndef CONF_MCLK_CPUDIV
#define CONF_MCLK_CPUDIV MCLK_CPUDIV_DIV_DIV1_Val
#endif
// <y> Low Power Clock Division
// <MCLK_LPDIV_LPDIV_DIV1_Val"> Divide by 1
// <MCLK_LPDIV_LPDIV_DIV2_Val"> Divide by 2
// <MCLK_LPDIV_LPDIV_DIV4_Val"> Divide by 4
// <MCLK_LPDIV_LPDIV_DIV8_Val"> Divide by 8
// <MCLK_LPDIV_LPDIV_DIV16_Val"> Divide by 16
// <MCLK_LPDIV_LPDIV_DIV32_Val"> Divide by 32
// <MCLK_LPDIV_LPDIV_DIV64_Val"> Divide by 64
// <MCLK_LPDIV_LPDIV_DIV128_Val"> Divide by 128
// <id> mclk_arch_lpdiv
#ifndef CONF_MCLK_LPDIV
#define CONF_MCLK_LPDIV MCLK_LPDIV_LPDIV_DIV4_Val
#endif
// <y> Backup Clock Division
// <MCLK_BUPDIV_BUPDIV_DIV1_Val"> Divide by 1
// <MCLK_BUPDIV_BUPDIV_DIV2_Val"> Divide by 2
// <MCLK_BUPDIV_BUPDIV_DIV4_Val"> Divide by 4
// <MCLK_BUPDIV_BUPDIV_DIV8_Val"> Divide by 8
// <MCLK_BUPDIV_BUPDIV_DIV16_Val"> Divide by 16
// <MCLK_BUPDIV_BUPDIV_DIV32_Val"> Divide by 32
// <MCLK_BUPDIV_BUPDIV_DIV64_Val"> Divide by 64
// <MCLK_BUPDIV_BUPDIV_DIV128_Val"> Divide by 128
// <id> mclk_arch_bupdiv
#ifndef CONF_MCLK_BUPDIV
#define CONF_MCLK_BUPDIV MCLK_BUPDIV_BUPDIV_DIV8_Val
#endif
// <y> High-Speed Clock Division
// <MCLK_HSDIV_DIV_DIV1_Val"> Divide by 1
// <id> mclk_arch_hsdiv
#ifndef CONF_MCLK_HSDIV
#define CONF_MCLK_HSDIV MCLK_HSDIV_DIV_DIV1_Val
#endif
// </h>
// <h> NVM Settings
// <o> NVM Wait States
// <i> These bits select the number of wait states for a read operation.
// <0=> 0
// <1=> 1
// <2=> 2
// <3=> 3
// <4=> 4
// <5=> 5
// <6=> 6
// <7=> 7
// <8=> 8
// <9=> 9
// <10=> 10
// <11=> 11
// <12=> 12
// <13=> 13
// <14=> 14
// <15=> 15
// <id> nvm_wait_states
#ifndef CONF_NVM_WAIT_STATE
#define CONF_NVM_WAIT_STATE 0
#endif
// </h>
// </e>
// <<< end of configuration section >>>
#endif // HPL_MCLK_CONFIG_H

View File

@ -0,0 +1,36 @@
/* Auto-generated config file hpl_nvmctrl_config.h */
#ifndef HPL_NVMCTRL_CONFIG_H
#define HPL_NVMCTRL_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Basic Settings
// <o> Power Reduction Mode During Sleep
// <0x00=> Wake On Access
// <0x01=> Wake Up Instant
// <0x03=> Disabled
// <id> nvm_arch_sleepprm
#ifndef CONF_NVM_SLEEPPRM
#define CONF_NVM_SLEEPPRM 0
#endif
// <q> AHB0 Cache Disable
// <i> Indicate whether AHB0 cache is disable or not
// <id> nvm_arch_cache0
#ifndef CONF_NVM_CACHE0
#define CONF_NVM_CACHE0 1
#endif
// <q> AHB1 Cache Disable
// <i> Indicate whether AHB1 cache is disable or not
// <id> nvm_arch_cache1
#ifndef CONF_NVM_CACHE1
#define CONF_NVM_CACHE1 1
#endif
// </h>
// <<< end of configuration section >>>
#endif // HPL_NVMCTRL_CONFIG_H

View File

@ -0,0 +1,163 @@
/* Auto-generated config file hpl_osc32kctrl_config.h */
#ifndef HPL_OSC32KCTRL_CONFIG_H
#define HPL_OSC32KCTRL_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <e> RTC Source configuration
// <id> enable_rtc_source
#ifndef CONF_RTCCTRL_CONFIG
#define CONF_RTCCTRL_CONFIG 0
#endif
// <h> RTC source control
// <y> RTC Clock Source Selection
// <GCLK_GENCTRL_SRC_OSCULP32K"> 32kHz Ultra Low Power Internal Oscillator (OSCULP32K)
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <i> This defines the clock source for RTC
// <id> rtc_source_oscillator
#ifndef CONF_RTCCTRL_SRC
#define CONF_RTCCTRL_SRC GCLK_GENCTRL_SRC_OSCULP32K
#endif
// <q> Use 1 kHz output
// <id> rtc_1khz_selection
#ifndef CONF_RTCCTRL_1KHZ
#define CONF_RTCCTRL_1KHZ 1
#endif
#if CONF_RTCCTRL_SRC == GCLK_GENCTRL_SRC_OSCULP32K
#define CONF_RTCCTRL (CONF_RTCCTRL_1KHZ ? OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K_Val : OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K_Val)
#elif CONF_RTCCTRL_SRC == GCLK_GENCTRL_SRC_XOSC32K
#define CONF_RTCCTRL (CONF_RTCCTRL_1KHZ ? OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K_Val : OSC32KCTRL_RTCCTRL_RTCSEL_XOSC32K_Val)
#else
#error unexpected CONF_RTCCTRL_SRC
#endif
// </h>
// </e>
// <e> 32kHz External Crystal Oscillator Configuration
// <i> Indicates whether configuration for External 32K Osc is enabled or not
// <id> enable_xosc32k
#ifndef CONF_XOSC32K_CONFIG
#define CONF_XOSC32K_CONFIG 1
#endif
// <h> 32kHz External Crystal Oscillator Control
// <q> Oscillator enable
// <i> Indicates whether 32kHz External Crystal Oscillator is enabled or not
// <id> xosc32k_arch_enable
#ifndef CONF_XOSC32K_ENABLE
#define CONF_XOSC32K_ENABLE 1
#endif
// <o> Start-Up Time
// <0x0=>62592us
// <0x1=>125092us
// <0x2=>500092us
// <0x3=>1000092us
// <0x4=>2000092us
// <0x5=>4000092us
// <0x6=>8000092us
// <id> xosc32k_arch_startup
#ifndef CONF_XOSC32K_STARTUP
#define CONF_XOSC32K_STARTUP 0x0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> xosc32k_arch_ondemand
#ifndef CONF_XOSC32K_ONDEMAND
#define CONF_XOSC32K_ONDEMAND 1
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> xosc32k_arch_runstdby
#ifndef CONF_XOSC32K_RUNSTDBY
#define CONF_XOSC32K_RUNSTDBY 0
#endif
// <q> 1kHz Output Enable
// <i> Indicates whether 1kHz Output is enabled or not
// <id> xosc32k_arch_en1k
#ifndef CONF_XOSC32K_EN1K
#define CONF_XOSC32K_EN1K 0
#endif
// <q> 32kHz Output Enable
// <i> Indicates whether 32kHz Output is enabled or not
// <id> xosc32k_arch_en32k
#ifndef CONF_XOSC32K_EN32K
#define CONF_XOSC32K_EN32K 0
#endif
// <q> Clock Switch Back
// <i> Indicates whether Clock Switch Back is enabled or not
// <id> xosc32k_arch_swben
#ifndef CONF_XOSC32K_SWBEN
#define CONF_XOSC32K_SWBEN 0
#endif
// <q> Clock Failure Detector
// <i> Indicates whether Clock Failure Detector is enabled or not
// <id> xosc32k_arch_cfden
#ifndef CONF_XOSC32K_CFDEN
#define CONF_XOSC32K_CFDEN 0
#endif
// <q> Clock Failure Detector Event Out
// <i> Indicates whether Clock Failure Detector Event Out is enabled or not
// <id> xosc32k_arch_cfdeo
#ifndef CONF_XOSC32K_CFDEO
#define CONF_XOSC32K_CFDEO 0
#endif
// <q> Crystal connected to XIN32/XOUT32 Enable
// <i> Indicates whether the connections between the I/O pads and the external clock or crystal oscillator is enabled or not
// <id> xosc32k_arch_xtalen
#ifndef CONF_XOSC32K_XTALEN
#define CONF_XOSC32K_XTALEN 0
#endif
// <o> Control Gain Mode
// <0x0=>Low Power mode
// <0x1=>Standard mode
// <0x2=>High Speed mode
// <id> xosc32k_arch_cgm
#ifndef CONF_XOSC32K_CGM
#define CONF_XOSC32K_CGM 0x1
#endif
// </h>
// </e>
// <e> 32kHz Ultra Low Power Internal Oscillator Configuration
// <i> Indicates whether configuration for OSCULP32K is enabled or not
// <id> enable_osculp32k
#ifndef CONF_OSCULP32K_CONFIG
#define CONF_OSCULP32K_CONFIG 1
#endif
// <h> 32kHz Ultra Low Power Internal Oscillator Control
// <q> Oscillator Calibration Control
// <i> Indicates whether Oscillator Calibration is enabled or not
// <id> osculp32k_calib_enable
#ifndef CONF_OSCULP32K_CALIB_ENABLE
#define CONF_OSCULP32K_CALIB_ENABLE 0
#endif
// <o> Oscillator Calibration <0x0-0x3F>
// <id> osculp32k_calib
#ifndef CONF_OSCULP32K_CALIB
#define CONF_OSCULP32K_CALIB 0x0
#endif
// </h>
// </e>
// <<< end of configuration section >>>
#endif // HPL_OSC32KCTRL_CONFIG_H

View File

@ -0,0 +1,634 @@
/* Auto-generated config file hpl_oscctrl_config.h */
#ifndef HPL_OSCCTRL_CONFIG_H
#define HPL_OSCCTRL_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <e> External Multipurpose Crystal Oscillator Configuration
// <i> Indicates whether configuration for XOSC0 is enabled or not
// <id> enable_xosc0
#ifndef CONF_XOSC0_CONFIG
#define CONF_XOSC0_CONFIG 0
#endif
// <o> Frequency <8000000-48000000>
// <i> Oscillation frequency of the resonator connected to the External Multipurpose Crystal Oscillator.
// <id> xosc0_frequency
#ifndef CONF_XOSC_FREQUENCY
#define CONF_XOSC0_FREQUENCY 12000000
#endif
// <h> External Multipurpose Crystal Oscillator Control
// <q> Oscillator enable
// <i> Indicates whether External Multipurpose Crystal Oscillator is enabled or not
// <id> xosc0_arch_enable
#ifndef CONF_XOSC0_ENABLE
#define CONF_XOSC0_ENABLE 0
#endif
// <o> Start-Up Time
// <0x0=>31us
// <0x1=>61us
// <0x2=>122us
// <0x3=>244us
// <0x4=>488us
// <0x5=>977us
// <0x6=>1953us
// <0x7=>3906us
// <0x8=>7813us
// <0x9=>15625us
// <0xA=>31250us
// <0xB=>62500us
// <0xC=>125000us
// <0xD=>250000us
// <0xE=>500000us
// <0xF=>1000000us
// <id> xosc0_arch_startup
#ifndef CONF_XOSC0_STARTUP
#define CONF_XOSC0_STARTUP 0
#endif
// <q> Clock Switch Back
// <i> Indicates whether Clock Switch Back is enabled or not
// <id> xosc0_arch_swben
#ifndef CONF_XOSC0_SWBEN
#define CONF_XOSC0_SWBEN 0
#endif
// <q> Clock Failure Detector
// <i> Indicates whether Clock Failure Detector is enabled or not
// <id> xosc0_arch_cfden
#ifndef CONF_XOSC0_CFDEN
#define CONF_XOSC0_CFDEN 0
#endif
// <q> Automatic Loop Control Enable
// <i> Indicates whether Automatic Loop Control is enabled or not
// <id> xosc0_arch_enalc
#ifndef CONF_XOSC0_ENALC
#define CONF_XOSC0_ENALC 0
#endif
// <q> Low Buffer Gain Enable
// <i> Indicates whether Low Buffer Gain is enabled or not
// <id> xosc0_arch_lowbufgain
#ifndef CONF_XOSC0_LOWBUFGAIN
#define CONF_XOSC0_LOWBUFGAIN 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> xosc0_arch_ondemand
#ifndef CONF_XOSC0_ONDEMAND
#define CONF_XOSC0_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> xosc0_arch_runstdby
#ifndef CONF_XOSC0_RUNSTDBY
#define CONF_XOSC0_RUNSTDBY 0
#endif
// <q> Crystal connected to XIN/XOUT Enable
// <i> Indicates whether the connections between the I/O pads and the external clock or crystal oscillator is enabled or not
// <id> xosc0_arch_xtalen
#ifndef CONF_XOSC0_XTALEN
#define CONF_XOSC0_XTALEN 0
#endif
//</h>
//</e>
#if CONF_XOSC0_FREQUENCY >= 32000000
#define CONF_XOSC0_CFDPRESC 0x0
#define CONF_XOSC0_IMULT 0x7
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 24000000
#define CONF_XOSC0_CFDPRESC 0x1
#define CONF_XOSC0_IMULT 0x6
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 16000000
#define CONF_XOSC0_CFDPRESC 0x2
#define CONF_XOSC0_IMULT 0x5
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 8000000
#define CONF_XOSC0_CFDPRESC 0x3
#define CONF_XOSC0_IMULT 0x4
#define CONF_XOSC0_IPTAT 0x3
#endif
// <e> External Multipurpose Crystal Oscillator Configuration
// <i> Indicates whether configuration for XOSC1 is enabled or not
// <id> enable_xosc1
#ifndef CONF_XOSC1_CONFIG
#define CONF_XOSC1_CONFIG 0
#endif
// <o> Frequency <8000000-48000000>
// <i> Oscillation frequency of the resonator connected to the External Multipurpose Crystal Oscillator.
// <id> xosc1_frequency
#ifndef CONF_XOSC_FREQUENCY
#define CONF_XOSC1_FREQUENCY 12000000
#endif
// <h> External Multipurpose Crystal Oscillator Control
// <q> Oscillator enable
// <i> Indicates whether External Multipurpose Crystal Oscillator is enabled or not
// <id> xosc1_arch_enable
#ifndef CONF_XOSC1_ENABLE
#define CONF_XOSC1_ENABLE 0
#endif
// <o> Start-Up Time
// <0x0=>31us
// <0x1=>61us
// <0x2=>122us
// <0x3=>244us
// <0x4=>488us
// <0x5=>977us
// <0x6=>1953us
// <0x7=>3906us
// <0x8=>7813us
// <0x9=>15625us
// <0xA=>31250us
// <0xB=>62500us
// <0xC=>125000us
// <0xD=>250000us
// <0xE=>500000us
// <0xF=>1000000us
// <id> xosc1_arch_startup
#ifndef CONF_XOSC1_STARTUP
#define CONF_XOSC1_STARTUP 0
#endif
// <q> Clock Switch Back
// <i> Indicates whether Clock Switch Back is enabled or not
// <id> xosc1_arch_swben
#ifndef CONF_XOSC1_SWBEN
#define CONF_XOSC1_SWBEN 0
#endif
// <q> Clock Failure Detector
// <i> Indicates whether Clock Failure Detector is enabled or not
// <id> xosc1_arch_cfden
#ifndef CONF_XOSC1_CFDEN
#define CONF_XOSC1_CFDEN 0
#endif
// <q> Automatic Loop Control Enable
// <i> Indicates whether Automatic Loop Control is enabled or not
// <id> xosc1_arch_enalc
#ifndef CONF_XOSC1_ENALC
#define CONF_XOSC1_ENALC 0
#endif
// <q> Low Buffer Gain Enable
// <i> Indicates whether Low Buffer Gain is enabled or not
// <id> xosc1_arch_lowbufgain
#ifndef CONF_XOSC1_LOWBUFGAIN
#define CONF_XOSC1_LOWBUFGAIN 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> xosc1_arch_ondemand
#ifndef CONF_XOSC1_ONDEMAND
#define CONF_XOSC1_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> xosc1_arch_runstdby
#ifndef CONF_XOSC1_RUNSTDBY
#define CONF_XOSC1_RUNSTDBY 0
#endif
// <q> Crystal connected to XIN/XOUT Enable
// <i> Indicates whether the connections between the I/O pads and the external clock or crystal oscillator is enabled or not
// <id> xosc1_arch_xtalen
#ifndef CONF_XOSC1_XTALEN
#define CONF_XOSC1_XTALEN 0
#endif
//</h>
//</e>
#if CONF_XOSC1_FREQUENCY >= 32000000
#define CONF_XOSC1_CFDPRESC 0x0
#define CONF_XOSC1_IMULT 0x7
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 24000000
#define CONF_XOSC1_CFDPRESC 0x1
#define CONF_XOSC1_IMULT 0x6
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 16000000
#define CONF_XOSC1_CFDPRESC 0x2
#define CONF_XOSC1_IMULT 0x5
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 8000000
#define CONF_XOSC1_CFDPRESC 0x3
#define CONF_XOSC1_IMULT 0x4
#define CONF_XOSC1_IPTAT 0x3
#endif
// <e> DFLL Configuration
// <i> Indicates whether configuration for DFLL is enabled or not
// <id> enable_dfll
#ifndef CONF_DFLL_CONFIG
#define CONF_DFLL_CONFIG 0
#endif
// <y> Reference Clock Source
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source
// <id> dfll_ref_clock
#ifndef CONF_DFLL_GCLK
#define CONF_DFLL_GCLK GCLK_PCHCTRL_GEN_GCLK3_Val
#endif
// <h> Digital Frequency Locked Loop Control
// <q> DFLL Enable
// <i> Indicates whether DFLL is enabled or not
// <id> dfll_arch_enable
#ifndef CONF_DFLL_ENABLE
#define CONF_DFLL_ENABLE 1
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> dfll_arch_ondemand
#ifndef CONF_DFLL_ONDEMAND
#define CONF_DFLL_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> dfll_arch_runstdby
#ifndef CONF_DFLL_RUNSTDBY
#define CONF_DFLL_RUNSTDBY 0
#endif
// <q> USB Clock Recovery Mode
// <i> Indicates whether USB Clock Recovery Mode is enabled or not
// <id> dfll_arch_usbcrm
#ifndef CONF_DFLL_USBCRM
#define CONF_DFLL_USBCRM 1
#endif
// <q> Wait Lock
// <i> Indicates whether Wait Lock is enabled or not
// <id> dfll_arch_waitlock
#ifndef CONF_DFLL_WAITLOCK
#define CONF_DFLL_WAITLOCK 1
#endif
// <q> Bypass Coarse Lock
// <i> Indicates whether Bypass Coarse Lock is enabled or not
// <id> dfll_arch_bplckc
#ifndef CONF_DFLL_BPLCKC
#define CONF_DFLL_BPLCKC 0
#endif
// <q> Quick Lock Disable
// <i> Indicates whether Quick Lock Disable is enabled or not
// <id> dfll_arch_qldis
#ifndef CONF_DFLL_QLDIS
#define CONF_DFLL_QLDIS 0
#endif
// <q> Chill Cycle Disable
// <i> Indicates whether Chill Cycle Disable is enabled or not
// <id> dfll_arch_ccdis
#ifndef CONF_DFLL_CCDIS
#define CONF_DFLL_CCDIS 1
#endif
// <q> Lose Lock After Wake
// <i> Indicates whether Lose Lock After Wake is enabled or not
// <id> dfll_arch_llaw
#ifndef CONF_DFLL_LLAW
#define CONF_DFLL_LLAW 0
#endif
// <q> Stable DFLL Frequency
// <i> Indicates whether Stable DFLL Frequency is enabled or not
// <id> dfll_arch_stable
#ifndef CONF_DFLL_STABLE
#define CONF_DFLL_STABLE 0
#endif
// <o> Operating Mode Selection
// <0=>Open Loop Mode
// <1=>Closed Loop Mode
// <id> dfll_mode
#ifndef CONF_DFLL_MODE
#define CONF_DFLL_MODE 0x0
#endif
// <o> Coarse Maximum Step <0x0-0x1F>
// <id> dfll_arch_cstep
#ifndef CONF_DFLL_CSTEP
#define CONF_DFLL_CSTEP 0x1
#endif
// <o> Fine Maximum Step <0x0-0xFF>
// <id> dfll_arch_fstep
#ifndef CONF_DFLL_FSTEP
#define CONF_DFLL_FSTEP 0x1
#endif
// <o> DFLL Multiply Factor <0x0-0xFFFF>
// <id> dfll_mul
#ifndef CONF_DFLL_MUL
#define CONF_DFLL_MUL 0x0
#endif
// <e> DFLL Calibration Overwrite
// <i> Indicates whether Overwrite Calibration value of DFLL
// <id> dfll_arch_calibration
#ifndef CONF_DFLL_OVERWRITE_CALIBRATION
#define CONF_DFLL_OVERWRITE_CALIBRATION 0
#endif
// <o> Coarse Value <0x0-0x3F>
// <id> dfll_arch_coarse
#ifndef CONF_DFLL_COARSE
#define CONF_DFLL_COARSE (0x1f / 4)
#endif
// <o> Fine Value <0x0-0xFF>
// <id> dfll_arch_fine
#ifndef CONF_DFLL_FINE
#define CONF_DFLL_FINE (0x80)
#endif
//</e>
//</h>
//</e>
// <e> FDPLL0 Configuration
// <i> Indicates whether configuration for FDPLL0 is enabled or not
// <id> enable_fdpll0
#ifndef CONF_FDPLL0_CONFIG
#define CONF_FDPLL0_CONFIG 1
#endif
// <y> Reference Clock Source
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source.
// <id> fdpll0_ref_clock
#ifndef CONF_FDPLL0_GCLK
#define CONF_FDPLL0_GCLK GCLK_PCHCTRL_GEN_GCLK5_Val
#endif
// <h> Digital Phase Locked Loop Control
// <q> Enable
// <i> Indicates whether Digital Phase Locked Loop is enabled or not
// <id> fdpll0_arch_enable
#ifndef CONF_FDPLL0_ENABLE
#define CONF_FDPLL0_ENABLE 1
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> fdpll0_arch_ondemand
#ifndef CONF_FDPLL0_ONDEMAND
#define CONF_FDPLL0_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> fdpll0_arch_runstdby
#ifndef CONF_FDPLL0_RUNSTDBY
#define CONF_FDPLL0_RUNSTDBY 0
#endif
// <o> Loop Divider Ratio Fractional Part <0x0-0x1F>
// <id> fdpll0_ldrfrac
#ifndef CONF_FDPLL0_LDRFRAC
#define CONF_FDPLL0_LDRFRAC 0x0
#endif
// <o> Loop Divider Ratio Integer Part <0x0-0x1FFF>
// <id> fdpll0_ldr
#ifndef CONF_FDPLL0_LDR
#define CONF_FDPLL0_LDR 59
#endif
// <o> Clock Divider <0x0-0x7FF>
// <id> fdpll0_clock_div
#ifndef CONF_FDPLL0_DIV
#define CONF_FDPLL0_DIV 0x0
#endif
// <q> DCO Filter Enable
// <i> Indicates whether DCO Filter Enable is enabled or not
// <id> fdpll0_arch_dcoen
#ifndef CONF_FDPLL0_DCOEN
#define CONF_FDPLL0_DCOEN 0
#endif
// <o> Sigma-Delta DCO Filter Selection <0x0-0x7>
// <id> fdpll0_clock_dcofilter
#ifndef CONF_FDPLL0_DCOFILTER
#define CONF_FDPLL0_DCOFILTER 0x0
#endif
// <q> Lock Bypass
// <i> Indicates whether Lock Bypass is enabled or not
// <id> fdpll0_arch_lbypass
#ifndef CONF_FDPLL0_LBYPASS
#define CONF_FDPLL0_LBYPASS 0
#endif
// <o> Lock Time
// <0x0=>No time-out, automatic lock
// <0x4=>The Time-out if no lock within 800 us
// <0x5=>The Time-out if no lock within 900 us
// <0x6=>The Time-out if no lock within 1 ms
// <0x7=>The Time-out if no lock within 11 ms
// <id> fdpll0_arch_ltime
#ifndef CONF_FDPLL0_LTIME
#define CONF_FDPLL0_LTIME 0x0
#endif
// <o> Reference Clock Selection
// <0x0=>GCLK clock reference
// <0x1=>XOSC32K clock reference
// <0x2=>XOSC0 clock reference
// <0x3=>XOSC1 clock reference
// <id> fdpll0_arch_refclk
#ifndef CONF_FDPLL0_REFCLK
#define CONF_FDPLL0_REFCLK 0x0
#endif
// <q> Wake Up Fast
// <i> Indicates whether Wake Up Fast is enabled or not
// <id> fdpll0_arch_wuf
#ifndef CONF_FDPLL0_WUF
#define CONF_FDPLL0_WUF 0
#endif
// <o> Proportional Integral Filter Selection <0x0-0xF>
// <id> fdpll0_arch_filter
#ifndef CONF_FDPLL0_FILTER
#define CONF_FDPLL0_FILTER 0x0
#endif
//</h>
//</e>
// <e> FDPLL1 Configuration
// <i> Indicates whether configuration for FDPLL1 is enabled or not
// <id> enable_fdpll1
#ifndef CONF_FDPLL1_CONFIG
#define CONF_FDPLL1_CONFIG 0
#endif
// <y> Reference Clock Source
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source.
// <id> fdpll1_ref_clock
#ifndef CONF_FDPLL1_GCLK
#define CONF_FDPLL1_GCLK GCLK_GENCTRL_SRC_XOSC32K
#endif
// <h> Digital Phase Locked Loop Control
// <q> Enable
// <i> Indicates whether Digital Phase Locked Loop is enabled or not
// <id> fdpll1_arch_enable
#ifndef CONF_FDPLL1_ENABLE
#define CONF_FDPLL1_ENABLE 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> fdpll1_arch_ondemand
#ifndef CONF_FDPLL1_ONDEMAND
#define CONF_FDPLL1_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> fdpll1_arch_runstdby
#ifndef CONF_FDPLL1_RUNSTDBY
#define CONF_FDPLL1_RUNSTDBY 0
#endif
// <o> Loop Divider Ratio Fractional Part <0x0-0x1F>
// <id> fdpll1_ldrfrac
#ifndef CONF_FDPLL1_LDRFRAC
#define CONF_FDPLL1_LDRFRAC 0xd
#endif
// <o> Loop Divider Ratio Integer Part <0x0-0x1FFF>
// <id> fdpll1_ldr
#ifndef CONF_FDPLL1_LDR
#define CONF_FDPLL1_LDR 0x5b7
#endif
// <o> Clock Divider <0x0-0x7FF>
// <id> fdpll1_clock_div
#ifndef CONF_FDPLL1_DIV
#define CONF_FDPLL1_DIV 0x0
#endif
// <q> DCO Filter Enable
// <i> Indicates whether DCO Filter Enable is enabled or not
// <id> fdpll1_arch_dcoen
#ifndef CONF_FDPLL1_DCOEN
#define CONF_FDPLL1_DCOEN 0
#endif
// <o> Sigma-Delta DCO Filter Selection <0x0-0x7>
// <id> fdpll1_clock_dcofilter
#ifndef CONF_FDPLL1_DCOFILTER
#define CONF_FDPLL1_DCOFILTER 0x0
#endif
// <q> Lock Bypass
// <i> Indicates whether Lock Bypass is enabled or not
// <id> fdpll1_arch_lbypass
#ifndef CONF_FDPLL1_LBYPASS
#define CONF_FDPLL1_LBYPASS 0
#endif
// <o> Lock Time
// <0x0=>No time-out, automatic lock
// <0x4=>The Time-out if no lock within 800 us
// <0x5=>The Time-out if no lock within 900 us
// <0x6=>The Time-out if no lock within 1 ms
// <0x7=>The Time-out if no lock within 11 ms
// <id> fdpll1_arch_ltime
#ifndef CONF_FDPLL1_LTIME
#define CONF_FDPLL1_LTIME 0x0
#endif
// <o> Reference Clock Selection
// <0x0=>GCLK clock reference
// <0x1=>XOSC32K clock reference
// <0x2=>XOSC0 clock reference
// <0x3=>XOSC1 clock reference
// <id> fdpll1_arch_refclk
#ifndef CONF_FDPLL1_REFCLK
#define CONF_FDPLL1_REFCLK 0x1
#endif
// <q> Wake Up Fast
// <i> Indicates whether Wake Up Fast is enabled or not
// <id> fdpll1_arch_wuf
#ifndef CONF_FDPLL1_WUF
#define CONF_FDPLL1_WUF 0
#endif
// <o> Proportional Integral Filter Selection <0x0-0xF>
// <id> fdpll1_arch_filter
#ifndef CONF_FDPLL1_FILTER
#define CONF_FDPLL1_FILTER 0x0
#endif
//</h>
//</e>
// <<< end of configuration section >>>
#endif // HPL_OSCCTRL_CONFIG_H

View File

@ -0,0 +1,145 @@
/* Auto-generated config file hpl_rtc_config.h */
#ifndef HPL_RTC_CONFIG_H
#define HPL_RTC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Basic settings
#ifndef CONF_RTC_ENABLE
#define CONF_RTC_ENABLE 1
#endif
// <q> Force reset RTC on initialization
// <i> Force RTC to reset on initialization.
// <i> Note that the previous power down data in RTC is lost if it's enabled.
// <id> rtc_arch_init_reset
#ifndef CONF_RTC_INIT_RESET
#define CONF_RTC_INIT_RESET 0
#endif
// <o> Prescaler configuration
// <0x0=>OFF(Peripheral clock divided by 1)
// <0x1=>Peripheral clock divided by 1
// <0x2=>Peripheral clock divided by 2
// <0x3=>Peripheral clock divided by 4
// <0x4=>Peripheral clock divided by 8
// <0x5=>Peripheral clock divided by 16
// <0x6=>Peripheral clock divided by 32
// <0x7=>Peripheral clock divided by 64
// <0x8=>Peripheral clock divided by 128
// <0x9=>Peripheral clock divided by 256
// <0xA=>Peripheral clock divided by 512
// <0xB=>Peripheral clock divided by 1024
// <i> These bits define the RTC clock relative to the peripheral clock
// <id> rtc_arch_prescaler
#ifndef CONF_RTC_PRESCALER
#define CONF_RTC_PRESCALER 0xb
#endif
// <o> Compare Value <1-4294967295>
// <i> These bits define the RTC Compare value, the ticks period is equal to reciprocal of (rtc clock/prescaler/compare value),
// <i> by default 1K clock input, 1 prescaler, 1 compare value, the ticks period equals to 1ms.
// <id> rtc_arch_comp_val
#ifndef CONF_RTC_COMP_VAL
#define CONF_RTC_COMP_VAL 1
#endif
// <e> Event control
// <id> rtc_event_control
#ifndef CONF_RTC_EVENT_CONTROL_ENABLE
#define CONF_RTC_EVENT_CONTROL_ENABLE 0
#endif
// <q> Periodic Interval 0 Event Output
// <i> This bit indicates whether Periodic interval 0 event is enabled and will be generated
// <id> rtc_pereo0
#ifndef CONF_RTC_PEREO0
#define CONF_RTC_PEREO0 0
#endif
// <q> Periodic Interval 1 Event Output
// <i> This bit indicates whether Periodic interval 1 event is enabled and will be generated
// <id> rtc_pereo1
#ifndef CONF_RTC_PEREO1
#define CONF_RTC_PEREO1 0
#endif
// <q> Periodic Interval 2 Event Output
// <i> This bit indicates whether Periodic interval 2 event is enabled and will be generated
// <id> rtc_pereo2
#ifndef CONF_RTC_PEREO2
#define CONF_RTC_PEREO2 0
#endif
// <q> Periodic Interval 3 Event Output
// <i> This bit indicates whether Periodic interval 3 event is enabled and will be generated
// <id> rtc_pereo3
#ifndef CONF_RTC_PEREO3
#define CONF_RTC_PEREO3 0
#endif
// <q> Periodic Interval 4 Event Output
// <i> This bit indicates whether Periodic interval 4 event is enabled and will be generated
// <id> rtc_pereo4
#ifndef CONF_RTC_PEREO4
#define CONF_RTC_PEREO4 0
#endif
// <q> Periodic Interval 5 Event Output
// <i> This bit indicates whether Periodic interval 5 event is enabled and will be generated
// <id> rtc_pereo5
#ifndef CONF_RTC_PEREO5
#define CONF_RTC_PEREO5 0
#endif
// <q> Periodic Interval 6 Event Output
// <i> This bit indicates whether Periodic interval 6 event is enabled and will be generated
// <id> rtc_pereo6
#ifndef CONF_RTC_PEREO6
#define CONF_RTC_PEREO6 0
#endif
// <q> Periodic Interval 7 Event Output
// <i> This bit indicates whether Periodic interval 7 event is enabled and will be generated
// <id> rtc_pereo7
#ifndef CONF_RTC_PEREO7
#define CONF_RTC_PEREO7 0
#endif
// <q> Compare 0 Event Output
// <i> This bit indicates whether Compare O event is enabled and will be generated
// <id> rtc_cmpeo0
#ifndef CONF_RTC_COMPE0
#define CONF_RTC_COMPE0 0
#endif
// <q> Compare 1 Event Output
// <i> This bit indicates whether Compare 1 event is enabled and will be generated
// <id> rtc_cmpeo1
#ifndef CONF_RTC_COMPE1
#define CONF_RTC_COMPE1 0
#endif
// <q> Overflow Event Output
// <i> This bit indicates whether Overflow event is enabled and will be generated
// <id> rtc_ovfeo
#ifndef CONF_RTC_OVFEO
#define CONF_RTC_OVFEO 0
#endif
// <q> Tamper Event Output
// <i> This bit indicates whether Tamper event output is enabled and will be generated
// <id> rtc_tampereo
#ifndef CONF_RTC_TAMPEREO
#define CONF_RTC_TAMPEREO 0
#endif
// <q> Tamper Event Input
// <i> This bit indicates whether Tamper event input is enabled and will be generated
// <id> rtc_tampevei
#ifndef CONF_RTC_TAMPEVEI
#define CONF_RTC_TAMPEVEI 0
#endif
// </e>
// </h>
// <<< end of configuration section >>>
#endif // HPL_RTC_CONFIG_H

View File

@ -0,0 +1,751 @@
// For CircuitPython, use SERCOM settings as prototypes to set
// the default settings. This file defines these SERCOMs
//
// SERCOM0: SPI with hal_spi_m_sync.c driver: spi master synchronous
// SERCOM1: I2C with hal_i2c_m_sync.c driver: i2c master synchronous
// SERCOM2: USART with hal_usart_async.c driver: usart asynchronous
// SERCOM3: SPI with hal_spi_m_dma.c: spi master DMA
#define PROTOTYPE_SERCOM_SPI_M_SYNC SERCOM0
#define PROTOTYPE_SERCOM_SPI_M_SYNC_CLOCK_FREQUENCY CONF_GCLK_SERCOM0_CORE_FREQUENCY
#define PROTOTYPE_SERCOM_I2CM_SYNC SERCOM1
#define PROTOTYPE_SERCOM_USART_ASYNC SERCOM2
#define PROTOTYPE_SERCOM_USART_ASYNC_CLOCK_FREQUENCY CONF_GCLK_SERCOM2_CORE_FREQUENCY
/* Auto-generated config file hpl_sercom_config.h */
#ifndef HPL_SERCOM_CONFIG_H
#define HPL_SERCOM_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#include <peripheral_clk_config.h>
// Enable configuration of module
#ifndef CONF_SERCOM_0_SPI_ENABLE
#define CONF_SERCOM_0_SPI_ENABLE 1
#endif
// Set module in SPI Master mode
#ifndef CONF_SERCOM_0_SPI_MODE
#define CONF_SERCOM_0_SPI_MODE 0x03
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable receive buffer to receive data from slave (RXEN)
// <id> spi_master_rx_enable
#ifndef CONF_SERCOM_0_SPI_RXEN
#define CONF_SERCOM_0_SPI_RXEN 0x1
#endif
// <o> Character Size
// <i> Bit size for all characters sent over the SPI bus (CHSIZE)
// <0x0=>8 bits
// <0x1=>9 bits
// <id> spi_master_character_size
#ifndef CONF_SERCOM_0_SPI_CHSIZE
#define CONF_SERCOM_0_SPI_CHSIZE 0x0
#endif
// <o> Baud rate <1-12000000>
// <i> The SPI data transfer rate
// <id> spi_master_baud_rate
#ifndef CONF_SERCOM_0_SPI_BAUD
#define CONF_SERCOM_0_SPI_BAUD 50000
#endif
// </h>
// <e> Advanced Configuration
// <id> spi_master_advanced
#ifndef CONF_SERCOM_0_SPI_ADVANCED
#define CONF_SERCOM_0_SPI_ADVANCED 1
#endif
// <o> Dummy byte <0x00-0x1ff>
// <id> spi_master_dummybyte
// <i> Dummy byte used when reading data from the slave without sending any data
#ifndef CONF_SERCOM_0_SPI_DUMMYBYTE
#define CONF_SERCOM_0_SPI_DUMMYBYTE 0x1ff
#endif
// <o> Data Order
// <0=>MSB first
// <1=>LSB first
// <i> I least significant or most significant bit is shifted out first (DORD)
// <id> spi_master_arch_dord
#ifndef CONF_SERCOM_0_SPI_DORD
#define CONF_SERCOM_0_SPI_DORD 0x0
#endif
// <o> Clock Polarity
// <0=>SCK is low when idle
// <1=>SCK is high when idle
// <i> Determines if the leading edge is rising or falling with a corresponding opposite edge at the trailing edge. (CPOL)
// <id> spi_master_arch_cpol
#ifndef CONF_SERCOM_0_SPI_CPOL
#define CONF_SERCOM_0_SPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Sample input on leading edge
// <0x1=>Sample input on trailing edge
// <i> Determines if input data is sampled on leading or trailing SCK edge. (CPHA)
// <id> spi_master_arch_cpha
#ifndef CONF_SERCOM_0_SPI_CPHA
#define CONF_SERCOM_0_SPI_CPHA 0x0
#endif
// <o> Immediate Buffer Overflow Notification
// <i> Controls when OVF is asserted (IBON)
// <0x0=>In data stream
// <0x1=>On buffer overflow
// <id> spi_master_arch_ibon
#ifndef CONF_SERCOM_0_SPI_IBON
#define CONF_SERCOM_0_SPI_IBON 0x0
#endif
// <q> Run in stand-by
// <i> Module stays active in stand-by sleep mode. (RUNSTDBY)
// <id> spi_master_arch_runstdby
#ifndef CONF_SERCOM_0_SPI_RUNSTDBY
#define CONF_SERCOM_0_SPI_RUNSTDBY 0x0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger. (DBGSTOP)
// <0=>Keep running
// <1=>Halt
// <id> spi_master_arch_dbgstop
#ifndef CONF_SERCOM_0_SPI_DBGSTOP
#define CONF_SERCOM_0_SPI_DBGSTOP 0
#endif
// </e>
// Address mode disabled in master mode
#ifndef CONF_SERCOM_0_SPI_AMODE_EN
#define CONF_SERCOM_0_SPI_AMODE_EN 0
#endif
#ifndef CONF_SERCOM_0_SPI_AMODE
#define CONF_SERCOM_0_SPI_AMODE 0
#endif
#ifndef CONF_SERCOM_0_SPI_ADDR
#define CONF_SERCOM_0_SPI_ADDR 0
#endif
#ifndef CONF_SERCOM_0_SPI_ADDRMASK
#define CONF_SERCOM_0_SPI_ADDRMASK 0
#endif
#ifndef CONF_SERCOM_0_SPI_SSDE
#define CONF_SERCOM_0_SPI_SSDE 0
#endif
#ifndef CONF_SERCOM_0_SPI_MSSEN
#define CONF_SERCOM_0_SPI_MSSEN 0x0
#endif
#ifndef CONF_SERCOM_0_SPI_PLOADEN
#define CONF_SERCOM_0_SPI_PLOADEN 0
#endif
// <o> Receive Data Pinout
// <0x0=>PAD[0]
// <0x1=>PAD[1]
// <0x2=>PAD[2]
// <0x3=>PAD[3]
// <id> spi_master_rxpo
#ifndef CONF_SERCOM_0_SPI_RXPO
#define CONF_SERCOM_0_SPI_RXPO 2
#endif
// <o> Transmit Data Pinout
// <0x0=>PAD[0,1]_DO_SCK
// <0x1=>PAD[2,3]_DO_SCK
// <0x2=>PAD[3,1]_DO_SCK
// <0x3=>PAD[0,3]_DO_SCK
// <id> spi_master_txpo
#ifndef CONF_SERCOM_0_SPI_TXPO
#define CONF_SERCOM_0_SPI_TXPO 0
#endif
// Calculate baud register value from requested baudrate value
#ifndef CONF_SERCOM_0_SPI_BAUD_RATE
#define CONF_SERCOM_0_SPI_BAUD_RATE ((float)CONF_GCLK_SERCOM0_CORE_FREQUENCY / (float)(2 * CONF_SERCOM_0_SPI_BAUD)) - 1
#endif
#include <peripheral_clk_config.h>
#ifndef SERCOM_I2CM_CTRLA_MODE_I2C_MASTER
#define SERCOM_I2CM_CTRLA_MODE_I2C_MASTER (5 << 2)
#endif
#ifndef CONF_SERCOM_1_I2CM_ENABLE
#define CONF_SERCOM_1_I2CM_ENABLE 1
#endif
// <h> Basic
// <o> I2C Bus clock speed (Hz) <1-400000>
// <i> I2C Bus clock (SCL) speed measured in Hz
// <id> i2c_master_baud_rate
#ifndef CONF_SERCOM_1_I2CM_BAUD
#define CONF_SERCOM_1_I2CM_BAUD 100000
#endif
// </h>
// <e> Advanced
// <id> i2c_master_advanced
#ifndef CONF_SERCOM_1_I2CM_ADVANCED_CONFIG
#define CONF_SERCOM_1_I2CM_ADVANCED_CONFIG 1
#endif
// <o> TRise (ns) <0-300>
// <i> Determined by the bus impedance, check electric characteristics in the datasheet
// <i> Standard Fast Mode: typical 215ns, max 300ns
// <i> Fast Mode +: typical 60ns, max 100ns
// <i> High Speed Mode: typical 20ns, max 40ns
// <id> i2c_master_arch_trise
#ifndef CONF_SERCOM_1_I2CM_TRISE
#define CONF_SERCOM_1_I2CM_TRISE 215
#endif
// <q> Master SCL Low Extended Time-Out (MEXTTOEN)
// <i> This enables the master SCL low extend time-out
// <id> i2c_master_arch_mexttoen
#ifndef CONF_SERCOM_1_I2CM_MEXTTOEN
#define CONF_SERCOM_1_I2CM_MEXTTOEN 0
#endif
// <q> Slave SCL Low Extend Time-Out (SEXTTOEN)
// <i> Enables the slave SCL low extend time-out. If SCL is cumulatively held low for greater than 25ms from the initial START to a STOP, the slave will release its clock hold if enabled and reset the internal state machine
// <id> i2c_master_arch_sexttoen
#ifndef CONF_SERCOM_1_I2CM_SEXTTOEN
#define CONF_SERCOM_1_I2CM_SEXTTOEN 0
#endif
// <q> SCL Low Time-Out (LOWTOUT)
// <i> Enables SCL low time-out. If SCL is held low for 25ms-35ms, the master will release it's clock hold
// <id> i2c_master_arch_lowtout
#ifndef CONF_SERCOM_1_I2CM_LOWTOUT
#define CONF_SERCOM_1_I2CM_LOWTOUT 0
#endif
// <o> Inactive Time-Out (INACTOUT)
// <0x0=>Disabled
// <0x1=>5-6 SCL cycle time-out(50-60us)
// <0x2=>10-11 SCL cycle time-out(100-110us)
// <0x3=>20-21 SCL cycle time-out(200-210us)
// <i> Defines if inactivity time-out should be enabled, and how long the time-out should be
// <id> i2c_master_arch_inactout
#ifndef CONF_SERCOM_1_I2CM_INACTOUT
#define CONF_SERCOM_1_I2CM_INACTOUT 0x0
#endif
// <o> SDA Hold Time (SDAHOLD)
// <0=>Disabled
// <1=>50-100ns hold time
// <2=>300-600ns hold time
// <3=>400-800ns hold time
// <i> Defines the SDA hold time with respect to the negative edge of SCL
// <id> i2c_master_arch_sdahold
#ifndef CONF_SERCOM_1_I2CM_SDAHOLD
#define CONF_SERCOM_1_I2CM_SDAHOLD 0x2
#endif
// <q> Run in stand-by
// <i> Determine if the module shall run in standby sleep mode
// <id> i2c_master_arch_runstdby
#ifndef CONF_SERCOM_1_I2CM_RUNSTDBY
#define CONF_SERCOM_1_I2CM_RUNSTDBY 0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger.
// <0=>Keep running
// <1=>Halt
// <id> i2c_master_arch_dbgstop
#ifndef CONF_SERCOM_1_I2CM_DEBUG_STOP_MODE
#define CONF_SERCOM_1_I2CM_DEBUG_STOP_MODE 0
#endif
// </e>
#ifndef CONF_SERCOM_1_I2CM_SPEED
#define CONF_SERCOM_1_I2CM_SPEED 0x00 // Speed: Standard/Fast mode
#endif
#if CONF_SERCOM_1_I2CM_TRISE < 215 || CONF_SERCOM_1_I2CM_TRISE > 300
#warning Bad I2C Rise time for Standard/Fast mode, reset to 215ns
#undef CONF_SERCOM_1_I2CM_TRISE
#define CONF_SERCOM_1_I2CM_TRISE 215
#endif
// gclk_freq - (i2c_scl_freq * 10) - (gclk_freq * i2c_scl_freq * Trise)
// BAUD + BAUDLOW = --------------------------------------------------------------------
// i2c_scl_freq
// BAUD: register value low [7:0]
// BAUDLOW: register value high [15:8], only used for odd BAUD + BAUDLOW
#define CONF_SERCOM_1_I2CM_BAUD_BAUDLOW \
(((CONF_GCLK_SERCOM1_CORE_FREQUENCY - (CONF_SERCOM_1_I2CM_BAUD * 10) \
- (CONF_SERCOM_1_I2CM_TRISE * (CONF_SERCOM_1_I2CM_BAUD / 100) * (CONF_GCLK_SERCOM1_CORE_FREQUENCY / 10000) \
/ 1000)) \
* 10 \
+ 5) \
/ (CONF_SERCOM_1_I2CM_BAUD * 10))
#ifndef CONF_SERCOM_1_I2CM_BAUD_RATE
#if CONF_SERCOM_1_I2CM_BAUD_BAUDLOW > (0xFF * 2)
#warning Requested I2C baudrate too low, please check
#define CONF_SERCOM_1_I2CM_BAUD_RATE 0xFF
#elif CONF_SERCOM_1_I2CM_BAUD_BAUDLOW <= 1
#warning Requested I2C baudrate too high, please check
#define CONF_SERCOM_1_I2CM_BAUD_RATE 1
#else
#define CONF_SERCOM_1_I2CM_BAUD_RATE \
((CONF_SERCOM_1_I2CM_BAUD_BAUDLOW & 0x1) \
? (CONF_SERCOM_1_I2CM_BAUD_BAUDLOW / 2) + ((CONF_SERCOM_1_I2CM_BAUD_BAUDLOW / 2 + 1) << 8) \
: (CONF_SERCOM_1_I2CM_BAUD_BAUDLOW / 2))
#endif
#endif
#include <peripheral_clk_config.h>
#ifndef CONF_SERCOM_2_USART_ENABLE
#define CONF_SERCOM_2_USART_ENABLE 1
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable input buffer in SERCOM module
// <id> usart_rx_enable
#ifndef CONF_SERCOM_2_USART_RXEN
#define CONF_SERCOM_2_USART_RXEN 1
#endif
// <q> Transmitt buffer enable
// <i> Enable output buffer in SERCOM module
// <id> usart_tx_enable
#ifndef CONF_SERCOM_2_USART_TXEN
#define CONF_SERCOM_2_USART_TXEN 1
#endif
// <o> Frame parity
// <0x0=>No parity
// <0x1=>Even parity
// <0x2=>Odd parity
// <i> Parity bit mode for USART frame
// <id> usart_parity
#ifndef CONF_SERCOM_2_USART_PARITY
#define CONF_SERCOM_2_USART_PARITY 0x0
#endif
// <o> Character Size
// <0x0=>8 bits
// <0x1=>9 bits
// <0x5=>5 bits
// <0x6=>6 bits
// <0x7=>7 bits
// <i> Data character size in USART frame
// <id> usart_character_size
#ifndef CONF_SERCOM_2_USART_CHSIZE
#define CONF_SERCOM_2_USART_CHSIZE 0x0
#endif
// <o> Stop Bit
// <0=>One stop bit
// <1=>Two stop bits
// <i> Number of stop bits in USART frame
// <id> usart_stop_bit
#ifndef CONF_SERCOM_2_USART_SBMODE
#define CONF_SERCOM_2_USART_SBMODE 0
#endif
// <o> Baud rate <1-3000000>
// <i> USART baud rate setting
// <id> usart_baud_rate
#ifndef CONF_SERCOM_2_USART_BAUD
#define CONF_SERCOM_2_USART_BAUD 9600
#endif
// </h>
// <e> Advanced configuration
// <id> usart_advanced
#ifndef CONF_SERCOM_2_USART_ADVANCED_CONFIG
#define CONF_SERCOM_2_USART_ADVANCED_CONFIG 1
#endif
// <q> Run in stand-by
// <i> Keep the module running in standby sleep mode
// <id> usart_arch_runstdby
#ifndef CONF_SERCOM_2_USART_RUNSTDBY
#define CONF_SERCOM_2_USART_RUNSTDBY 0
#endif
// <q> Immediate Buffer Overflow Notification
// <i> Controls when the BUFOVF status bit is asserted
// <id> usart_arch_ibon
#ifndef CONF_SERCOM_2_USART_IBON
#define CONF_SERCOM_2_USART_IBON 0
#endif
// <q> Start of Frame Detection Enable
// <i> Will wake the device from any sleep mode if usart_init and usart_enable was run priort to going to sleep. (receive buffer must be enabled)
// <id> usart_arch_sfde
#ifndef CONF_SERCOM_2_USART_SFDE
#define CONF_SERCOM_2_USART_SFDE 0
#endif
// <q> Collision Detection Enable
// <i> Collision detection enable
// <id> usart_arch_cloden
#ifndef CONF_SERCOM_2_USART_CLODEN
#define CONF_SERCOM_2_USART_CLODEN 0
#endif
// <o> Operating Mode
// <0x0=>USART with external clock
// <0x1=>USART with internal clock
// <i> Drive the shift register by an internal clock generated by the baud rate generator or an external clock supplied on the XCK pin.
// <id> usart_arch_clock_mode
#ifndef CONF_SERCOM_2_USART_MODE
#define CONF_SERCOM_2_USART_MODE 0x1
#endif
// <o> Sample Rate
// <0x0=>16x arithmetic
// <0x1=>16x fractional
// <0x2=>8x arithmetic
// <0x3=>8x fractional
// <0x3=>3x
// <i> How many over-sampling bits used when samling data state
// <id> usart_arch_sampr
#ifndef CONF_SERCOM_2_USART_SAMPR
#define CONF_SERCOM_2_USART_SAMPR 0x0
#endif
// <o> Sample Adjustment
// <0x0=>7-8-9 (3-4-5 8-bit over-sampling)
// <0x1=>9-10-11 (4-5-6 8-bit over-sampling)
// <0x2=>11-12-13 (5-6-7 8-bit over-sampling)
// <0x3=>13-14-15 (6-7-8 8-bit over-sampling)
// <i> Adjust which samples to use for data sampling in asynchronous mode
// <id> usart_arch_sampa
#ifndef CONF_SERCOM_2_USART_SAMPA
#define CONF_SERCOM_2_USART_SAMPA 0x0
#endif
// <o> Fractional Part <0-7>
// <i> Fractional part of the baud rate if baud rate generator is in fractional mode
// <id> usart_arch_fractional
#ifndef CONF_SERCOM_2_USART_FRACTIONAL
#define CONF_SERCOM_2_USART_FRACTIONAL 0x0
#endif
// <o> Data Order
// <0=>MSB is transmitted first
// <1=>LSB is transmitted first
// <i> Data order of the data bits in the frame
// <id> usart_arch_dord
#ifndef CONF_SERCOM_2_USART_DORD
#define CONF_SERCOM_2_USART_DORD 1
#endif
// Does not do anything in UART mode
#define CONF_SERCOM_2_USART_CPOL 0
// <o> Encoding Format
// <0=>No encoding
// <1=>IrDA encoded
// <id> usart_arch_enc
#ifndef CONF_SERCOM_2_USART_ENC
#define CONF_SERCOM_2_USART_ENC 0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger.
// <0=>Keep running
// <1=>Halt
// <id> usart_arch_dbgstop
#ifndef CONF_SERCOM_2_USART_DEBUG_STOP_MODE
#define CONF_SERCOM_2_USART_DEBUG_STOP_MODE 0
#endif
// </e>
#ifndef CONF_SERCOM_2_USART_INACK
#define CONF_SERCOM_2_USART_INACK 0x0
#endif
#ifndef CONF_SERCOM_2_USART_DSNACK
#define CONF_SERCOM_2_USART_DSNACK 0x0
#endif
#ifndef CONF_SERCOM_2_USART_MAXITER
#define CONF_SERCOM_2_USART_MAXITER 0x7
#endif
#ifndef CONF_SERCOM_2_USART_GTIME
#define CONF_SERCOM_2_USART_GTIME 0x2
#endif
#define CONF_SERCOM_2_USART_RXINV 0x0
#define CONF_SERCOM_2_USART_TXINV 0x0
#ifndef CONF_SERCOM_2_USART_CMODE
#define CONF_SERCOM_2_USART_CMODE 0
#endif
#ifndef CONF_SERCOM_2_USART_RXPO
#define CONF_SERCOM_2_USART_RXPO 1 /* RX is on PIN_PA08 */
#endif
#ifndef CONF_SERCOM_2_USART_TXPO
#define CONF_SERCOM_2_USART_TXPO 0 /* TX is on PIN_PA09 */
#endif
/* Set correct parity settings in register interface based on PARITY setting */
#if CONF_SERCOM_2_USART_PARITY == 0
#define CONF_SERCOM_2_USART_PMODE 0
#define CONF_SERCOM_2_USART_FORM 0
#else
#define CONF_SERCOM_2_USART_PMODE CONF_SERCOM_2_USART_PARITY - 1
#define CONF_SERCOM_2_USART_FORM 1
#endif
// Calculate BAUD register value in UART mode
#if CONF_SERCOM_2_USART_SAMPR == 0
#ifndef CONF_SERCOM_2_USART_BAUD_RATE
#define CONF_SERCOM_2_USART_BAUD_RATE \
65536 - ((65536 * 16.0f * CONF_SERCOM_2_USART_BAUD) / CONF_GCLK_SERCOM2_CORE_FREQUENCY)
#endif
#ifndef CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH
#define CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH 0
#endif
#elif CONF_SERCOM_2_USART_SAMPR == 1
#ifndef CONF_SERCOM_2_USART_BAUD_RATE
#define CONF_SERCOM_2_USART_BAUD_RATE \
((CONF_GCLK_SERCOM2_CORE_FREQUENCY) / (CONF_SERCOM_2_USART_BAUD * 16)) - (CONF_SERCOM_2_USART_FRACTIONAL / 8)
#endif
#ifndef CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH
#define CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH 0
#endif
#elif CONF_SERCOM_2_USART_SAMPR == 2
#ifndef CONF_SERCOM_2_USART_BAUD_RATE
#define CONF_SERCOM_2_USART_BAUD_RATE \
65536 - ((65536 * 8.0f * CONF_SERCOM_2_USART_BAUD) / CONF_GCLK_SERCOM2_CORE_FREQUENCY)
#endif
#ifndef CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH
#define CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH 0
#endif
#elif CONF_SERCOM_2_USART_SAMPR == 3
#ifndef CONF_SERCOM_2_USART_BAUD_RATE
#define CONF_SERCOM_2_USART_BAUD_RATE \
((CONF_GCLK_SERCOM2_CORE_FREQUENCY) / (CONF_SERCOM_2_USART_BAUD * 8)) - (CONF_SERCOM_2_USART_FRACTIONAL / 8)
#endif
#ifndef CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH
#define CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH 0
#endif
#elif CONF_SERCOM_2_USART_SAMPR == 4
#ifndef CONF_SERCOM_2_USART_BAUD_RATE
#define CONF_SERCOM_2_USART_BAUD_RATE \
65536 - ((65536 * 3.0f * CONF_SERCOM_2_USART_BAUD) / CONF_GCLK_SERCOM2_CORE_FREQUENCY)
#endif
#ifndef CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH
#define CONF_SERCOM_2_USART_RECEIVE_PULSE_LENGTH 0
#endif
#endif
#include <peripheral_clk_config.h>
// Enable configuration of module
#ifndef CONF_SERCOM_3_SPI_ENABLE
#define CONF_SERCOM_3_SPI_ENABLE 1
#endif
//<o> SPI DMA TX Channel <0-32>
//<i> This defines DMA channel to be used
//<id> spi_master_dma_tx_channel
#ifndef CONF_SERCOM_3_SPI_M_DMA_TX_CHANNEL
#define CONF_SERCOM_3_SPI_M_DMA_TX_CHANNEL 0
#endif
// <e> SPI RX Channel Enable
// <id> spi_master_rx_channel
#ifndef CONF_SERCOM_3_SPI_RX_CHANNEL
#define CONF_SERCOM_3_SPI_RX_CHANNEL 1
#endif
//<o> DMA Channel <0-32>
//<i> This defines DMA channel to be used
//<id> spi_master_dma_rx_channel
#ifndef CONF_SERCOM_3_SPI_M_DMA_RX_CHANNEL
#define CONF_SERCOM_3_SPI_M_DMA_RX_CHANNEL 1
#endif
// </e>
// Set module in SPI Master mode
#ifndef CONF_SERCOM_3_SPI_MODE
#define CONF_SERCOM_3_SPI_MODE 0x03
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable receive buffer to receive data from slave (RXEN)
// <id> spi_master_rx_enable
#ifndef CONF_SERCOM_3_SPI_RXEN
#define CONF_SERCOM_3_SPI_RXEN 0x1
#endif
// <o> Character Size
// <i> Bit size for all characters sent over the SPI bus (CHSIZE)
// <0x0=>8 bits
// <0x1=>9 bits
// <id> spi_master_character_size
#ifndef CONF_SERCOM_3_SPI_CHSIZE
#define CONF_SERCOM_3_SPI_CHSIZE 0x0
#endif
// <o> Baud rate <1-12000000>
// <i> The SPI data transfer rate
// <id> spi_master_baud_rate
#ifndef CONF_SERCOM_3_SPI_BAUD
#define CONF_SERCOM_3_SPI_BAUD 50000
#endif
// </h>
// <e> Advanced Configuration
// <id> spi_master_advanced
#ifndef CONF_SERCOM_3_SPI_ADVANCED
#define CONF_SERCOM_3_SPI_ADVANCED 0
#endif
// <o> Dummy byte <0x00-0x1ff>
// <id> spi_master_dummybyte
// <i> Dummy byte used when reading data from the slave without sending any data
#ifndef CONF_SERCOM_3_SPI_DUMMYBYTE
#define CONF_SERCOM_3_SPI_DUMMYBYTE 0x1ff
#endif
// <o> Data Order
// <0=>MSB first
// <1=>LSB first
// <i> I least significant or most significant bit is shifted out first (DORD)
// <id> spi_master_arch_dord
#ifndef CONF_SERCOM_3_SPI_DORD
#define CONF_SERCOM_3_SPI_DORD 0x0
#endif
// <o> Clock Polarity
// <0=>SCK is low when idle
// <1=>SCK is high when idle
// <i> Determines if the leading edge is rising or falling with a corresponding opposite edge at the trailing edge. (CPOL)
// <id> spi_master_arch_cpol
#ifndef CONF_SERCOM_3_SPI_CPOL
#define CONF_SERCOM_3_SPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Sample input on leading edge
// <0x1=>Sample input on trailing edge
// <i> Determines if input data is sampled on leading or trailing SCK edge. (CPHA)
// <id> spi_master_arch_cpha
#ifndef CONF_SERCOM_3_SPI_CPHA
#define CONF_SERCOM_3_SPI_CPHA 0x0
#endif
// <o> Immediate Buffer Overflow Notification
// <i> Controls when OVF is asserted (IBON)
// <0x0=>In data stream
// <0x1=>On buffer overflow
// <id> spi_master_arch_ibon
#ifndef CONF_SERCOM_3_SPI_IBON
#define CONF_SERCOM_3_SPI_IBON 0x0
#endif
// <q> Run in stand-by
// <i> Module stays active in stand-by sleep mode. (RUNSTDBY)
// <id> spi_master_arch_runstdby
#ifndef CONF_SERCOM_3_SPI_RUNSTDBY
#define CONF_SERCOM_3_SPI_RUNSTDBY 0x0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger. (DBGSTOP)
// <0=>Keep running
// <1=>Halt
// <id> spi_master_arch_dbgstop
#ifndef CONF_SERCOM_3_SPI_DBGSTOP
#define CONF_SERCOM_3_SPI_DBGSTOP 0
#endif
// </e>
// Address mode disabled in master mode
#ifndef CONF_SERCOM_3_SPI_AMODE_EN
#define CONF_SERCOM_3_SPI_AMODE_EN 0
#endif
#ifndef CONF_SERCOM_3_SPI_AMODE
#define CONF_SERCOM_3_SPI_AMODE 0
#endif
#ifndef CONF_SERCOM_3_SPI_ADDR
#define CONF_SERCOM_3_SPI_ADDR 0
#endif
#ifndef CONF_SERCOM_3_SPI_ADDRMASK
#define CONF_SERCOM_3_SPI_ADDRMASK 0
#endif
#ifndef CONF_SERCOM_3_SPI_SSDE
#define CONF_SERCOM_3_SPI_SSDE 0
#endif
#ifndef CONF_SERCOM_3_SPI_MSSEN
#define CONF_SERCOM_3_SPI_MSSEN 0x0
#endif
#ifndef CONF_SERCOM_3_SPI_PLOADEN
#define CONF_SERCOM_3_SPI_PLOADEN 0
#endif
// <o> Receive Data Pinout
// <0x0=>PAD[0]
// <0x1=>PAD[1]
// <0x2=>PAD[2]
// <0x3=>PAD[3]
// <id> spi_master_rxpo
#ifndef CONF_SERCOM_3_SPI_RXPO
#define CONF_SERCOM_3_SPI_RXPO 2
#endif
// <o> Transmit Data Pinout
// <0x0=>PAD[0,1]_DO_SCK
// <0x1=>PAD[2,3]_DO_SCK
// <0x2=>PAD[3,1]_DO_SCK
// <0x3=>PAD[0,3]_DO_SCK
// <id> spi_master_txpo
#ifndef CONF_SERCOM_3_SPI_TXPO
#define CONF_SERCOM_3_SPI_TXPO 0
#endif
// Calculate baud register value from requested baudrate value
#ifndef CONF_SERCOM_3_SPI_BAUD_RATE
#define CONF_SERCOM_3_SPI_BAUD_RATE ((float)CONF_GCLK_SERCOM3_CORE_FREQUENCY / (float)(2 * CONF_SERCOM_3_SPI_BAUD)) - 1
#endif
// <<< end of configuration section >>>
#endif // HPL_SERCOM_CONFIG_H

View File

@ -0,0 +1,18 @@
/* Auto-generated config file hpl_systick_config.h */
#ifndef HPL_SYSTICK_CONFIG_H
#define HPL_SYSTICK_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Advanced settings
// <q> SysTick exception request
// <i> Indicates whether the generation of SysTick exception is enabled or not
// <id> systick_arch_tickint
#ifndef CONF_SYSTICK_TICKINT
#define CONF_SYSTICK_TICKINT 0
#endif
// </h>
// <<< end of configuration section >>>
#endif // HPL_SYSTICK_CONFIG_H

View File

@ -0,0 +1,209 @@
/* Auto-generated config file hpl_tc_config.h */
#ifndef HPL_TC_CONFIG_H
#define HPL_TC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#include <peripheral_clk_config.h>
#ifndef CONF_TC0_ENABLE
#define CONF_TC0_ENABLE 1
#endif
// <h> Basic settings
// <o> Prescaler
// <0=> No division
// <1=> Divide by 2
// <2=> Divide by 4
// <3=> Divide by 8
// <4=> Divide by 16
// <5=> Divide by 64
// <6=> Divide by 256
// <7=> Divide by 1024
// <i> This defines the prescaler value
// <id> tc_prescaler
#ifndef CONF_TC0_PRESCALER
#define CONF_TC0_PRESCALER 0
#endif
// </h>
// <h> PWM Waveform Output settings
// <o> Waveform Period Value (uS) <0x00-0xFFFFFFFF>
// <i> The unit of this value is us.
// <id> tc_arch_wave_per_val
#ifndef CONF_TC0_WAVE_PER_VAL
#define CONF_TC0_WAVE_PER_VAL 0x3e8
#endif
// <o> Waveform Duty Value (0.1%) <0x00-0x03E8>
// <i> The unit of this value is 1/1000.
// <id> tc_arch_wave_duty_val
#ifndef CONF_TC0_WAVE_DUTY_VAL
#define CONF_TC0_WAVE_DUTY_VAL 0x1f4
#endif
/* Caculate pwm ccx register value based on WAVE_PER_VAL and Waveform Duty Value */
#if CONF_TC0_PRESCALER < TC_CTRLA_PRESCALER_DIV64_Val
#define CONF_TC0_CC0 \
((uint32_t)(((double)CONF_TC0_WAVE_PER_VAL * CONF_GCLK_TC0_FREQUENCY) / 1000000 / (1 << CONF_TC0_PRESCALER) - 1))
#define CONF_TC0_CC1 ((CONF_TC0_CC0 * CONF_TC0_WAVE_DUTY_VAL) / 1000)
#elif CONF_TC0_PRESCALER == TC_CTRLA_PRESCALER_DIV64_Val
#define CONF_TC0_CC0 ((uint32_t)(((double)CONF_TC0_WAVE_PER_VAL * CONF_GCLK_TC0_FREQUENCY) / 64000000 - 1))
#define CONF_TC0_CC1 ((CONF_TC0_CC0 * CONF_TC0_WAVE_DUTY_VAL) / 1000)
#elif CONF_TC0_PRESCALER == TC_CTRLA_PRESCALER_DIV256_Val
#define CONF_TC0_CC0 ((uint32_t)(((double)CONF_TC0_WAVE_PER_VAL * CONF_GCLK_TC0_FREQUENCY) / 256000000 - 1))
#define CONF_TC0_CC1 ((CONF_TC0_CC0 * CONF_TC0_WAVE_DUTY_VAL) / 1000)
#elif CONF_TC0_PRESCALER == TC_CTRLA_PRESCALER_DIV1024_Val
#define CONF_TC0_CC0 ((uint32_t)(((double)CONF_TC0_WAVE_PER_VAL * CONF_GCLK_TC0_FREQUENCY) / 1024000000 - 1))
#define CONF_TC0_CC1 ((CONF_TC0_CC0 * CONF_TC0_WAVE_DUTY_VAL) / 1000)
#endif
// </h>
// <h> Advanced settings
// <y> Mode
// <TC_CTRLA_MODE_COUNT16_Val"> Counter in 16-bit mode
// <TC_CTRLA_MODE_COUNT32_Val"> Counter in 32-bit mode
// <i> These bits mode
// <id> tc_mode
#ifndef CONF_TC0_MODE
#define CONF_TC0_MODE TC_CTRLA_MODE_COUNT16_Val
#endif
// <o> Period Value <0x00000000-0xFFFFFFFF>
// <id> tc_per
#ifndef CONF_TC0_PER
#define CONF_TC0_PER 0x32
#endif
// </h>
// <h> Advanced settings
// <y> Prescaler and Counter Synchronization Selection
// <TC_CTRLA_PRESCSYNC_GCLK_Val"> Reload or reset counter on next GCLK
// <TC_CTRLA_PRESCSYNC_PRESC_Val"> Reload or reset counter on next prescaler clock
// <TC_CTRLA_PRESCSYNC_RESYNC_Val"> Reload or reset counter on next GCLK and reset prescaler counter
// <i> These bits select if on retrigger event, the Counter should be cleared or reloaded on the next GCLK_TCx clock or on the next prescaled GCLK_TCx clock.
// <id> tc_arch_presync
#ifndef CONF_TC0_PRESCSYNC
#define CONF_TC0_PRESCSYNC TC_CTRLA_PRESCSYNC_GCLK_Val
#endif
// <q> Run in standby
// <i> Indicates whether the will continue running in standby sleep mode or not
// <id> tc_arch_runstdby
#ifndef CONF_TC0_RUNSTDBY
#define CONF_TC0_RUNSTDBY 0
#endif
// <q> On-Demand
// <i> Indicates whether the TC0's on-demand mode is on or not
// <id> tc_arch_ondemand
#ifndef CONF_TC0_ONDEMAND
#define CONF_TC0_ONDEMAND 0
#endif
// <o> Auto Lock
// <0x0=>The Lock Update bit is not affected on overflow/underflow and re-trigger event
// <0x1=>The Lock Update bit is set on each overflow/underflow or re-trigger event
// <id> tc_arch_alock
#ifndef CONF_TC0_ALOCK
#define CONF_TC0_ALOCK 0
#endif
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_CAPTEN0 0
//#define CONF_TC0_CAPTEN1 0
//#define CONF_TC0_COPEN0 0
//#define CONF_TC0_COPEN1 0
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_DIR 0
//#define CONF_TC0_ONESHOT 0
//#define CONF_TC0_LUPD 0
// <q> Debug Running Mode
// <i> Indicates whether the Debug Running Mode is enabled or not
// <id> tc_arch_dbgrun
#ifndef CONF_TC0_DBGRUN
#define CONF_TC0_DBGRUN 0
#endif
// <e> Event control
// <id> timer_event_control
#ifndef CONF_TC0_EVENT_CONTROL_ENABLE
#define CONF_TC0_EVENT_CONTROL_ENABLE 0
#endif
// <q> Output Event On Match or Capture on Channel 0
// <i> Enable output of event on timer tick
// <id> tc_arch_mceo0
#ifndef CONF_TC0_MCEO0
#define CONF_TC0_MCEO0 0
#endif
// <q> Output Event On Match or Capture on Channel 1
// <i> Enable output of event on timer tick
// <id> tc_arch_mceo1
#ifndef CONF_TC0_MCEO1
#define CONF_TC0_MCEO1 0
#endif
// <q> Output Event On Timer Tick
// <i> Enable output of event on timer tick
// <id> tc_arch_ovfeo
#ifndef CONF_TC0_OVFEO
#define CONF_TC0_OVFEO 0
#endif
// <q> Event Input
// <i> Enable asynchronous input events
// <id> tc_arch_tcei
#ifndef CONF_TC0_TCEI
#define CONF_TC0_TCEI 0
#endif
// <q> Inverted Event Input
// <i> Invert the asynchronous input events
// <id> tc_arch_tcinv
#ifndef CONF_TC0_TCINV
#define CONF_TC0_TCINV 0
#endif
// <o> Event action
// <0=> Event action disabled
// <1=> Start, restart or re-trigger TC on event
// <2=> Count on event
// <3=> Start on event
// <4=> Time stamp capture
// <5=> Period captured in CC0, pulse width in CC1
// <6=> Period captured in CC1, pulse width in CC0
// <7=> Pulse width capture
// <i> Event which will be performed on an event
//<id> tc_arch_evact
#ifndef CONF_TC0_EVACT
#define CONF_TC0_EVACT 0
#endif
// </e>
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_WAVEGEN TC_CTRLA_WAVEGEN_MFRQ_Val
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_INVEN0 0
//#define CONF_TC0_INVEN1 0
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_PERBUF 0
/* Commented intentionally. Timer uses fixed value. May be used by other abstractions based on TC. */
//#define CONF_TC0_CCBUF0 0
//#define CONF_TC0_CCBUF1 0
// </h>
// <<< end of configuration section >>>
#endif // HPL_TC_CONFIG_H

View File

@ -0,0 +1,27 @@
/* Auto-generated config file hpl_trng_config.h */
#ifndef HPL_TRNG_CONFIG_H
#define HPL_TRNG_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Advanced configurations
// <q> Run In Standby
// <i> Indicates whether the TRNG works in standby mode
// <id> trng_runstdby
#ifndef CONF_TRNG_RUNSTDBY
#define CONF_TRNG_RUNSTDBY 0
#endif
// <q> Data Ready Event Output Enable
// <i> Indicates whether the TRNG generates event on Data Ready
// <id> trng_datardyeo
#ifndef CONF_TRNG_DATARDYEO
#define CONF_TRNG_DATARDYEO 0
#endif
// </h>
// <<< end of configuration section >>>
#endif // HPL_TRNG_CONFIG_H

View File

@ -0,0 +1,413 @@
/* Auto-generated config file hpl_usb_config.h */
#ifndef HPL_USB_CONFIG_H
#define HPL_USB_CONFIG_H
// CIRCUITPY:
// Use 64-byte USB buffers for endpoint directions that are in use. They're set to 0 below otherwise.
#include "genhdr/autogen_usb_descriptor.h"
#if defined(USB_ENDPOINT_1_OUT_USED) && USB_ENDPOINT_1_OUT_USED
#define CONF_USB_EP1_CACHE 64
#endif
#if defined(USB_ENDPOINT_1_IN_USED) && USB_ENDPOINT_1_IN_USED
#define CONF_USB_EP1_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_2_OUT_USED) && USB_ENDPOINT_2_OUT_USED
#define CONF_USB_EP2_CACHE 64
#endif
#if defined(USB_ENDPOINT_2_IN_USED) && USB_ENDPOINT_2_IN_USED
#define CONF_USB_EP2_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_3_OUT_USED) && USB_ENDPOINT_3_OUT_USED
#define CONF_USB_EP3_CACHE 64
#endif
#if defined(USB_ENDPOINT_3_IN_USED) && USB_ENDPOINT_3_IN_USED
#define CONF_USB_EP3_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_4_OUT_USED) && USB_ENDPOINT_4_OUT_USED
#define CONF_USB_EP4_CACHE 64
#endif
#if defined(USB_ENDPOINT_4_IN_USED) && USB_ENDPOINT_4_IN_USED
#define CONF_USB_EP4_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_5_OUT_USED) && USB_ENDPOINT_5_OUT_USED
#define CONF_USB_EP5_CACHE 64
#endif
#if defined(USB_ENDPOINT_5_IN_USED) && USB_ENDPOINT_5_IN_USED
#define CONF_USB_EP5_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_6_OUT_USED) && USB_ENDPOINT_6_OUT_USED
#define CONF_USB_EP6_CACHE 64
#endif
#if defined(USB_ENDPOINT_6_IN_USED) && USB_ENDPOINT_6_IN_USED
#define CONF_USB_EP6_I_CACHE 64
#endif
#if defined(USB_ENDPOINT_7_OUT_USED) && USB_ENDPOINT_7_OUT_USED
#define CONF_USB_EP7_CACHE 64
#endif
#if defined(USB_ENDPOINT_7_IN_USED) && USB_ENDPOINT_7_IN_USED
#define CONF_USB_EP7_I_CACHE 64
#endif
// <<< Use Configuration Wizard in Context Menu >>>
#define CONF_USB_N_0 0
#define CONF_USB_N_1 1
#define CONF_USB_N_2 2
#define CONF_USB_N_3 3
#define CONF_USB_N_4 4
#define CONF_USB_N_5 5
#define CONF_USB_N_6 6
#define CONF_USB_N_7 7
#define CONF_USB_N_8 8
#define CONF_USB_N_9 9
#define CONF_USB_N_10 10
#define CONF_USB_N_11 11
#define CONF_USB_N_12 12
#define CONF_USB_N_13 13
#define CONF_USB_N_14 14
#define CONF_USB_N_15 15
#define CONF_USB_D_EP_N_MAX (USB_EPT_NUM - 1)
#define CONF_USB_D_N_EP_MAX (CONF_USB_D_EP_N_MAX * 2 - 1)
// <h> USB Device HAL Configuration
// <y> Max number of endpoints supported
// <i> Limits the number of endpoints (described by EP address) can be used in app.
// NOTE(tannewt): This not only limits the number of endpoints but also the
// addresses. In other words, even if you use endpoint 6 you need to set this to 11.
// <CONF_USB_N_1"> 1 (EP0 only)
// <CONF_USB_N_2"> 2 (EP0 + 1 endpoint)
// <CONF_USB_N_3"> 3 (EP0 + 2 endpoints)
// <CONF_USB_N_4"> 4 (EP0 + 3 endpoints)
// <CONF_USB_N_5"> 5 (EP0 + 4 endpoints)
// <CONF_USB_N_6"> 6 (EP0 + 5 endpoints)
// <CONF_USB_N_7"> 7 (EP0 + 6 endpoints)
// <CONF_USB_N_8"> 8 (EP0 + 7 endpoints)
// <CONF_USB_D_N_EP_MAX"> Max possible (by "Max Endpoint Number" config)
// <id> usbd_num_ep_sp
#ifndef CONF_USB_D_NUM_EP_SP
#define CONF_USB_D_NUM_EP_SP CONF_USB_D_N_EP_MAX
#endif
// </h>
// <y> Max Endpoint Number supported
// <i> Limits the max endpoint number.
// <i> USB endpoint address is constructed by direction and endpoint number. Bit 8 of address set indicates the direction is IN. E.g., EP0x81 and EP0x01 have the same endpoint number, 1.
// <i> Reduce the value according to specific device design, to cut-off memory usage.
// <CONF_USB_N_0"> 0 (only EP0)
// <CONF_USB_N_1"> 1 (EP 0x81 or 0x01)
// <CONF_USB_N_2"> 2 (EP 0x82 or 0x02)
// <CONF_USB_N_3"> 3 (EP 0x83 or 0x03)
// <CONF_USB_N_4"> 4 (EP 0x84 or 0x04)
// <CONF_USB_N_5"> 5 (EP 0x85 or 0x05)
// <CONF_USB_N_6"> 6 (EP 0x86 or 0x06)
// <CONF_USB_N_7"> 7 (EP 0x87 or 0x07)
// <CONF_USB_EP_N_MAX"> Max possible (by HW)
// <i> The number of physical endpoints - 1
// <id> usbd_arch_max_ep_n
#ifndef CONF_USB_D_MAX_EP_N
#define CONF_USB_D_MAX_EP_N CONF_USB_D_EP_N_MAX
#endif
// <y> USB Speed Limit
// <i> Limits the working speed of the device.
// <USB_SPEED_FS"> Full speed
// <USB_SPEED_LS"> Low Speed
// <id> usbd_arch_speed
#ifndef CONF_USB_D_SPEED
#define CONF_USB_D_SPEED USB_SPEED_FS
#endif
// <o> Cache buffer size for EP0
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> EP0 is default control endpoint, so cache must be used to be able to receive SETUP packet at any time.
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <id> usb_arch_ep0_cache
#ifndef CONF_USB_EP0_CACHE
#define CONF_USB_EP0_CACHE 64
#endif
// <h> Cache configuration EP1
// <o> Cache buffer size for EP1 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep1_cache
#ifndef CONF_USB_EP1_CACHE
#define CONF_USB_EP1_CACHE 0
#endif
// <o> Cache buffer size for EP1 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep1_I_CACHE
#ifndef CONF_USB_EP1_I_CACHE
#define CONF_USB_EP1_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP2
// <o> Cache buffer size for EP2 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep2_cache
#ifndef CONF_USB_EP2_CACHE
#define CONF_USB_EP2_CACHE 0
#endif
// <o> Cache buffer size for EP2 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep2_I_CACHE
#ifndef CONF_USB_EP2_I_CACHE
#define CONF_USB_EP2_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP3
// <o> Cache buffer size for EP3 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep3_cache
#ifndef CONF_USB_EP3_CACHE
#define CONF_USB_EP3_CACHE 0
#endif
// <o> Cache buffer size for EP3 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep3_I_CACHE
#ifndef CONF_USB_EP3_I_CACHE
#define CONF_USB_EP3_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP4
// <o> Cache buffer size for EP4 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep4_cache
#ifndef CONF_USB_EP4_CACHE
#define CONF_USB_EP4_CACHE 0
#endif
// <o> Cache buffer size for EP4 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep4_I_CACHE
#ifndef CONF_USB_EP4_I_CACHE
#define CONF_USB_EP4_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP5
// <o> Cache buffer size for EP5 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep5_cache
#ifndef CONF_USB_EP5_CACHE
#define CONF_USB_EP5_CACHE 0
#endif
// <o> Cache buffer size for EP5 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep5_I_CACHE
#ifndef CONF_USB_EP5_I_CACHE
#define CONF_USB_EP5_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP6
// <o> Cache buffer size for EP6 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep6_cache
#ifndef CONF_USB_EP6_CACHE
#define CONF_USB_EP6_CACHE 0
#endif
// <o> Cache buffer size for EP6 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep6_I_CACHE
#ifndef CONF_USB_EP6_I_CACHE
#define CONF_USB_EP6_I_CACHE 0
#endif
// </h>
// <h> Cache configuration EP7
// <o> Cache buffer size for EP7 OUT
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_arch_ep7_cache
#ifndef CONF_USB_EP7_CACHE
#define CONF_USB_EP7_CACHE 0
#endif
// <o> Cache buffer size for EP7 IN
// <i> Cache is used because the USB hardware always uses DMA which requires specific memory feature.
// <i> This cache must not be allocated if you plan to use the endpoint as control endpoint.
// <i> No cache means IN transaction not support data buffer outside of RAM, OUT transaction not support unaligned buffer and buffer size less than endpoint max packet size
// <0=> No cache
// <8=> Cached by 8 bytes buffer
// <16=> Cached by 16 bytes buffer
// <32=> Cached by 32 bytes buffer
// <64=> Cached by 64 bytes buffer
// <128=> Cached by 128 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <256=> Cached by 256 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <512=> Cached by 512 bytes buffer (HS Bulk or interrupt or isochronous EP)
// <1024=> Cached by 1024 bytes buffer (interrupt or isochronous EP)
// <id> usb_ep7_I_CACHE
#ifndef CONF_USB_EP7_I_CACHE
#define CONF_USB_EP7_I_CACHE 0
#endif
// </h>
// <<< end of configuration section >>>
#endif // HPL_USB_CONFIG_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,850 @@
/* Auto-generated config file usbd_config.h */
#ifndef USBD_CONFIG_H
#define USBD_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// ---- USB Device Stack Core Options ----
// <q> High Speed Support
// <i> Enable high speed specific descriptors support, e.g., DeviceQualifierDescriptor and OtherSpeedConfiguration Descriptor.
// <i> High speed support require descriptors description array on start, for LS/FS and HS support in first and second place.
// <id> usbd_hs_sp
#ifndef CONF_USBD_HS_SP
#define CONF_USBD_HS_SP 0
#endif
// ---- USB Device Stack Composite Options ----
// <e> Enable String Descriptors
// <id> usb_composite_str_en
#ifndef CONF_USB_COMPOSITE_STR_EN
#define CONF_USB_COMPOSITE_STR_EN 0
#endif
// <s> Language IDs
// <i> Language IDs in c format, split by comma (E.g., 0x0409 ...)
// <id> usb_composite_langid
#ifndef CONF_USB_COMPOSITE_LANGID
#define CONF_USB_COMPOSITE_LANGID "0x0409"
#endif
#ifndef CONF_USB_COMPOSITE_LANGID_DESC
#define CONF_USB_COMPOSITE_LANGID_DESC
#endif
// </e>
// <h> Composite Device Descriptor
// <o> bcdUSB
// <0x0200=> USB 2.0 version
// <0x0210=> USB 2.1 version
// <id> usb_composite_bcdusb
#ifndef CONF_USB_COMPOSITE_BCDUSB
#define CONF_USB_COMPOSITE_BCDUSB 0x200
#endif
// <o> bMaxPackeSize0
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_bmaxpksz0
#ifndef CONF_USB_COMPOSITE_BMAXPKSZ0
#define CONF_USB_COMPOSITE_BMAXPKSZ0 0x40
#endif
// <o> idVender <0x0000-0xFFFF>
// <id> usb_composite_idvender
#ifndef CONF_USB_COMPOSITE_IDVENDER
#define CONF_USB_COMPOSITE_IDVENDER 0x3eb
#endif
// <o> idProduct <0x0000-0xFFFF>
// <id> usb_composite_idproduct
#ifndef CONF_USB_COMPOSITE_IDPRODUCT
#define CONF_USB_COMPOSITE_IDPRODUCT 0x2421
#endif
// <o> bcdDevice <0x0000-0xFFFF>
// <id> usb_composite_bcddevice
#ifndef CONF_USB_COMPOSITE_BCDDEVICE
#define CONF_USB_COMPOSITE_BCDDEVICE 0x100
#endif
// <e> Enable string descriptor of iManufact
// <id> usb_composite_imanufact_en
#ifndef CONF_USB_COMPOSITE_IMANUFACT_EN
#define CONF_USB_COMPOSITE_IMANUFACT_EN 0
#endif
#ifndef CONF_USB_COMPOSITE_IMANUFACT
#define CONF_USB_COMPOSITE_IMANUFACT (CONF_USB_COMPOSITE_IMANUFACT_EN * (CONF_USB_COMPOSITE_IMANUFACT_EN))
#endif
// <s> Unicode string of iManufact
// <id> usb_composite_imanufact_str
#ifndef CONF_USB_COMPOSITE_IMANUFACT_STR
#define CONF_USB_COMPOSITE_IMANUFACT_STR "Atmel"
#endif
#ifndef CONF_USB_COMPOSITE_IMANUFACT_STR_DESC
#define CONF_USB_COMPOSITE_IMANUFACT_STR_DESC
#endif
// </e>
// <e> Enable string descriptor of iProduct
// <id> usb_composite_iproduct_en
#ifndef CONF_USB_COMPOSITE_IPRODUCT_EN
#define CONF_USB_COMPOSITE_IPRODUCT_EN 0
#endif
#ifndef CONF_USB_COMPOSITE_IPRODUCT
#define CONF_USB_COMPOSITE_IPRODUCT \
(CONF_USB_COMPOSITE_IPRODUCT_EN * (CONF_USB_COMPOSITE_IMANUFACT_EN + CONF_USB_COMPOSITE_IPRODUCT_EN))
#endif
// <s> Unicode string of iProduct
// <id> usb_composite_iproduct_str
#ifndef CONF_USB_COMPOSITE_IPRODUCT_STR
#define CONF_USB_COMPOSITE_IPRODUCT_STR "Composite Demo"
#endif
#ifndef CONF_USB_COMPOSITE_IPRODUCT_STR_DESC
#define CONF_USB_COMPOSITE_IPRODUCT_STR_DESC
#endif
// </e>
// <e> Enable string descriptor of iSerialNum
// <id> usb_composite_iserialnum_en
#ifndef CONF_USB_COMPOSITE_ISERIALNUM_EN
#define CONF_USB_COMPOSITE_ISERIALNUM_EN 0
#endif
#ifndef CONF_USB_COMPOSITE_ISERIALNUM
#define CONF_USB_COMPOSITE_ISERIALNUM \
(CONF_USB_COMPOSITE_ISERIALNUM_EN \
* (CONF_USB_COMPOSITE_IMANUFACT_EN + CONF_USB_COMPOSITE_IPRODUCT_EN + CONF_USB_COMPOSITE_ISERIALNUM_EN))
#endif
// <s> Unicode string of iSerialNum
// <id> usb_composite_iserialnum_str
#ifndef CONF_USB_COMPOSITE_ISERIALNUM_STR
#define CONF_USB_COMPOSITE_ISERIALNUM_STR "123456789ABCDEF"
#endif
#ifndef CONF_USB_COMPOSITE_ISERIALNUM_STR_DESC
#define CONF_USB_COMPOSITE_ISERIALNUM_STR_DESC
#endif
// </e>
// <o> bNumConfigurations <0x01-0xFF>
// <id> usb_composite_bnumconfig
#ifndef CONF_USB_COMPOSITE_BNUMCONFIG
#define CONF_USB_COMPOSITE_BNUMCONFIG 0x1
#endif
// </h>
// <h> Composite Configuration Descriptor
// <o> bConfigurationValue <0x01-0xFF>
// <id> usb_composite_bconfigval
#ifndef CONF_USB_COMPOSITE_BCONFIGVAL
#define CONF_USB_COMPOSITE_BCONFIGVAL 0x1
#endif
// <e> Enable string descriptor of iConfig
// <id> usb_composite_iconfig_en
#ifndef CONF_USB_COMPOSITE_ICONFIG_EN
#define CONF_USB_COMPOSITE_ICONFIG_EN 0
#endif
#ifndef CONF_USB_COMPOSITE_ICONFIG
#define CONF_USB_COMPOSITE_ICONFIG \
(CONF_USB_COMPOSITE_ICONFIG_EN \
* (CONF_USB_COMPOSITE_IMANUFACT_EN + CONF_USB_COMPOSITE_IPRODUCT_EN + CONF_USB_COMPOSITE_ISERIALNUM_EN \
+ CONF_USB_COMPOSITE_ICONFIG_EN))
#endif
// <s> Unicode string of iConfig
// <id> usb_composite_iconfig_str
#ifndef CONF_USB_COMPOSITE_ICONFIG_STR
#define CONF_USB_COMPOSITE_ICONFIG_STR ""
#endif
#ifndef CONF_USB_COMPOSITE_ICONFIG_STR_DESC
#define CONF_USB_COMPOSITE_ICONFIG_STR_DESC
#endif
// </e>
// <o> bmAttributes
// <0x80=> Bus power supply, not support for remote wakeup
// <0xA0=> Bus power supply, support for remote wakeup
// <0xC0=> Self powered, not support for remote wakeup
// <0xE0=> Self powered, support for remote wakeup
// <id> usb_composite_bmattri
#ifndef CONF_USB_COMPOSITE_BMATTRI
#define CONF_USB_COMPOSITE_BMATTRI 0x80
#endif
// <o> bMaxPower <0x00-0xFF>
// <id> usb_composite_bmaxpower
#ifndef CONF_USB_COMPOSITE_BMAXPOWER
#define CONF_USB_COMPOSITE_BMAXPOWER 0x32
#endif
// </h>
// <e> CDC ACM Support
// <id> usb_composite_cdc_acm_support
#ifndef CONF_USB_COMPOSITE_CDC_ACM_EN
#define CONF_USB_COMPOSITE_CDC_ACM_EN 0
#endif
// <o> CDC ACM Comm Interrupt IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_cdc_acm_epaddr
#ifndef CONF_USB_COMPOSITE_CDC_ACM_COMM_INT_EPADDR
#define CONF_USB_COMPOSITE_CDC_ACM_COMM_INT_EPADDR 0x82
#endif
// <o> CDC ACM Comm Interrupt IN Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_cdc_acm_comm_int_maxpksz
#ifndef CONF_USB_COMPOSITE_CDC_ACM_COMM_INT_MAXPKSZ
#define CONF_USB_COMPOSITE_CDC_ACM_COMM_INT_MAXPKSZ 0x40
#endif
// <o> CDC ACM Data BULK IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_cdc_acm_data_bulkin_epaddr
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_EPADDR
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_EPADDR 0x81
#endif
// <o> CDC ACM Data BULK IN Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_cdc_acm_data_builin_maxpksz
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_MAXPKSZ
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_MAXPKSZ 0x40
#endif
// <o> CDC ACM Data BULK IN Endpoint wMaxPacketSize for High Speed
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <0x0080=> 128 bytes
// <0x0100=> 256 bytes
// <0x0200=> 512 bytes
// <id> usb_composite_cdc_acm_data_builin_maxpksz_hs
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_MAXPKSZ_HS
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKIN_MAXPKSZ_HS 0x200
#endif
// <o> CDC ACM Data BULK OUT Endpoint Address
// <0x01=> EndpointAddress = 0x01
// <0x02=> EndpointAddress = 0x02
// <0x03=> EndpointAddress = 0x03
// <0x04=> EndpointAddress = 0x04
// <0x05=> EndpointAddress = 0x05
// <0x06=> EndpointAddress = 0x06
// <0x07=> EndpointAddress = 0x07
// <0x08=> EndpointAddress = 0x08
// <0x09=> EndpointAddress = 0x09
// <id> usb_composite_cdc_acm_data_bulkout_epaddr
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_EPADDR
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_EPADDR 0x1
#endif
// <o> CDC ACM Data BULK OUT Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_cdc_acm_data_buckout_maxpksz
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_MAXPKSZ
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_MAXPKSZ 0x40
#endif
// <o> CDC ACM Data BULK OUT Endpoint wMaxPacketSize for High Speed
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <0x0080=> 128 bytes
// <0x0100=> 256 bytes
// <0x0200=> 512 bytes
// <id> usb_composite_cdc_acm_data_buckout_maxpksz_hs
#ifndef CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_MAXPKSZ_HS
#define CONF_USB_COMPOSITE_CDC_ACM_DATA_BULKOUT_MAXPKSZ_HS 0x200
#endif
// <q> CDC ACM Echo Demo generation
// <id> conf_usb_composite_cdc_echo_demo
// <i> Invoke cdcdf_acm_demo_init(buf[wMaxPacketSize]) to enable the echo demo.
// <i> Buf is packet buffer for data receive and echo back.
// <i> The buffer is 4 byte aligned to support DMA.
#ifndef CONF_USB_COMPOSITE_CDC_ECHO_DEMO
#define CONF_USB_COMPOSITE_CDC_ECHO_DEMO 0
#endif
// </e>
// <e> HID Mouse Support
// <id> usb_composite_hid_mouse_support
#ifndef CONF_USB_COMPOSITE_HID_MOUSE_EN
#define CONF_USB_COMPOSITE_HID_MOUSE_EN 0
#endif
// <o> HID Mouse INTERRUPT IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_hid_mouse_intin_epaddr
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_MOUSE_INTIN_EPADDR
#define CONF_USB_COMPOSITE_HID_MOUSE_INTIN_EPADDR 0x83
#endif
// <o> HID Mouse INTERRUPT IN Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_hid_mouse_intin_maxpksz
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_MOUSE_INTIN_MAXPKSZ
#define CONF_USB_COMPOSITE_HID_MOUSE_INTIN_MAXPKSZ 0x8
#endif
// <q> HID Mouse Move Demo generation
// <id> conf_usb_composite_hid_mouse_demo
// <i> Invoke hiddf_demo_init(button1, button2, button3) to enabled the move demo.
// <i> Button1 and button3 are the pins used for mouse moving left and right.
#ifndef CONF_USB_COMPOSITE_HID_MOUSE_DEMO
#define CONF_USB_COMPOSITE_HID_MOUSE_DEMO 0
#endif
// </e>
// <e> HID Keyboard Support
// <id> usb_composite_hid_keyboard_support
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_EN
#define CONF_USB_COMPOSITE_HID_KEYBOARD_EN 0
#endif
// <o> HID Keyboard INTERRUPT IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_hid_keyboard_intin_epaddr
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_INTIN_EPADDR
#define CONF_USB_COMPOSITE_HID_KEYBOARD_INTIN_EPADDR 0x84
#endif
// <o> HID Keyboard INTERRUPT IN Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_hid_keyboard_intin_maxpksz
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_INTIN_MAXPKSZ
#define CONF_USB_COMPOSITE_HID_KEYBOARD_INTIN_MAXPKSZ 0x8
#endif
// <o> HID Keyboard INTERRUPT OUT Endpoint Address
// <0x01=> EndpointAddress = 0x01
// <0x02=> EndpointAddress = 0x02
// <0x03=> EndpointAddress = 0x03
// <0x04=> EndpointAddress = 0x04
// <0x05=> EndpointAddress = 0x05
// <0x06=> EndpointAddress = 0x06
// <0x07=> EndpointAddress = 0x07
// <0x08=> EndpointAddress = 0x08
// <0x09=> EndpointAddress = 0x09
// <id> usb_composite_hid_keyboard_intout_epaddr
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_INTOUT_EPADDR
#define CONF_USB_COMPOSITE_HID_KEYBOARD_INTOUT_EPADDR 0x2
#endif
// <o> HID Keyboard INTERRUPT OUT Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_hid_keyboard_intout_maxpksz
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_INTOUT_MAXPKSZ
#define CONF_USB_COMPOSITE_HID_KEYBOARD_INTOUT_MAXPKSZ 0x8
#endif
// <q> HID Keyboard Caps Lock Demo generation
// <id> conf_usb_composite_hid_keyboard_demo
// <i> Invoke hiddf_demo_init(button1, button2, button3) to enabled the move demo.
// <i> Buffon2 is the pin used for keyboard CAPS LOCK simulation.
#ifndef CONF_USB_COMPOSITE_HID_KEYBOARD_DEMO
#define CONF_USB_COMPOSITE_HID_KEYBOARD_DEMO 0
#endif
// </e>
// <e> HID Generic Support
// <id> usb_composite_hid_generic_support
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_EN
#define CONF_USB_COMPOSITE_HID_GENERIC_EN 0
#endif
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_REPORT_LEN
#define CONF_USB_COMPOSITE_HID_GENERIC_REPORT_LEN 53
#endif
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_REPORT
#define CONF_USB_COMPOSITE_HID_GENERIC_REPORT \
0x06, 0xFF, 0xFF, 0x09, 0x01, 0xA1, 0x01, 0x09, 0x02, 0x09, 0x03, 0x15, 0x00, 0x26, 0xFF, 0x00, 0x75, 0x08, 0x95, \
0x40, 0x81, 0x02, 0x09, 0x04, 0x09, 0x05, 0x15, 0x00, 0x26, 0xFF, 0x00, 0x75, 0x08, 0x95, 0x40, 0x91, 0x02, \
0x09, 0x06, 0x09, 0x07, 0x15, 0x00, 0x26, 0xFF, 0x00, 0x75, 0x08, 0x95, 0x04, 0xB1, 0x02, 0xC0
#endif
// <o> HID Generic INTERRUPT IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_hid_generic_intin_epaddr
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_INTIN_EPADDR
#define CONF_USB_COMPOSITE_HID_GENERIC_INTIN_EPADDR 0x85
#endif
// <o> HID Generic INTERRUPT IN Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_hid_generic_intin_maxpksz
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_INTIN_MAXPKSZ
#define CONF_USB_COMPOSITE_HID_GENERIC_INTIN_MAXPKSZ 0x40
#endif
// <o> HID Generic INTERRUPT OUT Endpoint Address
// <0x01=> EndpointAddress = 0x01
// <0x02=> EndpointAddress = 0x02
// <0x03=> EndpointAddress = 0x03
// <0x04=> EndpointAddress = 0x04
// <0x05=> EndpointAddress = 0x05
// <0x06=> EndpointAddress = 0x06
// <0x07=> EndpointAddress = 0x07
// <0x08=> EndpointAddress = 0x08
// <0x09=> EndpointAddress = 0x09
// <id> usb_composite_hid_generic_intout_epaddr
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_INTOUT_EPADDR
#define CONF_USB_COMPOSITE_HID_GENERIC_INTOUT_EPADDR 0x3
#endif
// <o> HID Generic INTERRUPT OUT Endpoint wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_hid_generic_intout_maxpksz
// <i> Please make sure that the setting here is coincide with the endpoint setting in USB device driver.
#ifndef CONF_USB_COMPOSITE_HID_GENERIC_INTOUT_MAXPKSZ
#define CONF_USB_COMPOSITE_HID_GENERIC_INTOUT_MAXPKSZ 0x40
#endif
// </e>
// <e> MSC Support
// <id> usb_composite_msc_support
#ifndef CONF_USB_COMPOSITE_MSC_EN
#define CONF_USB_COMPOSITE_MSC_EN 0
#endif
// <o> MSC BULK Endpoints wMaxPacketSize
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <id> usb_composite_msc_bulk_maxpksz
#ifndef CONF_USB_COMPOSITE_MSC_BULK_MAXPKSZ
#define CONF_USB_COMPOSITE_MSC_BULK_MAXPKSZ 0x40
#endif
// <o> MSC BULK Endpoints wMaxPacketSize for High Speed
// <0x0008=> 8 bytes
// <0x0010=> 16 bytes
// <0x0020=> 32 bytes
// <0x0040=> 64 bytes
// <0x0080=> 128 bytes
// <0x0100=> 256 bytes
// <0x0200=> 512 bytes
// <id> usb_composite_msc_bulk_maxpksz_hs
#ifndef CONF_USB_COMPOSITE_MSC_BULK_MAXPKSZ_HS
#define CONF_USB_COMPOSITE_MSC_BULK_MAXPKSZ_HS 0x200
#endif
// <o> MSC BULK IN Endpoint Address
// <0x81=> EndpointAddress = 0x81
// <0x82=> EndpointAddress = 0x82
// <0x83=> EndpointAddress = 0x83
// <0x84=> EndpointAddress = 0x84
// <0x85=> EndpointAddress = 0x85
// <0x86=> EndpointAddress = 0x86
// <0x87=> EndpointAddress = 0x87
// <0x88=> EndpointAddress = 0x88
// <0x89=> EndpointAddress = 0x89
// <id> usb_composite_msc_bulkin_epaddr
#ifndef CONF_USB_COMPOSITE_MSC_BULKIN_EPADDR
#define CONF_USB_COMPOSITE_MSC_BULKIN_EPADDR 0x86
#endif
// <o> MSC BULK OUT Endpoint Address
// <0x01=> EndpointAddress = 0x01
// <0x02=> EndpointAddress = 0x02
// <0x03=> EndpointAddress = 0x03
// <0x04=> EndpointAddress = 0x04
// <0x05=> EndpointAddress = 0x05
// <0x06=> EndpointAddress = 0x06
// <0x07=> EndpointAddress = 0x07
// <0x08=> EndpointAddress = 0x08
// <0x09=> EndpointAddress = 0x09
// <id> usb_composite_msc_bulkout_epaddr
#ifndef CONF_USB_COMPOSITE_MSC_BULKOUT_EPADDR
#define CONF_USB_COMPOSITE_MSC_BULKOUT_EPADDR 0x4
#endif
// <e> Enable Demo code for Disk LUN handling
// <id> usb_composite_msc_demo_en
#ifndef CONF_USB_COMPOSITE_MSC_LUN_DEMO
#define CONF_USB_COMPOSITE_MSC_LUN_DEMO 1
#endif
// <o> Disk access cache/buffer of sectors if non-RAM disk (e.g., SD/MMC) enabled <1-64>
// <id> conf_usb_msc_lun_buf_sectors
#ifndef CONF_USB_MSC_LUN_BUF_SECTORS
#define CONF_USB_MSC_LUN_BUF_SECTORS 4
#endif
// <e> Enable Demo for RAM Disk
// <id> conf_usb_msc_lun0_enable
#ifndef CONF_USB_MSC_LUN0_ENABLE
#define CONF_USB_MSC_LUN0_ENABLE 1
#endif
#ifndef CONF_USB_MSC_LUN0_TYPE
#define CONF_USB_MSC_LUN0_TYPE 0x00
#endif
// <q> The disk is removable
// <id> conf_usb_msc_lun0_rmb
#ifndef CONF_USB_MSC_LUN0_RMB
#define CONF_USB_MSC_LUN0_RMB 0x1
#endif
#ifndef CONF_USB_MSC_LUN0_ISO
#define CONF_USB_MSC_LUN0_ISO 0x00
#endif
#ifndef CONF_USB_MSC_LUN0_ECMA
#define CONF_USB_MSC_LUN0_ECMA 0x00
#endif
#ifndef CONF_USB_MSC_LUN0_ANSI
#define CONF_USB_MSC_LUN0_ANSI 0x00
#endif
#ifndef CONF_USB_MSC_LUN0_REPO
#define CONF_USB_MSC_LUN0_REPO 0x01
#endif
#ifndef CONF_USB_MSC_LUN0_FACTORY
#define CONF_USB_MSC_LUN0_FACTORY 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN0_PRODUCT
#define CONF_USB_MSC_LUN0_PRODUCT 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN0_PRODUCT_VERSION
#define CONF_USB_MSC_LUN0_PRODUCT_VERSION 0x00, 0x00, 0x00, 0x00
#endif
// <o> Disk Size (in KB) <0x1-0xFFFFFFFF>
// <i> Windows will not show disk less than 20K, so 22K is used to reserve more RAM for APP
// <id> conf_usb_msc_lun0_capacity
#ifndef CONF_USB_MSC_LUN0_CAPACITY
#define CONF_USB_MSC_LUN0_CAPACITY 22
#endif
#ifndef CONF_USB_MSC_LUN0_BLOCK_SIZE
#define CONF_USB_MSC_LUN0_BLOCK_SIZE 512
#endif
#ifndef CONF_USB_MSC_LUN0_LAST_BLOCK_ADDR
#define CONF_USB_MSC_LUN0_LAST_BLOCK_ADDR \
((uint32_t)CONF_USB_MSC_LUN0_CAPACITY * 1024 / CONF_USB_MSC_LUN0_BLOCK_SIZE - 1)
#endif
// </e>
// <e> Enable Demo for SD/MMC Disk
// <i> SD/MMC stack must be added before enable SD/MMC demo
// <i> SD/MMC insert/eject not supported by this simple demo
// <id> conf_usb_msc_lun1_enable
#ifndef CONF_USB_MSC_LUN1_ENABLE
#define CONF_USB_MSC_LUN1_ENABLE 0
#endif
#ifndef CONF_USB_MSC_LUN1_TYPE
#define CONF_USB_MSC_LUN1_TYPE 0x00
#endif
// <q> The disk is removable
// <i> SD/MMC stack must be added before enable SD/MMC demo
// <i> SD/MMC insert/eject not supported by this simple demo
// <id> conf_usb_msc_lun1_rmb
#ifndef CONF_USB_MSC_LUN1_RMB
#define CONF_USB_MSC_LUN1_RMB 0x1
#endif
#ifndef CONF_USB_MSC_LUN1_ISO
#define CONF_USB_MSC_LUN1_ISO 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_ECMA
#define CONF_USB_MSC_LUN1_ECMA 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_ANSI
#define CONF_USB_MSC_LUN1_ANSI 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_REPO
#define CONF_USB_MSC_LUN1_REPO 0x01
#endif
#ifndef CONF_USB_MSC_LUN1_FACTORY
#define CONF_USB_MSC_LUN1_FACTORY 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_PRODUCT
#define CONF_USB_MSC_LUN1_PRODUCT 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_PRODUCT_VERSION
#define CONF_USB_MSC_LUN1_PRODUCT_VERSION 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN1_CAPACITY
#define CONF_USB_MSC_LUN1_CAPACITY 22
#endif
#ifndef CONF_USB_MSC_LUN1_BLOCK_SIZE
#define CONF_USB_MSC_LUN1_BLOCK_SIZE 512
#endif
#ifndef CONF_USB_MSC_LUN1_LAST_BLOCK_ADDR
#define CONF_USB_MSC_LUN1_LAST_BLOCK_ADDR \
((uint32_t)CONF_USB_MSC_LUN1_CAPACITY * 1024 / CONF_USB_MSC_LUN1_BLOCK_SIZE - 1)
#endif
// </e>
// <e> Enable Demo for LUN 2
// <id> conf_usb_msc_lun2_enable
#ifndef CONF_USB_MSC_LUN2_ENABLE
#define CONF_USB_MSC_LUN2_ENABLE 0
#endif
#ifndef CONF_USB_MSC_LUN2_TYPE
#define CONF_USB_MSC_LUN2_TYPE 0x00
#endif
// <q> The disk is removable
// <id> conf_usb_msc_lun2_rmb
#ifndef CONF_USB_MSC_LUN2_RMB
#define CONF_USB_MSC_LUN2_RMB 0x1
#endif
#ifndef CONF_USB_MSC_LUN2_ISO
#define CONF_USB_MSC_LUN2_ISO 0x00
#endif
#ifndef CONF_USB_MSC_LUN2_ECMA
#define CONF_USB_MSC_LUN2_ECMA 0x00
#endif
#ifndef CONF_USB_MSC_LUN2_ANSI
#define CONF_USB_MSC_LUN2_ANSI 0x00
#endif
#ifndef CONF_USB_MSC_LUN2_REPO
#define CONF_USB_MSC_LUN2_REPO 0x01
#endif
#ifndef CONF_USB_MSC_LUN2_FACTORY
#define CONF_USB_MSC_LUN2_FACTORY 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN2_PRODUCT
#define CONF_USB_MSC_LUN2_PRODUCT 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN2_PRODUCT_VERSION
#define CONF_USB_MSC_LUN2_PRODUCT_VERSION 0x00, 0x00, 0x00, 0x00
#endif
// <o> Disk Size (in KB) <0x1-0xFFFFFFFF>
// <id> conf_usb_msc_lun2_capacity
#ifndef CONF_USB_MSC_LUN2_CAPACITY
#define CONF_USB_MSC_LUN2_CAPACITY 22
#endif
#ifndef CONF_USB_MSC_LUN2_BLOCK_SIZE
#define CONF_USB_MSC_LUN2_BLOCK_SIZE 512
#endif
#ifndef CONF_USB_MSC_LUN2_LAST_BLOCK_ADDR
#define CONF_USB_MSC_LUN2_LAST_BLOCK_ADDR \
((uint32_t)CONF_USB_MSC_LUN2_CAPACITY * 1024 / CONF_USB_MSC_LUN2_BLOCK_SIZE - 1)
#endif
// </e>
// <e> Enable Demo for LUN 3
// <id> conf_usb_msc_lun3_enable
#ifndef CONF_USB_MSC_LUN3_ENABLE
#define CONF_USB_MSC_LUN3_ENABLE 0
#endif
#ifndef CONF_USB_MSC_LUN3_TYPE
#define CONF_USB_MSC_LUN3_TYPE 0x00
#endif
// <q> The disk is removable
// <id> conf_usb_msc_lun3_rmb
#ifndef CONF_USB_MSC_LUN3_RMB
#define CONF_USB_MSC_LUN3_RMB 0x1
#endif
#ifndef CONF_USB_MSC_LUN3_ISO
#define CONF_USB_MSC_LUN3_ISO 0x00
#endif
#ifndef CONF_USB_MSC_LUN3_ECMA
#define CONF_USB_MSC_LUN3_ECMA 0x00
#endif
#ifndef CONF_USB_MSC_LUN3_ANSI
#define CONF_USB_MSC_LUN3_ANSI 0x00
#endif
#ifndef CONF_USB_MSC_LUN3_REPO
#define CONF_USB_MSC_LUN3_REPO 0x01
#endif
#ifndef CONF_USB_MSC_LUN3_FACTORY
#define CONF_USB_MSC_LUN3_FACTORY 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN3_PRODUCT
#define CONF_USB_MSC_LUN3_PRODUCT 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#ifndef CONF_USB_MSC_LUN3_PRODUCT_VERSION
#define CONF_USB_MSC_LUN3_PRODUCT_VERSION 0x00, 0x00, 0x00, 0x00
#endif
// <o> Disk Size (in KB) <0x1-0xFFFFFFFF>
// <id> conf_usb_msc_lun3_capacity
#ifndef CONF_USB_MSC_LUN3_CAPACITY
#define CONF_USB_MSC_LUN3_CAPACITY 22
#endif
#ifndef CONF_USB_MSC_LUN3_BLOCK_SIZE
#define CONF_USB_MSC_LUN3_BLOCK_SIZE 512
#endif
#ifndef CONF_USB_MSC_LUN3_LAST_BLOCK_ADDR
#define CONF_USB_MSC_LUN3_LAST_BLOCK_ADDR \
((uint32_t)CONF_USB_MSC_LUN3_CAPACITY * 1024 / CONF_USB_MSC_LUN3_BLOCK_SIZE - 1)
#endif
// </e>
// </e>
// </e>
// <<< end of configuration section >>>
#endif // USBD_CONFIG_H

View File

@ -272,7 +272,7 @@ MP_DEFINE_CONST_DICT(samd_clock_globals, samd_clock_global_dict_table);
#endif // SAMD21 #endif // SAMD21
#ifdef SAMD51 #ifdef SAM_D5X_E5X

View File

@ -0,0 +1,39 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "boards/board.h"
#include "mpconfigboard.h"
#include "hal/include/hal_gpio.h"
void board_init(void) {
}
bool board_requests_safe_mode(void) {
return false;
}
void reset_board(void) {
}

View File

@ -0,0 +1,33 @@
#define MICROPY_HW_BOARD_NAME "SAM E54 Xplained Pro"
#define MICROPY_HW_MCU_NAME "same54p20"
#define CIRCUITPY_MCU_FAMILY samd51
// This is for Rev B which is green and has the SD card slot at the edge of the board.
#define MICROPY_HW_LED_STATUS (&pin_PC18)
// These are pins not to reset.
// QSPI Data pins
#define MICROPY_PORT_A ( PORT_PA08 | PORT_PA09 | PORT_PA10 | PORT_PA11 )
// QSPI CS, and QSPI SCK
#define MICROPY_PORT_B ( PORT_PB10 | PORT_PB11 )
#define MICROPY_PORT_C (0)
#define MICROPY_PORT_D (0)
#define BOARD_HAS_CRYSTAL 1
#define DEFAULT_I2C_BUS_SCL (&pin_PD09)
#define DEFAULT_I2C_BUS_SDA (&pin_PD08)
#define DEFAULT_SPI_BUS_SCK (&pin_PC05)
#define DEFAULT_SPI_BUS_MOSI (&pin_PC04)
#define DEFAULT_SPI_BUS_MISO (&pin_PC07)
#define DEFAULT_UART_BUS_RX (&pin_PB17)
#define DEFAULT_UART_BUS_TX (&pin_PB16)
// USB is always used internally so skip the pin objects for it.
#define IGNORE_PIN_PA24 1
#define IGNORE_PIN_PA25 1
#define IGNORE_PIN_PC19 1

View File

@ -0,0 +1,13 @@
USB_VID = 0x239A
USB_PID = 0x80B6
USB_PRODUCT = "SAM E54 Xplained Pro"
USB_MANUFACTURER = "Microchip"
CHIP_VARIANT = SAME54P20A
CHIP_FAMILY = same54
QSPI_FLASH_FILESYSTEM = 1
EXTERNAL_FLASH_DEVICE_COUNT = 2
EXTERNAL_FLASH_DEVICES = "N25Q256A"
LONGINT_IMPL = MPZ
LONGINT_IMPL = MPZ

View File

@ -0,0 +1,99 @@
#include "shared-bindings/board/__init__.h"
// This mapping only includes functional names because pins broken
// out on connectors are labeled with their MCU name available from
// microcontroller.pin.
STATIC const mp_rom_map_elem_t board_global_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_SDA), MP_ROM_PTR(&pin_PD08) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SCL), MP_ROM_PTR(&pin_PD09) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_VSYNC), MP_ROM_PTR(&pin_PA12) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_HSYNC), MP_ROM_PTR(&pin_PA13) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PCLK), MP_ROM_PTR(&pin_PA14) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_XCLK), MP_ROM_PTR(&pin_PA15) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D07), MP_ROM_PTR(&pin_PA23) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D06), MP_ROM_PTR(&pin_PA22) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D05), MP_ROM_PTR(&pin_PA21) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D04), MP_ROM_PTR(&pin_PA20) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D03), MP_ROM_PTR(&pin_PA19) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D02), MP_ROM_PTR(&pin_PA18) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D01), MP_ROM_PTR(&pin_PA17) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D00), MP_ROM_PTR(&pin_PA16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D09), MP_ROM_PTR(&pin_PB15) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_D08), MP_ROM_PTR(&pin_PB14) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RST), MP_ROM_PTR(&pin_PC12) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWDN), MP_ROM_PTR(&pin_PC11) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PDEC_A), MP_ROM_PTR(&pin_PC16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PDEC_B), MP_ROM_PTR(&pin_PC17) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PDEC_C), MP_ROM_PTR(&pin_PC18) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADCDAC), MP_ROM_PTR(&pin_PA02) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SW0), MP_ROM_PTR(&pin_PB31) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), MP_ROM_PTR(&pin_PC18) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_QT), MP_ROM_PTR(&pin_PA16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CANRX), MP_ROM_PTR(&pin_PB12) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CANTX), MP_ROM_PTR(&pin_PB13) },
// EXT1 header
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB04), MP_ROM_PTR(&pin_PB04) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB05), MP_ROM_PTR(&pin_PB05) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA06), MP_ROM_PTR(&pin_PA06) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA07), MP_ROM_PTR(&pin_PA07) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB08), MP_ROM_PTR(&pin_PB08) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB09), MP_ROM_PTR(&pin_PB09) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB07), MP_ROM_PTR(&pin_PB07) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA27), MP_ROM_PTR(&pin_PA27) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC22), MP_ROM_PTR(&pin_PC22) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA23), MP_ROM_PTR(&pin_PA23) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA05), MP_ROM_PTR(&pin_PA05) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA04), MP_ROM_PTR(&pin_PA04) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB28), MP_ROM_PTR(&pin_PB28) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB27), MP_ROM_PTR(&pin_PB27) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB29), MP_ROM_PTR(&pin_PB29) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB26), MP_ROM_PTR(&pin_PB26) },
// EXT2 header
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB00), MP_ROM_PTR(&pin_PB00) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PA03), MP_ROM_PTR(&pin_PA03) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB01), MP_ROM_PTR(&pin_PB01) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB06), MP_ROM_PTR(&pin_PB06) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB14), MP_ROM_PTR(&pin_PB14) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB15), MP_ROM_PTR(&pin_PB15) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD00), MP_ROM_PTR(&pin_PD00) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB02), MP_ROM_PTR(&pin_PB02) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD08), MP_ROM_PTR(&pin_PD08) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD09), MP_ROM_PTR(&pin_PD09) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB17), MP_ROM_PTR(&pin_PB17) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PB16), MP_ROM_PTR(&pin_PB16) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC06), MP_ROM_PTR(&pin_PC06) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC04), MP_ROM_PTR(&pin_PC04) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC07), MP_ROM_PTR(&pin_PC07) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC05), MP_ROM_PTR(&pin_PC05) },
// EXT3 header
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC02), MP_ROM_PTR(&pin_PC02) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC03), MP_ROM_PTR(&pin_PC03) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC10), MP_ROM_PTR(&pin_PC10) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC01), MP_ROM_PTR(&pin_PC01) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD11), MP_ROM_PTR(&pin_PD11) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD10), MP_ROM_PTR(&pin_PD10) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC31), MP_ROM_PTR(&pin_PC31) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC30), MP_ROM_PTR(&pin_PC30) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD09), MP_ROM_PTR(&pin_PD09) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PD08), MP_ROM_PTR(&pin_PD08) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC22), MP_ROM_PTR(&pin_PC22) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC23), MP_ROM_PTR(&pin_PC23) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC04), MP_ROM_PTR(&pin_PC04) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC14), MP_ROM_PTR(&pin_PC14) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC05), MP_ROM_PTR(&pin_PC05) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PC07), MP_ROM_PTR(&pin_PC07) },
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&board_i2c_obj) },
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&board_spi_obj) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&board_uart_obj) },
};
MP_DEFINE_CONST_DICT(board_module_globals, board_global_dict_table);

View File

@ -88,7 +88,7 @@ void pew_init() {
#ifdef SAMD21 #ifdef SAMD21
turn_on_clocks(true, index, 0); turn_on_clocks(true, index, 0);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
turn_on_clocks(true, index, 1); turn_on_clocks(true, index, 1);
#endif #endif
@ -98,7 +98,7 @@ void pew_init() {
TC_CTRLA_PRESCALER_DIV64 | TC_CTRLA_PRESCALER_DIV64 |
TC_CTRLA_WAVEGEN_MFRQ; TC_CTRLA_WAVEGEN_MFRQ;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc_reset(tc); tc_reset(tc);
tc_set_enable(tc, false); tc_set_enable(tc, false);
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16

View File

@ -50,7 +50,7 @@ void common_hal_analogio_analogout_construct(analogio_analogout_obj_t* self,
mp_raise_NotImplementedError(translate("No DAC on chip")); mp_raise_NotImplementedError(translate("No DAC on chip"));
#else #else
if (pin->number != PIN_PA02 if (pin->number != PIN_PA02
#ifdef SAMD51 #ifdef SAM_D5X_E5X
&& pin->number != PIN_PA05 && pin->number != PIN_PA05
#endif #endif
) { ) {
@ -59,13 +59,13 @@ void common_hal_analogio_analogout_construct(analogio_analogout_obj_t* self,
} }
self->channel = 0; self->channel = 0;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (pin->number == PIN_PA05) { if (pin->number == PIN_PA05) {
self->channel = 1; self->channel = 1;
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_mclk_set_APBDMASK_DAC_bit(MCLK); hri_mclk_set_APBDMASK_DAC_bit(MCLK);
#endif #endif
@ -80,16 +80,16 @@ void common_hal_analogio_analogout_construct(analogio_analogout_obj_t* self,
// Don't double init the DAC on the SAMD51 when both outputs are in use. We use the free state // Don't double init the DAC on the SAMD51 when both outputs are in use. We use the free state
// of each output pin to determine DAC state. // of each output pin to determine DAC state.
int32_t result = ERR_NONE; int32_t result = ERR_NONE;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (!common_hal_mcu_pin_is_free(&pin_PA02) || !common_hal_mcu_pin_is_free(&pin_PA05)) { if (!common_hal_mcu_pin_is_free(&pin_PA02) || !common_hal_mcu_pin_is_free(&pin_PA05)) {
#endif #endif
// Fake the descriptor if the DAC is already initialized. // Fake the descriptor if the DAC is already initialized.
self->descriptor.device.hw = DAC; self->descriptor.device.hw = DAC;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
} else { } else {
#endif #endif
result = dac_sync_init(&self->descriptor, DAC); result = dac_sync_init(&self->descriptor, DAC);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
} }
#endif #endif
if (result != ERR_NONE) { if (result != ERR_NONE) {
@ -109,18 +109,18 @@ bool common_hal_analogio_analogout_deinited(analogio_analogout_obj_t *self) {
} }
void common_hal_analogio_analogout_deinit(analogio_analogout_obj_t *self) { void common_hal_analogio_analogout_deinit(analogio_analogout_obj_t *self) {
#if (defined(SAMD21) && defined(PIN_PA02)) || defined(SAMD51) #if (defined(SAMD21) && defined(PIN_PA02)) || defined(SAM_D5X_E5X)
if (common_hal_analogio_analogout_deinited(self)) { if (common_hal_analogio_analogout_deinited(self)) {
return; return;
} }
dac_sync_disable_channel(&self->descriptor, self->channel); dac_sync_disable_channel(&self->descriptor, self->channel);
reset_pin_number(PIN_PA02); reset_pin_number(PIN_PA02);
// Only deinit the DAC on the SAMD51 if both outputs are free. // Only deinit the DAC on the SAMD51 if both outputs are free.
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (common_hal_mcu_pin_is_free(&pin_PA02) && common_hal_mcu_pin_is_free(&pin_PA05)) { if (common_hal_mcu_pin_is_free(&pin_PA02) && common_hal_mcu_pin_is_free(&pin_PA05)) {
#endif #endif
dac_sync_deinit(&self->descriptor); dac_sync_deinit(&self->descriptor);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
} }
#endif #endif
self->deinited = true; self->deinited = true;
@ -147,7 +147,7 @@ void analogout_reset(void) {
#ifdef SAMD21 #ifdef SAMD21
while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {} while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while (DAC->SYNCBUSY.reg & DAC_SYNCBUSY_SWRST) {} while (DAC->SYNCBUSY.reg & DAC_SYNCBUSY_SWRST) {}
#endif #endif
DAC->CTRLA.reg |= DAC_CTRLA_SWRST; DAC->CTRLA.reg |= DAC_CTRLA_SWRST;

View File

@ -59,13 +59,13 @@
#define SERCTRL(name) I2S_SERCTRL_ ## name #define SERCTRL(name) I2S_SERCTRL_ ## name
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define SERCTRL(name) I2S_TXCTRL_ ## name #define SERCTRL(name) I2S_TXCTRL_ ## name
#endif #endif
void i2sout_reset(void) { void i2sout_reset(void) {
// Make sure the I2S peripheral is running so we can see if the resources we need are free. // Make sure the I2S peripheral is running so we can see if the resources we need are free.
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// Connect the clock units to the 2mhz clock. It can't disable without it. // Connect the clock units to the 2mhz clock. It can't disable without it.
connect_gclk_to_peripheral(5, I2S_GCLK_ID_0); connect_gclk_to_peripheral(5, I2S_GCLK_ID_0);
connect_gclk_to_peripheral(5, I2S_GCLK_ID_1); connect_gclk_to_peripheral(5, I2S_GCLK_ID_1);
@ -76,7 +76,7 @@ void i2sout_reset(void) {
} }
// Make sure the I2S peripheral is running so we can see if the resources we need are free. // Make sure the I2S peripheral is running so we can see if the resources we need are free.
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// Connect the clock units to the 2mhz clock by default. They can't reset without it. // Connect the clock units to the 2mhz clock by default. They can't reset without it.
disconnect_gclk_from_peripheral(5, I2S_GCLK_ID_0); disconnect_gclk_from_peripheral(5, I2S_GCLK_ID_0);
disconnect_gclk_from_peripheral(5, I2S_GCLK_ID_1); disconnect_gclk_from_peripheral(5, I2S_GCLK_ID_1);
@ -132,7 +132,7 @@ void common_hal_audiobusio_i2sout_construct(audiobusio_i2sout_obj_t* self,
serializer = 1; serializer = 1;
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// Only clock unit 0 can be used for transmission. // Only clock unit 0 can be used for transmission.
if (bit_clock == &pin_PA10 || bit_clock == &pin_PB16) { // I2S SCK[0] if (bit_clock == &pin_PA10 || bit_clock == &pin_PB16) { // I2S SCK[0]
bc_clock_unit = 0; bc_clock_unit = 0;
@ -170,14 +170,14 @@ void common_hal_audiobusio_i2sout_construct(audiobusio_i2sout_obj_t* self,
mp_raise_RuntimeError(translate("Serializer in use")); mp_raise_RuntimeError(translate("Serializer in use"));
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (I2S->CTRLA.bit.TXEN == 1) { if (I2S->CTRLA.bit.TXEN == 1) {
mp_raise_RuntimeError(translate("Serializer in use")); mp_raise_RuntimeError(translate("Serializer in use"));
} }
#endif #endif
} }
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define GPIO_I2S_FUNCTION GPIO_PIN_FUNCTION_J #define GPIO_I2S_FUNCTION GPIO_PIN_FUNCTION_J
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -254,7 +254,7 @@ void common_hal_audiobusio_i2sout_play(audiobusio_i2sout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
uint32_t serctrl = (self->clock_unit << I2S_SERCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_TX) | I2S_SERCTRL_TXSAME_SAME | I2S_SERCTRL_EXTEND_MSBIT | I2S_SERCTRL_TXDEFAULT_ONE | I2S_SERCTRL_SLOTADJ_LEFT; uint32_t serctrl = (self->clock_unit << I2S_SERCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_TX) | I2S_SERCTRL_TXSAME_SAME | I2S_SERCTRL_EXTEND_MSBIT | I2S_SERCTRL_TXDEFAULT_ONE | I2S_SERCTRL_SLOTADJ_LEFT;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t serctrl = (self->clock_unit << I2S_RXCTRL_CLKSEL_Pos) | I2S_TXCTRL_TXSAME_SAME; uint32_t serctrl = (self->clock_unit << I2S_RXCTRL_CLKSEL_Pos) | I2S_TXCTRL_TXSAME_SAME;
#endif #endif
if (audiosample_channel_count(sample) == 1) { if (audiosample_channel_count(sample) == 1) {
@ -277,7 +277,7 @@ void common_hal_audiobusio_i2sout_play(audiobusio_i2sout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
I2S->SERCTRL[self->serializer].reg = serctrl; I2S->SERCTRL[self->serializer].reg = serctrl;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
I2S->TXCTRL.reg = serctrl; I2S->TXCTRL.reg = serctrl;
#endif #endif
@ -291,7 +291,7 @@ void common_hal_audiobusio_i2sout_play(audiobusio_i2sout_obj_t* self,
uint32_t tx_register = (uint32_t) &I2S->DATA[self->serializer].reg; uint32_t tx_register = (uint32_t) &I2S->DATA[self->serializer].reg;
uint8_t dmac_id = I2S_DMAC_ID_TX_0 + self->serializer; uint8_t dmac_id = I2S_DMAC_ID_TX_0 + self->serializer;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t tx_register = (uint32_t) &I2S->TXDATA.reg; uint32_t tx_register = (uint32_t) &I2S->TXDATA.reg;
uint8_t dmac_id = I2S_DMAC_ID_TX_0; uint8_t dmac_id = I2S_DMAC_ID_TX_0;
#endif #endif
@ -316,7 +316,7 @@ void common_hal_audiobusio_i2sout_play(audiobusio_i2sout_obj_t* self,
I2S->CTRLA.vec.SEREN = 1 << self->serializer; I2S->CTRLA.vec.SEREN = 1 << self->serializer;
while ((I2S->SYNCBUSY.vec.SEREN & (1 << self->serializer)) != 0) {} while ((I2S->SYNCBUSY.vec.SEREN & (1 << self->serializer)) != 0) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
I2S->CTRLA.bit.TXEN = 1; I2S->CTRLA.bit.TXEN = 1;
while (I2S->SYNCBUSY.bit.TXEN == 1) {} while (I2S->SYNCBUSY.bit.TXEN == 1) {}
#endif #endif
@ -333,7 +333,7 @@ void common_hal_audiobusio_i2sout_resume(audiobusio_i2sout_obj_t* self) {
#ifdef SAMD21 #ifdef SAMD21
I2S->INTFLAG.reg = I2S_INTFLAG_TXUR0 << self->serializer; I2S->INTFLAG.reg = I2S_INTFLAG_TXUR0 << self->serializer;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
I2S->INTFLAG.reg = I2S_INTFLAG_TXUR0 | I2S_INTFLAG_TXUR1; I2S->INTFLAG.reg = I2S_INTFLAG_TXUR0 | I2S_INTFLAG_TXUR1;
#endif #endif
@ -351,7 +351,7 @@ void common_hal_audiobusio_i2sout_stop(audiobusio_i2sout_obj_t* self) {
I2S->CTRLA.vec.SEREN &= ~(1 << self->serializer); I2S->CTRLA.vec.SEREN &= ~(1 << self->serializer);
while ((I2S->SYNCBUSY.vec.SEREN & (1 << self->serializer)) != 0) {} while ((I2S->SYNCBUSY.vec.SEREN & (1 << self->serializer)) != 0) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
I2S->CTRLA.bit.TXEN = 0; I2S->CTRLA.bit.TXEN = 0;
while (I2S->SYNCBUSY.bit.TXEN == 1) {} while (I2S->SYNCBUSY.bit.TXEN == 1) {}
#endif #endif
@ -368,7 +368,7 @@ void common_hal_audiobusio_i2sout_stop(audiobusio_i2sout_obj_t* self) {
disconnect_gclk_from_peripheral(self->gclk, I2S_GCLK_ID_0 + self->clock_unit); disconnect_gclk_from_peripheral(self->gclk, I2S_GCLK_ID_0 + self->clock_unit);
disable_clock_generator(self->gclk); disable_clock_generator(self->gclk);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
connect_gclk_to_peripheral(5, I2S_GCLK_ID_0 + self->clock_unit); connect_gclk_to_peripheral(5, I2S_GCLK_ID_0 + self->clock_unit);
#endif #endif

View File

@ -60,7 +60,7 @@
#define SERCTRL(name) I2S_SERCTRL_ ## name #define SERCTRL(name) I2S_SERCTRL_ ## name
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define SERCTRL(name) I2S_RXCTRL_ ## name #define SERCTRL(name) I2S_RXCTRL_ ## name
#endif #endif
@ -94,7 +94,7 @@ void common_hal_audiobusio_pdmin_construct(audiobusio_pdmin_obj_t* self,
self->clock_unit = 1; self->clock_unit = 1;
#endif #endif
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (clock_pin == &pin_PA10 || clock_pin == &pin_PB16) { if (clock_pin == &pin_PA10 || clock_pin == &pin_PB16) {
self->clock_unit = 0; self->clock_unit = 0;
} else if (clock_pin == &pin_PB12 } else if (clock_pin == &pin_PB12
@ -122,7 +122,7 @@ void common_hal_audiobusio_pdmin_construct(audiobusio_pdmin_obj_t* self,
#endif #endif
self->serializer = 1; self->serializer = 1;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (data_pin == &pin_PB10 || data_pin == &pin_PA22) { if (data_pin == &pin_PB10 || data_pin == &pin_PA22) {
self->serializer = 1; self->serializer = 1;
#endif #endif
@ -145,13 +145,13 @@ void common_hal_audiobusio_pdmin_construct(audiobusio_pdmin_obj_t* self,
mp_raise_RuntimeError(translate("Serializer in use")); mp_raise_RuntimeError(translate("Serializer in use"));
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (I2S->CTRLA.bit.RXEN == 1) { if (I2S->CTRLA.bit.RXEN == 1) {
mp_raise_RuntimeError(translate("Serializer in use")); mp_raise_RuntimeError(translate("Serializer in use"));
} }
#endif #endif
} }
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define GPIO_I2S_FUNCTION GPIO_PIN_FUNCTION_J #define GPIO_I2S_FUNCTION GPIO_PIN_FUNCTION_J
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -185,7 +185,7 @@ void common_hal_audiobusio_pdmin_construct(audiobusio_pdmin_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
uint32_t serctrl = (self->clock_unit << I2S_SERCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_PDM2) | SERCTRL(DATASIZE_32); uint32_t serctrl = (self->clock_unit << I2S_SERCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_PDM2) | SERCTRL(DATASIZE_32);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t serctrl = (self->clock_unit << I2S_RXCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_PDM2) | SERCTRL(DATASIZE_32); uint32_t serctrl = (self->clock_unit << I2S_RXCTRL_CLKSEL_Pos) | SERCTRL(SERMODE_PDM2) | SERCTRL(DATASIZE_32);
#endif #endif
@ -196,7 +196,7 @@ void common_hal_audiobusio_pdmin_construct(audiobusio_pdmin_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
I2S->SERCTRL[self->serializer].reg = serctrl; I2S->SERCTRL[self->serializer].reg = serctrl;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
I2S->RXCTRL.reg = serctrl; I2S->RXCTRL.reg = serctrl;
#endif #endif
@ -274,7 +274,7 @@ static void setup_dma(audiobusio_pdmin_obj_t* self, uint32_t length,
#ifdef SAMD21 #ifdef SAMD21
descriptor->SRCADDR.reg = (uint32_t)&I2S->DATA[self->serializer]; descriptor->SRCADDR.reg = (uint32_t)&I2S->DATA[self->serializer];
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
descriptor->SRCADDR.reg = (uint32_t)&I2S->RXDATA; descriptor->SRCADDR.reg = (uint32_t)&I2S->RXDATA;
#endif #endif
@ -295,7 +295,7 @@ static void setup_dma(audiobusio_pdmin_obj_t* self, uint32_t length,
#ifdef SAMD21 #ifdef SAMD21
second_descriptor->SRCADDR.reg = (uint32_t)&I2S->DATA[self->serializer]; second_descriptor->SRCADDR.reg = (uint32_t)&I2S->DATA[self->serializer];
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
second_descriptor->SRCADDR.reg = (uint32_t)&I2S->RXDATA; second_descriptor->SRCADDR.reg = (uint32_t)&I2S->RXDATA;
#endif #endif
second_descriptor->BTCTRL.reg = DMAC_BTCTRL_VALID | second_descriptor->BTCTRL.reg = DMAC_BTCTRL_VALID |
@ -400,7 +400,7 @@ uint32_t common_hal_audiobusio_pdmin_record_to_buffer(audiobusio_pdmin_obj_t* se
#ifdef SAMD21 #ifdef SAMD21
#define MAX_WAIT_COUNTS 1000 #define MAX_WAIT_COUNTS 1000
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define MAX_WAIT_COUNTS 6000 #define MAX_WAIT_COUNTS 6000
#endif #endif
// If wait_counts exceeds the max count, buffer has probably stopped filling; // If wait_counts exceeds the max count, buffer has probably stopped filling;

View File

@ -74,7 +74,7 @@ static void ramp_value(uint16_t start, uint16_t end) {
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
static void ramp_value(uint16_t start, uint16_t end) { static void ramp_value(uint16_t start, uint16_t end) {
int32_t diff = (int32_t) end - start; int32_t diff = (int32_t) end - start;
int32_t step = 49; int32_t step = 49;
@ -104,7 +104,7 @@ void audioout_reset(void) {
#ifdef SAMD21 #ifdef SAMD21
while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {} while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while (DAC->SYNCBUSY.reg & DAC_SYNCBUSY_SWRST) {} while (DAC->SYNCBUSY.reg & DAC_SYNCBUSY_SWRST) {}
#endif #endif
if (DAC->CTRLA.bit.ENABLE) { if (DAC->CTRLA.bit.ENABLE) {
@ -118,7 +118,7 @@ void audioout_reset(void) {
// Caller validates that pins are free. // Caller validates that pins are free.
void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self, void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
const mcu_pin_obj_t* left_channel, const mcu_pin_obj_t* right_channel, uint16_t quiescent_value) { const mcu_pin_obj_t* left_channel, const mcu_pin_obj_t* right_channel, uint16_t quiescent_value) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
bool dac_clock_enabled = hri_mclk_get_APBDMASK_DAC_bit(MCLK); bool dac_clock_enabled = hri_mclk_get_APBDMASK_DAC_bit(MCLK);
#endif #endif
@ -138,7 +138,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
} }
claim_pin(left_channel); claim_pin(left_channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
self->right_channel = NULL; self->right_channel = NULL;
if (left_channel != &pin_PA02 && left_channel != &pin_PA05) { if (left_channel != &pin_PA02 && left_channel != &pin_PA05) {
mp_raise_ValueError(translate("Invalid pin for left channel")); mp_raise_ValueError(translate("Invalid pin for left channel"));
@ -159,7 +159,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
self->left_channel = left_channel; self->left_channel = left_channel;
audio_dma_init(&self->left_dma); audio_dma_init(&self->left_dma);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_mclk_set_APBDMASK_DAC_bit(MCLK); hri_mclk_set_APBDMASK_DAC_bit(MCLK);
#endif #endif
@ -176,12 +176,12 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
DAC->CTRLA.bit.SWRST = 1; DAC->CTRLA.bit.SWRST = 1;
while (DAC->CTRLA.bit.SWRST == 1) {} while (DAC->CTRLA.bit.SWRST == 1) {}
// Make sure there are no outstanding access errors. (Reading DATA can cause this.) // Make sure there are no outstanding access errors. (Reading DATA can cause this.)
#ifdef SAMD51 #ifdef SAM_D5X_E5X
PAC->INTFLAGD.reg = PAC_INTFLAGD_DAC; PAC->INTFLAGD.reg = PAC_INTFLAGD_DAC;
#endif #endif
bool channel0_enabled = true; bool channel0_enabled = true;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
channel0_enabled = self->left_channel == &pin_PA02 || self->right_channel == &pin_PA02; channel0_enabled = self->left_channel == &pin_PA02 || self->right_channel == &pin_PA02;
bool channel1_enabled = self->left_channel == &pin_PA05 || self->right_channel == &pin_PA05; bool channel1_enabled = self->left_channel == &pin_PA05 || self->right_channel == &pin_PA05;
#endif #endif
@ -195,7 +195,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
DAC_CTRLB_EOEN | DAC_CTRLB_EOEN |
DAC_CTRLB_VPD; DAC_CTRLB_VPD;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
DAC->EVCTRL.reg |= DAC_EVCTRL_STARTEI0; DAC->EVCTRL.reg |= DAC_EVCTRL_STARTEI0;
DAC->DACCTRL[0].reg = DAC_DACCTRL_CCTRL_CC100K | DAC->DACCTRL[0].reg = DAC_DACCTRL_CCTRL_CC100K |
DAC_DACCTRL_ENABLE | DAC_DACCTRL_ENABLE |
@ -203,7 +203,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
DAC->CTRLB.reg = DAC_CTRLB_REFSEL_VREFPU; DAC->CTRLB.reg = DAC_CTRLB_REFSEL_VREFPU;
#endif #endif
} }
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (channel1_enabled) { if (channel1_enabled) {
DAC->EVCTRL.reg |= DAC_EVCTRL_STARTEI1; DAC->EVCTRL.reg |= DAC_EVCTRL_STARTEI1;
DAC->DACCTRL[1].reg = DAC_DACCTRL_CCTRL_CC100K | DAC->DACCTRL[1].reg = DAC_DACCTRL_CCTRL_CC100K |
@ -218,7 +218,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
while (DAC->STATUS.bit.SYNCBUSY == 1) {} while (DAC->STATUS.bit.SYNCBUSY == 1) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while (DAC->SYNCBUSY.bit.ENABLE == 1) {} while (DAC->SYNCBUSY.bit.ENABLE == 1) {}
while (channel0_enabled && DAC->STATUS.bit.READY0 == 0) {} while (channel0_enabled && DAC->STATUS.bit.READY0 == 0) {}
while (channel1_enabled && DAC->STATUS.bit.READY1 == 0) {} while (channel1_enabled && DAC->STATUS.bit.READY1 == 0) {}
@ -243,7 +243,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
// Use the 48mhz clocks on both the SAMD21 and 51 because we will be going much slower. // Use the 48mhz clocks on both the SAMD21 and 51 because we will be going much slower.
uint8_t tc_gclk = 0; uint8_t tc_gclk = 0;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc_gclk = 1; tc_gclk = 1;
#endif #endif
@ -253,7 +253,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
// Don't bother setting the period. We set it before you playback anything. // Don't bother setting the period. We set it before you playback anything.
tc_set_enable(t, false); tc_set_enable(t, false);
tc_reset(t); tc_reset(t);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
t->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MFRQ; t->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MFRQ;
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -268,7 +268,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
#define FIRST_TC_GEN_ID EVSYS_ID_GEN_TC3_OVF #define FIRST_TC_GEN_ID EVSYS_ID_GEN_TC3_OVF
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define FIRST_TC_GEN_ID EVSYS_ID_GEN_TC0_OVF #define FIRST_TC_GEN_ID EVSYS_ID_GEN_TC0_OVF
#endif #endif
uint8_t tc_gen_id = FIRST_TC_GEN_ID + 3 * tc_index; uint8_t tc_gen_id = FIRST_TC_GEN_ID + 3 * tc_index;
@ -282,7 +282,7 @@ void common_hal_audioio_audioout_construct(audioio_audioout_obj_t* self,
mp_raise_RuntimeError(translate("All event channels in use")); mp_raise_RuntimeError(translate("All event channels in use"));
} }
#ifdef SAMD51 #ifdef SAM_D5X_E5X
connect_event_user_to_channel(EVSYS_ID_USER_DAC_START_1, channel); connect_event_user_to_channel(EVSYS_ID_USER_DAC_START_1, channel);
if (right_channel != NULL) { if (right_channel != NULL) {
gpio_set_pin_function(self->right_channel->number, GPIO_PIN_FUNCTION_B); gpio_set_pin_function(self->right_channel->number, GPIO_PIN_FUNCTION_B);
@ -322,7 +322,7 @@ void common_hal_audioio_audioout_deinit(audioio_audioout_obj_t* self) {
#ifdef SAMD21 #ifdef SAMD21
while (DAC->STATUS.bit.SYNCBUSY == 1) {} while (DAC->STATUS.bit.SYNCBUSY == 1) {}
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while (DAC->SYNCBUSY.bit.ENABLE == 1) {} while (DAC->SYNCBUSY.bit.ENABLE == 1) {}
#endif #endif
@ -332,7 +332,7 @@ void common_hal_audioio_audioout_deinit(audioio_audioout_obj_t* self) {
reset_pin_number(self->left_channel->number); reset_pin_number(self->left_channel->number);
self->left_channel = NULL; self->left_channel = NULL;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
reset_pin_number(self->right_channel->number); reset_pin_number(self->right_channel->number);
self->right_channel = NULL; self->right_channel = NULL;
#endif #endif
@ -369,7 +369,7 @@ void common_hal_audioio_audioout_play(audioio_audioout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
uint32_t max_sample_rate = 350000; uint32_t max_sample_rate = 350000;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t max_sample_rate = 1000000; uint32_t max_sample_rate = 1000000;
#endif #endif
if (sample_rate > max_sample_rate) { if (sample_rate > max_sample_rate) {
@ -382,7 +382,7 @@ void common_hal_audioio_audioout_play(audioio_audioout_obj_t* self,
DAC_DMAC_ID_EMPTY); DAC_DMAC_ID_EMPTY);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t left_channel_reg = (uint32_t) &DAC->DATABUF[0].reg; uint32_t left_channel_reg = (uint32_t) &DAC->DATABUF[0].reg;
uint8_t tc_trig_id = TC0_DMAC_ID_OVF + 3 * self->tc_index; uint8_t tc_trig_id = TC0_DMAC_ID_OVF + 3 * self->tc_index;
uint8_t left_channel_trigger = tc_trig_id; uint8_t left_channel_trigger = tc_trig_id;
@ -416,7 +416,7 @@ void common_hal_audioio_audioout_play(audioio_audioout_obj_t* self,
#endif #endif
if (result != AUDIO_DMA_OK) { if (result != AUDIO_DMA_OK) {
audio_dma_stop(&self->left_dma); audio_dma_stop(&self->left_dma);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
audio_dma_stop(&self->right_dma); audio_dma_stop(&self->right_dma);
#endif #endif
if (result == AUDIO_DMA_DMA_BUSY) { if (result == AUDIO_DMA_DMA_BUSY) {
@ -434,7 +434,7 @@ void common_hal_audioio_audioout_play(audioio_audioout_obj_t* self,
void common_hal_audioio_audioout_pause(audioio_audioout_obj_t* self) { void common_hal_audioio_audioout_pause(audioio_audioout_obj_t* self) {
audio_dma_pause(&self->left_dma); audio_dma_pause(&self->left_dma);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
audio_dma_pause(&self->right_dma); audio_dma_pause(&self->right_dma);
#endif #endif
} }
@ -444,12 +444,12 @@ void common_hal_audioio_audioout_resume(audioio_audioout_obj_t* self) {
#ifdef SAMD21 #ifdef SAMD21
DAC->INTFLAG.reg = DAC_INTFLAG_UNDERRUN; DAC->INTFLAG.reg = DAC_INTFLAG_UNDERRUN;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
DAC->INTFLAG.reg = DAC_INTFLAG_UNDERRUN0 | DAC_INTFLAG_UNDERRUN1; DAC->INTFLAG.reg = DAC_INTFLAG_UNDERRUN0 | DAC_INTFLAG_UNDERRUN1;
#endif #endif
audio_dma_resume(&self->left_dma); audio_dma_resume(&self->left_dma);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
audio_dma_resume(&self->right_dma); audio_dma_resume(&self->right_dma);
#endif #endif
} }
@ -462,7 +462,7 @@ void common_hal_audioio_audioout_stop(audioio_audioout_obj_t* self) {
Tc* timer = tc_insts[self->tc_index]; Tc* timer = tc_insts[self->tc_index];
timer->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_STOP; timer->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_STOP;
audio_dma_stop(&self->left_dma); audio_dma_stop(&self->left_dma);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
audio_dma_stop(&self->right_dma); audio_dma_stop(&self->right_dma);
#endif #endif
// Ramp the DAC to default. The start is ignored when the current value can be readback. // Ramp the DAC to default. The start is ignored when the current value can be readback.

View File

@ -36,7 +36,7 @@ typedef struct {
mp_obj_base_t base; mp_obj_base_t base;
const mcu_pin_obj_t *left_channel; const mcu_pin_obj_t *left_channel;
audio_dma_t left_dma; audio_dma_t left_dma;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
const mcu_pin_obj_t *right_channel; const mcu_pin_obj_t *right_channel;
audio_dma_t right_dma; audio_dma_t right_dma;
#endif #endif

View File

@ -105,7 +105,7 @@ void common_hal_busio_uart_construct(busio_uart_obj_t *self,
continue; continue;
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 || if (potential_sercom->USART.CTRLA.bit.ENABLE != 0 ||
!(tx->sercom[i].pad == 0)) { !(tx->sercom[i].pad == 0)) {
continue; continue;

View File

@ -54,7 +54,7 @@
static frequencyio_frequencyin_obj_t *active_frequencyins[TC_INST_NUM]; static frequencyio_frequencyin_obj_t *active_frequencyins[TC_INST_NUM];
volatile uint8_t reference_tc = 0xff; volatile uint8_t reference_tc = 0xff;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
static uint8_t dpll_gclk; static uint8_t dpll_gclk;
#endif #endif
@ -67,7 +67,7 @@ void frequencyin_emergency_cancel_capture(uint8_t index) {
NVIC_DisableIRQ(EIC_IRQn); NVIC_DisableIRQ(EIC_IRQn);
NVIC_ClearPendingIRQ(EIC_IRQn); NVIC_ClearPendingIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel); NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel); NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
#endif #endif
@ -78,7 +78,7 @@ void frequencyin_emergency_cancel_capture(uint8_t index) {
#ifdef SAMD21 #ifdef SAMD21
NVIC_EnableIRQ(EIC_IRQn); NVIC_EnableIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_EnableIRQ(EIC_0_IRQn + self->channel); NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif #endif
mp_raise_RuntimeError(translate("Frequency captured is above capability. Capture Paused.")); mp_raise_RuntimeError(translate("Frequency captured is above capability. Capture Paused."));
@ -107,7 +107,7 @@ void frequencyin_interrupt_handler(uint8_t index) {
self->factor = (uint32_t) (current_ns - self->last_ns) / 1000000.0; self->factor = (uint32_t) (current_ns - self->last_ns) / 1000000.0;
self->last_ns = current_ns; self->last_ns = current_ns;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_READSYNC_Val; tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_READSYNC_Val;
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) || while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val)) { (tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val)) {
@ -121,7 +121,7 @@ void frequencyin_interrupt_handler(uint8_t index) {
} }
self->frequency = new_freq; self->frequency = new_freq;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_RETRIGGER_Val; tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_RETRIGGER_Val;
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) || while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_RETRIGGER_Val)) { (tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_RETRIGGER_Val)) {
@ -151,7 +151,7 @@ void frequencyin_reference_tc_init() {
#endif #endif
// use the DPLL we setup so that the reference_tc and freqin_tc(s) // use the DPLL we setup so that the reference_tc and freqin_tc(s)
// are using the same clock frequency. // are using the same clock frequency.
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (dpll_gclk == 0xff) { if (dpll_gclk == 0xff) {
frequencyin_samd51_start_dpll(); frequencyin_samd51_start_dpll();
} }
@ -168,7 +168,7 @@ void frequencyin_reference_tc_init() {
tc->COUNT16.INTENSET.bit.OVF = 1; tc->COUNT16.INTENSET.bit.OVF = 1;
NVIC_EnableIRQ(TC3_IRQn + reference_tc); NVIC_EnableIRQ(TC3_IRQn + reference_tc);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER_DIV1; TC_CTRLA_PRESCALER_DIV1;
tc->COUNT16.INTENSET.bit.OVF = 1; tc->COUNT16.INTENSET.bit.OVF = 1;
@ -192,7 +192,7 @@ void frequencyin_reference_tc_enable(bool enable) {
tc_set_enable(tc, enable); tc_set_enable(tc, enable);
} }
#ifdef SAMD51 #ifdef SAM_D5X_E5X
void frequencyin_samd51_start_dpll() { void frequencyin_samd51_start_dpll() {
if (clock_get_enabled(0, GCLK_SOURCE_DPLL1)) { if (clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
return; return;
@ -259,7 +259,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
#ifdef SAMD21 #ifdef SAMD21
((EIC->INTENSET.vec.EXTINT & mask) != 0 || (EIC->EVCTRL.vec.EXTINTEO & mask) != 0)) { ((EIC->INTENSET.vec.EXTINT & mask) != 0 || (EIC->EVCTRL.vec.EXTINTEO & mask) != 0)) {
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
((EIC->INTENSET.bit.EXTINT & mask) != 0 || (EIC->EVCTRL.bit.EXTINTEO & mask) != 0)) { ((EIC->INTENSET.bit.EXTINT & mask) != 0 || (EIC->EVCTRL.bit.EXTINTEO & mask) != 0)) {
#endif #endif
mp_raise_RuntimeError(translate("EXTINT channel already in use")); mp_raise_RuntimeError(translate("EXTINT channel already in use"));
@ -280,7 +280,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
#ifdef SAMD21 #ifdef SAMD21
self->TC_IRQ = TC3_IRQn + timer_index; self->TC_IRQ = TC3_IRQn + timer_index;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
self->TC_IRQ = TC0_IRQn + timer_index; self->TC_IRQ = TC0_IRQn + timer_index;
#endif #endif
@ -292,7 +292,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
set_timer_handler(timer_index, 0, TC_HANDLER_NO_INTERRUPT); set_timer_handler(timer_index, 0, TC_HANDLER_NO_INTERRUPT);
turn_on_clocks(true, timer_index, 0); turn_on_clocks(true, timer_index, 0);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
frequencyin_samd51_start_dpll(); frequencyin_samd51_start_dpll();
if (dpll_gclk == 0xff && !clock_get_enabled(0, GCLK_SOURCE_DPLL1)) { if (dpll_gclk == 0xff && !clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
common_hal_frequencyio_frequencyin_deinit(self); common_hal_frequencyio_frequencyin_deinit(self);
@ -318,7 +318,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
masked_value = EIC->EVCTRL.vec.EXTINTEO; masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel); EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
masked_value = EIC->EVCTRL.bit.EXTINTEO; masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel); EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
EIC->ASYNCH.bit.ASYNCH = 1; EIC->ASYNCH.bit.ASYNCH = 1;
@ -334,7 +334,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
#ifdef SAMD21 #ifdef SAMD21
connect_event_user_to_channel((EVSYS_ID_USER_TC3_EVU + timer_index), evsys_channel); connect_event_user_to_channel((EVSYS_ID_USER_TC3_EVU + timer_index), evsys_channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
connect_event_user_to_channel((EVSYS_ID_USER_TC0_EVU + timer_index), evsys_channel); connect_event_user_to_channel((EVSYS_ID_USER_TC0_EVU + timer_index), evsys_channel);
#endif #endif
init_async_event_channel(evsys_channel, (EVSYS_ID_GEN_EIC_EXTINT_0 + self->channel)); init_async_event_channel(evsys_channel, (EVSYS_ID_GEN_EIC_EXTINT_0 + self->channel));
@ -349,7 +349,7 @@ void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t*
tc->COUNT16.EVCTRL.bit.EVACT = TC_EVCTRL_EVACT_COUNT_Val; tc->COUNT16.EVCTRL.bit.EVACT = TC_EVCTRL_EVACT_COUNT_Val;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.EVCTRL.reg = TC_EVCTRL_EVACT(TC_EVCTRL_EVACT_COUNT_Val) | TC_EVCTRL_TCEI; tc->COUNT16.EVCTRL.reg = TC_EVCTRL_EVACT(TC_EVCTRL_EVACT_COUNT_Val) | TC_EVCTRL_TCEI;
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER_DIV1; TC_CTRLA_PRESCALER_DIV1;
@ -393,7 +393,7 @@ void common_hal_frequencyio_frequencyin_deinit(frequencyio_frequencyin_obj_t* se
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel); EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
disable_event_user(EVSYS_ID_USER_TC0_EVU + self->tc_index); disable_event_user(EVSYS_ID_USER_TC0_EVU + self->tc_index);
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel); EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
@ -427,7 +427,7 @@ void common_hal_frequencyio_frequencyin_deinit(frequencyio_frequencyin_obj_t* se
if (!check_active) { if (!check_active) {
frequencyin_reference_tc_enable(false); frequencyin_reference_tc_enable(false);
reference_tc = 0xff; reference_tc = 0xff;
#ifdef SAMD51 #ifdef SAM_D5X_E5X
frequencyin_samd51_stop_dpll(); frequencyin_samd51_stop_dpll();
#endif #endif
} }
@ -438,7 +438,7 @@ uint32_t common_hal_frequencyio_frequencyin_get_item(frequencyio_frequencyin_obj
#ifdef SAMD21 #ifdef SAMD21
NVIC_DisableIRQ(EIC_IRQn); NVIC_DisableIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel); NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
#endif #endif
@ -462,7 +462,7 @@ uint32_t common_hal_frequencyio_frequencyin_get_item(frequencyio_frequencyin_obj
NVIC_ClearPendingIRQ(EIC_IRQn); NVIC_ClearPendingIRQ(EIC_IRQn);
NVIC_EnableIRQ(EIC_IRQn); NVIC_EnableIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel); NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
NVIC_EnableIRQ(EIC_0_IRQn + self->channel); NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif #endif
@ -481,7 +481,7 @@ void common_hal_frequencyio_frequencyin_pause(frequencyio_frequencyin_obj_t* sel
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel); EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel); EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
#endif #endif
@ -499,7 +499,7 @@ void common_hal_frequencyio_frequencyin_resume(frequencyio_frequencyin_obj_t* se
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel); EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO; uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel); EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
#endif #endif
@ -512,7 +512,7 @@ void common_hal_frequencyio_frequencyin_clear(frequencyio_frequencyin_obj_t* sel
#ifdef SAMD21 #ifdef SAMD21
NVIC_DisableIRQ(EIC_IRQn); NVIC_DisableIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_DisableIRQ(EIC_0_IRQn + self->channel); NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
#endif #endif
@ -524,7 +524,7 @@ void common_hal_frequencyio_frequencyin_clear(frequencyio_frequencyin_obj_t* sel
NVIC_ClearPendingIRQ(EIC_IRQn); NVIC_ClearPendingIRQ(EIC_IRQn);
NVIC_EnableIRQ(EIC_IRQn); NVIC_EnableIRQ(EIC_IRQn);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel); NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
NVIC_EnableIRQ(EIC_0_IRQn + self->channel); NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
#endif #endif

View File

@ -50,7 +50,7 @@ void frequencyin_emergency_cancel_capture(uint8_t index);
void frequencyin_reference_tc_init(void); void frequencyin_reference_tc_init(void);
void frequencyin_reference_tc_enable(bool enable); void frequencyin_reference_tc_enable(bool enable);
bool frequencyin_reference_tc_enabled(void); bool frequencyin_reference_tc_enabled(void);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
void frequencyin_samd51_start_dpll(void); void frequencyin_samd51_start_dpll(void);
void frequencyin_samd51_stop_dpll(void); void frequencyin_samd51_stop_dpll(void);
#endif #endif

View File

@ -45,7 +45,7 @@ bool speaker_enable_in_use;
#define PORT_COUNT (PORT_BITS / 32 + 1) #define PORT_COUNT (PORT_BITS / 32 + 1)
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define SWD_MUX GPIO_PIN_FUNCTION_H #define SWD_MUX GPIO_PIN_FUNCTION_H
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -80,7 +80,7 @@ void reset_all_pins(void) {
// Configure SWD. SWDIO will be automatically switched on PA31 when a signal is input on // Configure SWD. SWDIO will be automatically switched on PA31 when a signal is input on
// SWCLK. // SWCLK.
#ifdef SAMD51 #ifdef SAM_D5X_E5X
gpio_set_pin_function(PIN_PA30, MUX_PA30H_CM4_SWCLK); gpio_set_pin_function(PIN_PA30, MUX_PA30H_CM4_SWCLK);
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -136,7 +136,7 @@ void reset_pin_number(uint8_t pin_number) {
#endif #endif
if (pin_number == PIN_PA30 if (pin_number == PIN_PA30
#ifdef SAMD51 #ifdef SAM_D5X_E5X
) { ) {
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -199,7 +199,7 @@ bool pin_number_is_free(uint8_t pin_number) {
return false; return false;
} }
if (pin_number == PIN_PA30 if (pin_number == PIN_PA30
#ifdef SAMD51 #ifdef SAM_D5X_E5X
) { ) {
#endif #endif
#ifdef SAMD21 #ifdef SAMD21

View File

@ -163,7 +163,7 @@ STATIC float calculate_temperature(uint16_t raw_value) {
} }
#endif // SAMD21 #endif // SAMD21
#ifdef SAMD51 #ifdef SAM_D5X_E5X
STATIC float calculate_temperature(uint16_t TP, uint16_t TC) { STATIC float calculate_temperature(uint16_t TP, uint16_t TC) {
uint32_t TLI = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_INT_ADDR & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos; uint32_t TLI = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_INT_ADDR & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos;
uint32_t TLD = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_DEC_ADDR & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos; uint32_t TLD = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_DEC_ADDR & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos;
@ -231,7 +231,7 @@ float common_hal_mcu_processor_get_temperature(void) {
return calculate_temperature(value); return calculate_temperature(value);
#endif // SAMD21 #endif // SAMD21
#ifdef SAMD51 #ifdef SAM_D5X_E5X
adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val); adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val);
// Using INTVCC0 as the reference voltage. // Using INTVCC0 as the reference voltage.
// INTVCC1 seems to read a little high. // INTVCC1 seems to read a little high.
@ -285,7 +285,7 @@ float common_hal_mcu_processor_get_voltage(void) {
adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val); adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_supc_set_VREF_SEL_bf(SUPC, SUPC_VREF_SEL_1V0_Val); hri_supc_set_VREF_SEL_bf(SUPC, SUPC_VREF_SEL_1V0_Val);
hri_supc_set_VREF_VREFOE_bit(SUPC); hri_supc_set_VREF_VREFOE_bit(SUPC);
@ -332,7 +332,7 @@ void common_hal_mcu_processor_get_uid(uint8_t raw_id[]) {
uint32_t* id_addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040, uint32_t* id_addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
(uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048}; (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t* id_addresses[4] = {(uint32_t *) 0x008061FC, (uint32_t *) 0x00806010, uint32_t* id_addresses[4] = {(uint32_t *) 0x008061FC, (uint32_t *) 0x00806010,
(uint32_t *) 0x00806014, (uint32_t *) 0x00806018}; (uint32_t *) 0x00806014, (uint32_t *) 0x00806018};
#endif #endif

View File

@ -31,7 +31,10 @@
#include "supervisor/port.h" #include "supervisor/port.h"
#ifdef SAMD51 #if defined(SAME54)
#include "hri/hri_cmcc_e54.h"
#include "hri/hri_nvmctrl_e54.h"
#elif defined(SAMD51)
#include "hri/hri_cmcc_d51.h" #include "hri/hri_cmcc_d51.h"
#include "hri/hri_nvmctrl_d51.h" #include "hri/hri_nvmctrl_d51.h"
#endif #endif
@ -53,7 +56,7 @@ static void neopixel_send_buffer_core(volatile uint32_t *clraddr, uint32_t pinMa
#ifdef SAMD21 #ifdef SAMD21
" movs r6, #3; d2: sub r6, #1; bne d2;" // delay 3 " movs r6, #3; d2: sub r6, #1; bne d2;" // delay 3
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
" movs r6, #3; d2: subs r6, #1; bne d2;" // delay 3 " movs r6, #3; d2: subs r6, #1; bne d2;" // delay 3
#endif #endif
" tst r4, r5;" // mask&r5 " tst r4, r5;" // mask&r5
@ -63,14 +66,14 @@ static void neopixel_send_buffer_core(volatile uint32_t *clraddr, uint32_t pinMa
#ifdef SAMD21 #ifdef SAMD21
" movs r6, #6; d0: sub r6, #1; bne d0;" // delay 6 " movs r6, #6; d0: sub r6, #1; bne d0;" // delay 6
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
" movs r6, #6; d0: subs r6, #1; bne d0;" // delay 6 " movs r6, #6; d0: subs r6, #1; bne d0;" // delay 6
#endif #endif
" str r1, [r0, #0];" // clr (possibly again, doesn't matter) " str r1, [r0, #0];" // clr (possibly again, doesn't matter)
#ifdef SAMD21 #ifdef SAMD21
" asr r4, r4, #1;" // mask >>= 1 " asr r4, r4, #1;" // mask >>= 1
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
" asrs r4, r4, #1;" // mask >>= 1 " asrs r4, r4, #1;" // mask >>= 1
#endif #endif
" beq nextbyte;" " beq nextbyte;"
@ -78,7 +81,7 @@ static void neopixel_send_buffer_core(volatile uint32_t *clraddr, uint32_t pinMa
#ifdef SAMD21 #ifdef SAMD21
" movs r6, #2; d1: sub r6, #1; bne d1;" // delay 2 " movs r6, #2; d1: sub r6, #1; bne d1;" // delay 2
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
" movs r6, #2; d1: subs r6, #1; bne d1;" // delay 2 " movs r6, #2; d1: subs r6, #1; bne d1;" // delay 2
#endif #endif
" b loopBit;" " b loopBit;"
@ -108,7 +111,7 @@ void common_hal_neopixel_write(const digitalio_digitalinout_obj_t* digitalinout,
mp_hal_disable_all_interrupts(); mp_hal_disable_all_interrupts();
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// When this routine is positioned at certain addresses, the timing logic // When this routine is positioned at certain addresses, the timing logic
// below can be too fast by about 2.5x. This is some kind of (un)fortunate code // below can be too fast by about 2.5x. This is some kind of (un)fortunate code
// positioning with respect to a cache line. // positioning with respect to a cache line.
@ -135,7 +138,7 @@ void common_hal_neopixel_write(const digitalio_digitalinout_obj_t* digitalinout,
volatile uint32_t *clr = &(port->OUTCLR.reg); volatile uint32_t *clr = &(port->OUTCLR.reg);
neopixel_send_buffer_core(clr, pinMask, pixels, numBytes); neopixel_send_buffer_core(clr, pinMask, pixels, numBytes);
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// Turn instruction, data, and NVM caches back on. // Turn instruction, data, and NVM caches back on.
hri_cmcc_clear_CFG_reg(CMCC, CMCC_CFG_DCDIS | CMCC_CFG_ICDIS); hri_cmcc_clear_CFG_reg(CMCC, CMCC_CFG_DCDIS | CMCC_CFG_ICDIS);
hri_nvmctrl_clear_CTRLA_CACHEDIS0_bit(NVMCTRL); hri_nvmctrl_clear_CTRLA_CACHEDIS0_bit(NVMCTRL);

View File

@ -30,7 +30,7 @@
#include "py/objtuple.h" #include "py/objtuple.h"
#include "py/qstr.h" #include "py/qstr.h"
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#include "hal/include/hal_rand_sync.h" #include "hal/include/hal_rand_sync.h"
#endif #endif
@ -42,7 +42,7 @@ STATIC const qstr os_uname_info_fields[] = {
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_sysname_obj, "samd21"); STATIC const MP_DEFINE_STR_OBJ(os_uname_info_sysname_obj, "samd21");
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_nodename_obj, "samd21"); STATIC const MP_DEFINE_STR_OBJ(os_uname_info_nodename_obj, "samd21");
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_sysname_obj, "samd51"); STATIC const MP_DEFINE_STR_OBJ(os_uname_info_sysname_obj, "samd51");
STATIC const MP_DEFINE_STR_OBJ(os_uname_info_nodename_obj, "samd51"); STATIC const MP_DEFINE_STR_OBJ(os_uname_info_nodename_obj, "samd51");
#endif #endif
@ -67,7 +67,7 @@ mp_obj_t common_hal_os_uname(void) {
} }
bool common_hal_os_urandom(uint8_t* buffer, uint32_t length) { bool common_hal_os_urandom(uint8_t* buffer, uint32_t length) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_mclk_set_APBCMASK_TRNG_bit(MCLK); hri_mclk_set_APBCMASK_TRNG_bit(MCLK);
struct rand_sync_desc random; struct rand_sync_desc random;
rand_sync_init(&random, TRNG); rand_sync_init(&random, TRNG);

View File

@ -55,7 +55,7 @@ uint8_t tcc_refcount[TCC_INST_NUM];
#ifdef SAMD21 #ifdef SAMD21
uint8_t tcc_channels[3]; // Set by pwmout_reset() to {0xf0, 0xfc, 0xfc} initially. uint8_t tcc_channels[3]; // Set by pwmout_reset() to {0xf0, 0xfc, 0xfc} initially.
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint8_t tcc_channels[5]; // Set by pwmout_reset() to {0xc0, 0xf0, 0xf8, 0xfc, 0xfc} initially. uint8_t tcc_channels[5]; // Set by pwmout_reset() to {0xc0, 0xf0, 0xf8, 0xfc, 0xfc} initially.
#endif #endif
@ -148,7 +148,7 @@ pwmout_result_t common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
if (pin->timer[0].index >= TC_INST_NUM && if (pin->timer[0].index >= TC_INST_NUM &&
pin->timer[1].index >= TCC_INST_NUM pin->timer[1].index >= TCC_INST_NUM
#ifdef SAMD51 #ifdef SAM_D5X_E5X
&& pin->timer[2].index >= TCC_INST_NUM && pin->timer[2].index >= TCC_INST_NUM
#endif #endif
) { ) {
@ -260,7 +260,7 @@ pwmout_result_t common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
TC_CTRLA_WAVEGEN_MPWM; TC_CTRLA_WAVEGEN_MPWM;
tc->COUNT16.CC[0].reg = top; tc->COUNT16.CC[0].reg = top;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.CTRLA.bit.SWRST = 1; tc->COUNT16.CTRLA.bit.SWRST = 1;
while (tc->COUNT16.CTRLA.bit.SWRST == 1) { while (tc->COUNT16.CTRLA.bit.SWRST == 1) {
@ -345,7 +345,7 @@ extern void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
tc_insts[t->index]->COUNT16.CC[t->wave_output].reg = adjusted_duty; tc_insts[t->index]->COUNT16.CC[t->wave_output].reg = adjusted_duty;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
Tc* tc = tc_insts[t->index]; Tc* tc = tc_insts[t->index];
while (tc->COUNT16.SYNCBUSY.bit.CC1 != 0) {} while (tc->COUNT16.SYNCBUSY.bit.CC1 != 0) {}
tc->COUNT16.CCBUF[1].reg = adjusted_duty; tc->COUNT16.CCBUF[1].reg = adjusted_duty;
@ -366,7 +366,7 @@ extern void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
tcc->CCB[channel].reg = adjusted_duty; tcc->CCB[channel].reg = adjusted_duty;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tcc->CCBUF[channel].reg = adjusted_duty; tcc->CCBUF[channel].reg = adjusted_duty;
#endif #endif
tcc->CTRLBCLR.bit.LUPD = 1; tcc->CTRLBCLR.bit.LUPD = 1;
@ -396,7 +396,7 @@ uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) {
cv = tcc->CC[channel].reg; cv = tcc->CC[channel].reg;
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if ((tcc->STATUS.vec.CCBUFV & (1 << channel)) != 0) { if ((tcc->STATUS.vec.CCBUFV & (1 << channel)) != 0) {
cv = tcc->CCBUF[channel].reg; cv = tcc->CCBUF[channel].reg;
} else { } else {
@ -444,7 +444,7 @@ void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
tc->COUNT16.CC[0].reg = new_top; tc->COUNT16.CC[0].reg = new_top;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while (tc->COUNT16.SYNCBUSY.reg != 0) {} while (tc->COUNT16.SYNCBUSY.reg != 0) {}
tc->COUNT16.CCBUF[0].reg = new_top; tc->COUNT16.CCBUF[0].reg = new_top;
#endif #endif
@ -461,7 +461,7 @@ void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
tcc->PERB.bit.PERB = new_top; tcc->PERB.bit.PERB = new_top;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tcc->PERBUF.bit.PERBUF = new_top; tcc->PERBUF.bit.PERBUF = new_top;
#endif #endif
} }

View File

@ -79,7 +79,7 @@ void pulsein_interrupt_handler(uint8_t channel) {
// Grab the current time first. // Grab the current time first.
uint32_t current_overflow = overflow_count; uint32_t current_overflow = overflow_count;
Tc* tc = tc_insts[pulsein_tc_index]; Tc* tc = tc_insts[pulsein_tc_index];
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_READSYNC; tc->COUNT16.CTRLBSET.reg = TC_CTRLBSET_CMD_READSYNC;
while (tc->COUNT16.SYNCBUSY.bit.COUNT == 1 || while (tc->COUNT16.SYNCBUSY.bit.COUNT == 1 ||
tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val) {} tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val) {}
@ -173,7 +173,7 @@ void common_hal_pulseio_pulsein_construct(pulseio_pulsein_obj_t* self,
// We use GCLK0 for SAMD21 which is 48MHz. We prescale it to 3MHz. // We use GCLK0 for SAMD21 which is 48MHz. We prescale it to 3MHz.
turn_on_clocks(true, index, 0); turn_on_clocks(true, index, 0);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// We use GCLK5 for SAMD51 because it runs at 2MHz and we can use it for a 1MHz clock, // We use GCLK5 for SAMD51 because it runs at 2MHz and we can use it for a 1MHz clock,
// 1us per tick. // 1us per tick.
turn_on_clocks(true, index, 5); turn_on_clocks(true, index, 5);
@ -185,7 +185,7 @@ void common_hal_pulseio_pulsein_construct(pulseio_pulsein_obj_t* self,
TC_CTRLA_PRESCALER_DIV16 | TC_CTRLA_PRESCALER_DIV16 |
TC_CTRLA_WAVEGEN_NFRQ; TC_CTRLA_WAVEGEN_NFRQ;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc_reset(tc); tc_reset(tc);
tc_set_enable(tc, false); tc_set_enable(tc, false);
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV2; tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV2;

View File

@ -119,7 +119,7 @@ void common_hal_pulseio_pulseout_construct(pulseio_pulseout_obj_t* self,
#ifdef SAMD21 #ifdef SAMD21
turn_on_clocks(true, index, 0); turn_on_clocks(true, index, 0);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
turn_on_clocks(true, index, 1); turn_on_clocks(true, index, 1);
#endif #endif
@ -129,7 +129,7 @@ void common_hal_pulseio_pulseout_construct(pulseio_pulseout_obj_t* self,
TC_CTRLA_PRESCALER_DIV64 | TC_CTRLA_PRESCALER_DIV64 |
TC_CTRLA_WAVEGEN_NFRQ; TC_CTRLA_WAVEGEN_NFRQ;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
tc_reset(tc); tc_reset(tc);
tc_set_enable(tc, false); tc_set_enable(tc, false);
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV64; tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV64;

View File

@ -65,13 +65,17 @@
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// HSRAM_SIZE is defined in the ASF4 include files for each SAMD51 chip. // HSRAM_SIZE is defined in the ASF4 include files for each SAM_D5X_E5X chip.
#define RAM_SIZE HSRAM_SIZE #define RAM_SIZE HSRAM_SIZE
#define BOOTLOADER_SIZE (16*1024) #define BOOTLOADER_SIZE (16*1024)
#define CIRCUITPY_MCU_FAMILY samd51 #define CIRCUITPY_MCU_FAMILY samd51
#ifdef SAMD51
#define MICROPY_PY_SYS_PLATFORM "MicroChip SAMD51" #define MICROPY_PY_SYS_PLATFORM "MicroChip SAMD51"
#elif defined(SAME54)
#define MICROPY_PY_SYS_PLATFORM "MicroChip SAME54"
#endif
#define SPI_FLASH_MAX_BAUDRATE 24000000 #define SPI_FLASH_MAX_BAUDRATE 24000000
#define MICROPY_PY_BUILTINS_NOTIMPLEMENTED (1) #define MICROPY_PY_BUILTINS_NOTIMPLEMENTED (1)
#define MICROPY_PY_COLLECTIONS_ORDEREDDICT (1) #define MICROPY_PY_COLLECTIONS_ORDEREDDICT (1)
@ -81,7 +85,7 @@
#define MICROPY_PY_UJSON (1) #define MICROPY_PY_UJSON (1)
// MICROPY_PY_UERRNO_LIST - Use the default // MICROPY_PY_UERRNO_LIST - Use the default
#endif // SAMD51 #endif // SAM_D5X_E5X
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -115,7 +119,7 @@
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#ifndef CIRCUITPY_INTERNAL_NVM_SIZE #ifndef CIRCUITPY_INTERNAL_NVM_SIZE
#define CIRCUITPY_INTERNAL_NVM_SIZE (8192) #define CIRCUITPY_INTERNAL_NVM_SIZE (8192)
@ -137,7 +141,7 @@
#define CIRCUITPY_INTERNAL_FLASH_FILESYSTEM_SIZE (0) #define CIRCUITPY_INTERNAL_FLASH_FILESYSTEM_SIZE (0)
#endif #endif
#endif // SAMD51 #endif // SAM_D5X_E5X
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -58,7 +58,7 @@ extern uint32_t common_hal_mcu_processor_get_frequency(void);
#ifdef SAMD21 #ifdef SAMD21
#define DELAY_LOOP_ITERATIONS_PER_US ( (10U*48000000U) / common_hal_mcu_processor_get_frequency()) #define DELAY_LOOP_ITERATIONS_PER_US ( (10U*48000000U) / common_hal_mcu_processor_get_frequency())
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
#define DELAY_LOOP_ITERATIONS_PER_US ( (30U*120000000U) / common_hal_mcu_processor_get_frequency()) #define DELAY_LOOP_ITERATIONS_PER_US ( (30U*120000000U) / common_hal_mcu_processor_get_frequency())
#endif #endif

@ -1 +1 @@
Subproject commit 6b531fc923d9f02b14bd731a5f584ddf716e8773 Subproject commit e4161d7d6d98d78eddcccb82128856af4baf7e50

View File

@ -39,6 +39,12 @@
#ifdef SAMD21 #ifdef SAMD21
#include "hpl/pm/hpl_pm_base.h" #include "hpl/pm/hpl_pm_base.h"
#endif #endif
#ifdef SAME54
#include "hri/hri_mclk_e54.h"
#endif
#ifdef SAMD51
#include "hri/hri_mclk_d51.h"
#endif
#include "hal/include/hal_flash.h" #include "hal/include/hal_flash.h"
#include "supervisor/flash.h" #include "supervisor/flash.h"
@ -57,7 +63,7 @@ void supervisor_flash_init(void) {
port_pin_set_output_level(MICROPY_HW_LED_MSC, false); port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_mclk_set_AHBMASK_NVMCTRL_bit(MCLK); hri_mclk_set_AHBMASK_NVMCTRL_bit(MCLK);
#endif #endif
#ifdef SAMD21 #ifdef SAMD21

View File

@ -40,11 +40,14 @@
#include "hpl/gclk/hpl_gclk_base.h" #include "hpl/gclk/hpl_gclk_base.h"
#include "hpl/pm/hpl_pm_base.h" #include "hpl/pm/hpl_pm_base.h"
#ifdef SAMD21 #if defined(SAMD21)
#include "hri/hri_pm_d21.h" #include "hri/hri_pm_d21.h"
#endif #elif defined(SAME54)
#ifdef SAMD51 #include "hri/hri_rstc_e54.h"
#elif defined(SAMD51)
#include "hri/hri_rstc_d51.h" #include "hri/hri_rstc_d51.h"
#else
#error Unknown chip family
#endif #endif
#include "common-hal/analogio/AnalogIn.h" #include "common-hal/analogio/AnalogIn.h"
@ -146,7 +149,7 @@ static void rtc_init(void) {
RTC_MODE0_CTRL_MODE_COUNT32 | RTC_MODE0_CTRL_MODE_COUNT32 |
RTC_MODE0_CTRL_PRESCALER_DIV2; RTC_MODE0_CTRL_PRESCALER_DIV2;
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_mclk_set_APBAMASK_RTC_bit(MCLK); hri_mclk_set_APBAMASK_RTC_bit(MCLK);
RTC->MODE0.CTRLA.bit.SWRST = true; RTC->MODE0.CTRLA.bit.SWRST = true;
while (RTC->MODE0.SYNCBUSY.bit.SWRST != 0) {} while (RTC->MODE0.SYNCBUSY.bit.SWRST != 0) {}
@ -169,7 +172,7 @@ static void rtc_init(void) {
NVIC_SetPriority(USB_IRQn, 1); NVIC_SetPriority(USB_IRQn, 1);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
NVIC_SetPriority(USB_0_IRQn, 1); NVIC_SetPriority(USB_0_IRQn, 1);
NVIC_SetPriority(USB_1_IRQn, 1); NVIC_SetPriority(USB_1_IRQn, 1);
NVIC_SetPriority(USB_2_IRQn, 1); NVIC_SetPriority(USB_2_IRQn, 1);
@ -204,7 +207,7 @@ safe_mode_t port_init(void) {
#endif #endif
#endif #endif
#if defined(SAMD51) #if defined(SAM_D5X_E5X)
// Set brownout detection to ~2.7V. Default from factory is 1.7V, // Set brownout detection to ~2.7V. Default from factory is 1.7V,
// which is too low for proper operation of external SPI flash chips (they are 2.7-3.6V). // which is too low for proper operation of external SPI flash chips (they are 2.7-3.6V).
// Disable while changing level. // Disable while changing level.
@ -283,7 +286,7 @@ safe_mode_t port_init(void) {
return BROWNOUT; return BROWNOUT;
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
if (RSTC->RCAUSE.bit.BODVDD == 1 || RSTC->RCAUSE.bit.BODCORE == 1) { if (RSTC->RCAUSE.bit.BODVDD == 1 || RSTC->RCAUSE.bit.BODCORE == 1) {
return BROWNOUT; return BROWNOUT;
} }
@ -341,7 +344,7 @@ void reset_port(void) {
// Output clocks for debugging. // Output clocks for debugging.
// not supported by SAMD51G; uncomment for SAMD51J or update for 51G // not supported by SAMD51G; uncomment for SAMD51J or update for 51G
// #ifdef SAMD51 // #ifdef SAM_D5X_E5X
// gpio_set_pin_function(PIN_PA10, GPIO_PIN_FUNCTION_M); // GCLK4, D3 // gpio_set_pin_function(PIN_PA10, GPIO_PIN_FUNCTION_M); // GCLK4, D3
// gpio_set_pin_function(PIN_PA11, GPIO_PIN_FUNCTION_M); // GCLK5, A4 // gpio_set_pin_function(PIN_PA11, GPIO_PIN_FUNCTION_M); // GCLK5, A4
// gpio_set_pin_function(PIN_PB14, GPIO_PIN_FUNCTION_M); // GCLK0, D5 // gpio_set_pin_function(PIN_PB14, GPIO_PIN_FUNCTION_M); // GCLK0, D5
@ -388,7 +391,7 @@ uint32_t *port_heap_get_top(void) {
#ifdef SAMD21 #ifdef SAMD21
uint32_t* safe_word = (uint32_t*) (HMCRAMC0_ADDR + HMCRAMC0_SIZE - 0x2000); uint32_t* safe_word = (uint32_t*) (HMCRAMC0_ADDR + HMCRAMC0_SIZE - 0x2000);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
uint32_t* safe_word = (uint32_t*) (HSRAM_ADDR + HSRAM_SIZE - 0x2000); uint32_t* safe_word = (uint32_t*) (HSRAM_ADDR + HSRAM_SIZE - 0x2000);
#endif #endif
@ -412,7 +415,7 @@ void RTC_Handler(void) {
// Our RTC is 32 bits and we're clocking it at 16.384khz which is 16 (2 ** 4) subticks per // Our RTC is 32 bits and we're clocking it at 16.384khz which is 16 (2 ** 4) subticks per
// tick. // tick.
overflowed_ticks += (1L<< (32 - 4)); overflowed_ticks += (1L<< (32 - 4));
#ifdef SAMD51 #ifdef SAM_D5X_E5X
} else if (intflag & RTC_MODE0_INTFLAG_PER2) { } else if (intflag & RTC_MODE0_INTFLAG_PER2) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_PER2; RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_PER2;
// Do things common to all ports when the tick occurs // Do things common to all ports when the tick occurs
@ -431,14 +434,14 @@ void RTC_Handler(void) {
} }
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0; RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
#endif #endif
} }
} }
static uint32_t _get_count(void) { static uint32_t _get_count(void) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
while ((RTC->MODE0.SYNCBUSY.reg & (RTC_MODE0_SYNCBUSY_COUNTSYNC | RTC_MODE0_SYNCBUSY_COUNT)) != 0) {} while ((RTC->MODE0.SYNCBUSY.reg & (RTC_MODE0_SYNCBUSY_COUNTSYNC | RTC_MODE0_SYNCBUSY_COUNT)) != 0) {}
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -459,7 +462,7 @@ uint64_t port_get_raw_ticks(uint8_t* subticks) {
// Enable 1/1024 second tick. // Enable 1/1024 second tick.
void port_enable_tick(void) { void port_enable_tick(void) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// PER2 will generate an interrupt every 32 ticks of the source 32.768 clock. // PER2 will generate an interrupt every 32 ticks of the source 32.768 clock.
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_PER2; RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_PER2;
#endif #endif
@ -471,7 +474,7 @@ void port_enable_tick(void) {
// Disable 1/1024 second tick. // Disable 1/1024 second tick.
void port_disable_tick(void) { void port_disable_tick(void) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_PER2; RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_PER2;
#endif #endif
#ifdef SAMD21 #ifdef SAMD21
@ -492,7 +495,7 @@ void port_interrupt_after_ticks(uint32_t ticks) {
} }
void port_sleep_until_interrupt(void) { void port_sleep_until_interrupt(void) {
#ifdef SAMD51 #ifdef SAM_D5X_E5X
// Clear the FPU interrupt because it can prevent us from sleeping. // Clear the FPU interrupt because it can prevent us from sleeping.
if (__get_FPSCR() & ~(0x9f)) { if (__get_FPSCR() & ~(0x9f)) {
__set_FPSCR(__get_FPSCR() & ~(0x9f)); __set_FPSCR(__get_FPSCR() & ~(0x9f));

View File

@ -0,0 +1,27 @@
.syntax unified
.cpu cortex-m4
.thumb
.text
.align 2
@ uint cpu_get_regs_and_sp(r0=uint regs[10])
.global cpu_get_regs_and_sp
.thumb
.thumb_func
.type cpu_get_regs_and_sp, %function
cpu_get_regs_and_sp:
@ store registers into given array
str r4, [r0], #4
str r5, [r0], #4
str r6, [r0], #4
str r7, [r0], #4
str r8, [r0], #4
str r9, [r0], #4
str r10, [r0], #4
str r11, [r0], #4
str r12, [r0], #4
str r13, [r0], #4
@ return the sp
mov r0, sp
bx lr

View File

@ -37,7 +37,7 @@ void init_usb_hardware(void) {
_gclk_enable_channel(USB_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK0_Val); _gclk_enable_channel(USB_GCLK_ID, GCLK_CLKCTRL_GEN_GCLK0_Val);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK1_Val | GCLK_PCHCTRL_CHEN); hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK1_Val | GCLK_PCHCTRL_CHEN);
hri_mclk_set_AHBMASK_USB_bit(MCLK); hri_mclk_set_AHBMASK_USB_bit(MCLK);
hri_mclk_set_APBBMASK_USB_bit(MCLK); hri_mclk_set_APBBMASK_USB_bit(MCLK);
@ -53,7 +53,7 @@ void init_usb_hardware(void) {
gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM); gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP); gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP);
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM); gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM);
gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP); gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP);
#endif #endif
@ -65,7 +65,7 @@ void USB_Handler(void) {
} }
#endif #endif
#ifdef SAMD51 #ifdef SAM_D5X_E5X
void USB_0_Handler (void) { void USB_0_Handler (void) {
tud_int_handler(0); tud_int_handler(0);
} }

View File

@ -618,4 +618,23 @@ typedef struct {
.write_status_register_split = false, \ .write_status_register_split = false, \
.single_status_byte = true, \ .single_status_byte = true, \
} }
// Settings for the Micron N25Q256A 256Mb (32MiB) QSPI flash.
// Datasheet: https://www.micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/n25q/n25q_256mb_3v.pdf
#define N25Q256A {\
/* .total_size = (1 << 25), 32 MiB does not work at this time, as assumptions about 3-byte addresses abound */ \
.total_size = (1 << 24), /* 16 MiB */ \
.start_up_time_us = 10000, \
.manufacturer_id = 0x20, \
.memory_type = 0xBA, \
.capacity = 0x19, \
.max_clock_speed_mhz = 108, \
.quad_enable_bit_mask = 0x02, \
.has_sector_protection = false, \
.supports_fast_read = true, \
.supports_qspi = true, \
.supports_qspi_writes = true, \
.write_status_register_split = false, \
.single_status_byte = true, \
}
#endif // MICROPY_INCLUDED_ATMEL_SAMD_EXTERNAL_FLASH_DEVICES_H #endif // MICROPY_INCLUDED_ATMEL_SAMD_EXTERNAL_FLASH_DEVICES_H