Working SysTick, code factoring, some boot-up code.

This commit is contained in:
Damien 2013-10-19 14:40:54 +01:00
parent 995b8aabb1
commit 00ff04fc49
14 changed files with 503 additions and 485 deletions

View File

@ -15,23 +15,26 @@ SRC_C = \
printf.c \ printf.c \
system_stm32f4xx.c \ system_stm32f4xx.c \
led.c \ led.c \
lcd.c \
flash.c \ flash.c \
storage.c \ storage.c \
string0.c \ string0.c \
malloc0.c \ malloc0.c \
systick.c \
stm32fxxx_it.c \ stm32fxxx_it.c \
usb.c \ usb.c \
# sd.c \ # sd.c \
SRC_S = \ SRC_S = \
delay.s \
startup_stm32f40xx.s \ startup_stm32f40xx.s \
PY_O = \ PY_O = \
nlrthumb.o \ nlrthumb.o \
malloc.o \ malloc.o \
qstr.o \ qstr.o \
misc.o \ runtime.o \
vm.o \
# misc.o \
lexer.o \ lexer.o \
parse.o \ parse.o \
scope.o \ scope.o \
@ -42,8 +45,6 @@ PY_O = \
asmthumb.o \ asmthumb.o \
emitnthumb.o \ emitnthumb.o \
emitinlinethumb.o \ emitinlinethumb.o \
runtime.o \
vm.o \
SRC_FATFS = \ SRC_FATFS = \
ff.c \ ff.c \

View File

@ -11,6 +11,8 @@
#include <stdio.h> #include <stdio.h>
#include "ff.h" /* FatFs lower layer API */ #include "ff.h" /* FatFs lower layer API */
#include "diskio.h" /* FatFs lower layer API */ #include "diskio.h" /* FatFs lower layer API */
#include "misc.h"
#include "storage.h"
PARTITION VolToPart[] = { PARTITION VolToPart[] = {
{0, 1}, // Logical drive 0 ==> Physical drive 0, 1st partition {0, 1}, // Logical drive 0 ==> Physical drive 0, 1st partition
@ -21,124 +23,10 @@ PARTITION VolToPart[] = {
*/ */
}; };
#define PD_FLASH_SECTOR_SIZE (512)
#define PD_FLASH_PART1_START_SECTOR (0x100)
#define PD_FLASH_PART1_NUM_SECTORS (128) // 64k
#define PD_FLASH_MEM_START_ADDR (0x08020000) // 128k above start, first 128k block
#define PD_FLASH_RAM_BUF (0x10000000) // CCM data RAM, 64k
static void pd_flash_init() {
printf("IN\n");
// fill RAM buffer
uint32_t *src = (uint32_t*)PD_FLASH_MEM_START_ADDR;
uint32_t *dest = (uint32_t*)PD_FLASH_RAM_BUF;
for (int i = 0; i < PD_FLASH_PART1_NUM_SECTORS * PD_FLASH_SECTOR_SIZE / 4; i++) {
*dest++ = *src++;
}
}
extern void flash_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32);
static void pd_flash_flush() {
printf("FL\n");
// sync the RAM buffer by writing it to the flash page
flash_write(PD_FLASH_MEM_START_ADDR, (const uint32_t*)PD_FLASH_RAM_BUF, PD_FLASH_PART1_NUM_SECTORS * PD_FLASH_SECTOR_SIZE / 4);
}
static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_sector, uint32_t num_sectors) {
buf[0] = boot;
if (num_sectors == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_sectors == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_sector;
buf[9] = start_sector >> 8;
buf[10] = start_sector >> 16;
buf[11] = start_sector >> 24;
buf[12] = num_sectors;
buf[13] = num_sectors >> 8;
buf[14] = num_sectors >> 16;
buf[15] = num_sectors >> 24;
}
static DRESULT pd_flash_read_sector(uint8_t *dest, uint32_t sector) {
//printf("RD %u\n", sector);
if (sector == 0) {
// fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, PD_FLASH_PART1_START_SECTOR, PD_FLASH_PART1_NUM_SECTORS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return RES_OK;
} else if (PD_FLASH_PART1_START_SECTOR <= sector && sector < PD_FLASH_PART1_START_SECTOR + PD_FLASH_PART1_NUM_SECTORS) {
// non-MBR sector(s), just copy straight from flash
uint8_t *src = (uint8_t*)PD_FLASH_RAM_BUF + (sector - PD_FLASH_PART1_START_SECTOR) * PD_FLASH_SECTOR_SIZE;
for (int i = PD_FLASH_SECTOR_SIZE; i > 0; i--) {
*dest++ = *src++;
}
return RES_OK;
} else {
// bad sector number
return RES_ERROR;
}
}
static DRESULT pd_flash_write_sector(const uint8_t *src, uint32_t sector) {
printf("WR %u\n", sector);
if (sector == 0) {
// can't write MBR, but pretend we did
return RES_OK;
} else if (PD_FLASH_PART1_START_SECTOR <= sector && sector < PD_FLASH_PART1_START_SECTOR + PD_FLASH_PART1_NUM_SECTORS) {
// non-MBR sector(s), copy to RAM buffer
uint8_t *dest = (uint8_t*)PD_FLASH_RAM_BUF + (sector - PD_FLASH_PART1_START_SECTOR) * PD_FLASH_SECTOR_SIZE;
for (int i = PD_FLASH_SECTOR_SIZE; i > 0; i--) {
*dest++ = *src++;
}
return RES_OK;
} else {
// bad sector number
return RES_ERROR;
}
}
/* Definitions of physical drive number for each media */ /* Definitions of physical drive number for each media */
#define PD_FLASH (0) #define PD_FLASH (0)
#define PD_SD (1) #define PD_SD (1)
#define BLOCK_SIZE (512)
/*-----------------------------------------------------------------------*/ /*-----------------------------------------------------------------------*/
/* Initialize a Drive */ /* Initialize a Drive */
@ -150,7 +38,7 @@ DSTATUS disk_initialize (
{ {
switch (pdrv) { switch (pdrv) {
case PD_FLASH : case PD_FLASH :
pd_flash_init(); storage_init();
return 0; return 0;
} }
@ -188,12 +76,11 @@ DRESULT disk_read (
UINT count /* Number of sectors to read (1..128) */ UINT count /* Number of sectors to read (1..128) */
) )
{ {
DRESULT res;
switch (pdrv) { switch (pdrv) {
case PD_FLASH: case PD_FLASH:
for (int i = 0; i < count; i++) { for (int i = 0; i < count; i++) {
if ((res = pd_flash_read_sector(buff + i * PD_FLASH_SECTOR_SIZE, sector + i)) != RES_OK) { if (!storage_read_block(buff + i * BLOCK_SIZE, sector + i)) {
return res; return RES_ERROR;
} }
} }
return RES_OK; return RES_OK;
@ -214,12 +101,11 @@ DRESULT disk_write (
UINT count /* Number of sectors to write (1..128) */ UINT count /* Number of sectors to write (1..128) */
) )
{ {
DRESULT res;
switch (pdrv) { switch (pdrv) {
case PD_FLASH: case PD_FLASH:
for (int i = 0; i < count; i++) { for (int i = 0; i < count; i++) {
if ((res = pd_flash_write_sector(buff + i * PD_FLASH_SECTOR_SIZE, sector + i)) != RES_OK) { if (!storage_write_block(buff + i * BLOCK_SIZE, sector + i)) {
return res; return RES_ERROR;
} }
} }
return RES_OK; return RES_OK;
@ -245,11 +131,11 @@ DRESULT disk_ioctl (
case PD_FLASH: case PD_FLASH:
switch (cmd) { switch (cmd) {
case CTRL_SYNC: case CTRL_SYNC:
pd_flash_flush(); storage_flush();
return RES_OK; return RES_OK;
case GET_BLOCK_SIZE: case GET_BLOCK_SIZE:
*((DWORD*)buff) = 1; // block erase size in units of the sector size *((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) block size
return RES_OK; return RES_OK;
} }
} }

202
stm/lcd.c Normal file
View File

@ -0,0 +1,202 @@
#include <stm32f4xx_gpio.h>
#include "systick.h"
#include "lcd.h"
#include "font_petme128_8x8.h"
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (GPIO_Pin_0)
#define PYB_LCD_RST_PIN (GPIO_Pin_1)
#define PYB_LCD_A0_PIN (GPIO_Pin_2)
#define PYB_LCD_SCL_PIN (GPIO_Pin_3)
#define PYB_LCD_SI_PIN (GPIO_Pin_4)
#define LCD_INSTR (0)
#define LCD_DATA (1)
static void lcd_out(int instr_data, uint8_t i) {
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
if (instr_data == LCD_INSTR) {
PYB_LCD_PORT->BSRRH = PYB_LCD_A0_PIN; // A0=0; select instr reg
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
}
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
sys_tick_delay_ms(0);
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
}
/*
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable
}
*/
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
void lcd_init() {
// set the outputs high
PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN;
// make them push/pull outputs
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = PYB_LCD_CS1_PIN | PYB_LCD_RST_PIN | PYB_LCD_A0_PIN | PYB_LCD_SCL_PIN | PYB_LCD_SI_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(PYB_LCD_PORT, &GPIO_InitStructure);
// init the LCD
sys_tick_delay_ms(1); // wait a bit
PYB_LCD_PORT->BSRRH = PYB_LCD_RST_PIN; // RST=0; reset
sys_tick_delay_ms(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN; // RST=1; enable
sys_tick_delay_ms(1); // wait for reset; 2us min
lcd_out(LCD_INSTR, 0xa0); // ADC select, normal
lcd_out(LCD_INSTR, 0xc8); // common output mode select, reverse
lcd_out(LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
lcd_out(LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_out(LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_out(LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(LCD_INSTR, 0x34); // electronic volume register set, 0b110100
lcd_out(LCD_INSTR, 0x40); // display start line set, 0
lcd_out(LCD_INSTR, 0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10); // column address set upper
lcd_out(LCD_INSTR, 0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_out(LCD_DATA, 0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
}
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
}
if (*str == '\n') {
lcd_next_line = 1;
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
str -= 1;
len += 1;
} else {
lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_out(LCD_INSTR, 0xb0 | page); // page address set
lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int i = 0; i < 8; i++) {
lcd_out(LCD_DATA, chr_data[i]);
}
}
if (did_new_line) {
sys_tick_delay_ms(200);
}
}

2
stm/lcd.h Normal file
View File

@ -0,0 +1,2 @@
void lcd_init();
void lcd_print_strn(const char *str, unsigned int len);

View File

@ -38,10 +38,29 @@ void led_state(pyb_led_t led, int state) {
default: return; default: return;
} }
if (state == 0) { if (state == 0) {
// LED off, output is high // turn LED off (output is high)
port->BSRRL = pin; port->BSRRL = pin;
} else { } else {
// LED on, output is low // turn LED on (output is low)
port->BSRRH = pin;
}
}
void led_toggle(pyb_led_t led) {
GPIO_TypeDef *port;
uint32_t pin;
switch (led) {
case PYB_LED_R1: port = PYB_LED_R_PORT; pin = PYB_LED_R1_PIN; break;
case PYB_LED_R2: port = PYB_LED_R_PORT; pin = PYB_LED_R2_PIN; break;
case PYB_LED_G1: port = PYB_LED_G_PORT; pin = PYB_LED_G1_PIN; break;
case PYB_LED_G2: port = PYB_LED_G_PORT; pin = PYB_LED_G2_PIN; break;
default: return;
}
if (!(port->ODR & pin)) {
// turn LED off (output high)
port->BSRRL = pin;
} else {
// turn LED on (output low)
port->BSRRH = pin; port->BSRRH = pin;
} }
} }

View File

@ -7,3 +7,4 @@ typedef enum {
void led_init(); void led_init();
void led_state(pyb_led_t led, int state); void led_state(pyb_led_t led, int state);
void led_toggle(pyb_led_t led);

View File

@ -28,6 +28,7 @@
/* Includes ------------------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/
#include "usbd_msc_mem.h" #include "usbd_msc_mem.h"
#include "usb_conf.h" #include "usb_conf.h"
#include "diskio.h"
/** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY /** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY
* @{ * @{
@ -256,12 +257,6 @@ int8_t STORAGE_IsWriteProtected (uint8_t lun)
* @param blk_len : nmber of blocks to be read * @param blk_len : nmber of blocks to be read
* @retval Status * @retval Status
*/ */
int disk_read (
uint8_t pdrv, /* Physical drive nmuber (0..) */
uint8_t *buff, /* Data buffer to store read data */
uint32_t sector, /* Sector address (LBA) */
uint32_t count /* Number of sectors to read (1..128) */
);
int8_t STORAGE_Read (uint8_t lun, int8_t STORAGE_Read (uint8_t lun,
uint8_t *buf, uint8_t *buf,
uint32_t blk_addr, uint32_t blk_addr,
@ -291,12 +286,6 @@ int8_t STORAGE_Read (uint8_t lun,
* @param blk_len : nmber of blocks to be read * @param blk_len : nmber of blocks to be read
* @retval Status * @retval Status
*/ */
int disk_write (
uint8_t pdrv, /* Physical drive nmuber (0..) */
const uint8_t *buff, /* Data to be written */
uint32_t sector, /* Sector address (LBA) */
uint32_t count /* Number of sectors to write (1..128) */
);
int8_t STORAGE_Write (uint8_t lun, int8_t STORAGE_Write (uint8_t lun,
uint8_t *buf, uint8_t *buf,
uint32_t blk_addr, uint32_t blk_addr,

View File

@ -1,13 +1,14 @@
#include <stm32f4xx.h> #include <stm32f4xx.h>
#include <stm32f4xx_rcc.h> #include <stm32f4xx_rcc.h>
#include <stm32f4xx_gpio.h>
#include <stm_misc.h>
#include "std.h" #include "std.h"
#include "misc.h" #include "misc.h"
#include "systick.h"
#include "led.h" #include "led.h"
#include "lcd.h"
#include "storage.h" #include "storage.h"
#include "font_petme128_8x8.h"
void delay_ms(int ms);
static void impl02_c_version() { static void impl02_c_version() {
int x = 0; int x = 0;
@ -35,25 +36,21 @@ void gpio_init() {
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN; RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
} }
void gpio_pin_init(GPIO_TypeDef *gpio, uint32_t pin, uint32_t moder, uint32_t otyper, uint32_t ospeedr, uint32_t pupdr) { /*
set_bits(&gpio->MODER, 2 * pin, 3, moder);
set_bits(&gpio->OTYPER, pin, 1, otyper);
set_bits(&gpio->OSPEEDR, 2 * pin, 3, ospeedr);
set_bits(&gpio->PUPDR, 2 * pin, 3, pupdr);
}
void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) { void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
// set the AF bits for the given pin // set the AF bits for the given pin
// pins 0-7 use low word of AFR, pins 8-15 use high word // pins 0-7 use low word of AFR, pins 8-15 use high word
set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af); set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
} }
*/
static void mma_init() { static void mma_init() {
// XXX
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1 RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */); //gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */); //gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);
// get clock speeds // get clock speeds
RCC_ClocksTypeDef rcc_clocks; RCC_ClocksTypeDef rcc_clocks;
@ -160,15 +157,19 @@ static void mma_stop() {
} }
#define PYB_USRSW_PORT (GPIOA) #define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PORT_NUM (13) #define PYB_USRSW_PIN (GPIO_Pin_13)
void sw_init() { void sw_init() {
// make it an input with pull-up // make it an input with pull-up
gpio_pin_init(PYB_USRSW_PORT, PYB_USRSW_PORT_NUM, 0, 0, 0, 1); GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = PYB_USRSW_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(PYB_USRSW_PORT, &GPIO_InitStructure);
} }
int sw_get() { int sw_get() {
if (PYB_USRSW_PORT->IDR & (1 << PYB_USRSW_PORT_NUM)) { if (PYB_USRSW_PORT->IDR & PYB_USRSW_PIN) {
// pulled high, so switch is not pressed // pulled high, so switch is not pressed
return 0; return 0;
} else { } else {
@ -177,191 +178,6 @@ int sw_get() {
} }
} }
#define PYB_LCD_PORT (GPIOA)
#define PYB_LCD_CS1_PIN (0)
#define PYB_LCD_RST_PIN (1)
#define PYB_LCD_A0_PIN (2)
#define PYB_LCD_SCL_PIN (3)
#define PYB_LCD_SI_PIN (4)
static void lcd_comm_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_A0_PIN; // A0=0; select instr reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
/*
in Python, native types:
CS1_PIN(const) = 0
n = int(0)
delay_ms(0)
PORT[word:BSRRH] = 1 << CS1_PIN
for n in range(0, 8):
delay_ms(0)
PORT[word:BSRRH] = 1 << SCL_PIN
if i & 0x80 == 0:
PORT[word:BSRRH] = 1 << SI_PIN
else:
PORT[word:BSRRL] = 1 << SI_PIN
i <<= 1
delay_ms(0)
PORT[word:BSRRL] = 1 << SCL_PIN
*/
}
static void lcd_data_out(uint8_t i) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN; // A0=1; select data reg
// send byte bigendian, latches on rising clock
for (uint32_t n = 0; n < 8; n++) {
delay_ms(0);
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
if ((i & 0x80) == 0) {
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
} else {
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
}
i <<= 1;
delay_ms(0);
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
}
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
}
#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;
void lcd_print_strn(const char *str, unsigned int len) {
int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
int redraw_max = redraw_min;
int did_new_line = 0;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd_next_line) {
if (lcd_line + 1 < LCD_BUF_H) {
lcd_line += 1;
} else {
lcd_line = LCD_BUF_H - 1;
for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
}
for (int i = 0; i < LCD_BUF_W; i++) {
lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_BUF_W * LCD_BUF_H;
}
lcd_next_line = 0;
lcd_column = 0;
did_new_line = 1;
}
if (*str == '\n') {
lcd_next_line = 1;
} else if (lcd_column >= LCD_BUF_W) {
lcd_next_line = 1;
str -= 1;
len += 1;
} else {
lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
lcd_column += 1;
int max = lcd_line * LCD_BUF_W + lcd_column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
int last_page = -1;
for (int i = redraw_min; i < redraw_max; i++) {
int page = i / LCD_BUF_W;
if (page != last_page) {
int offset = 8 * (i - (page * LCD_BUF_W));
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_comm_out(0x00 | (offset & 0x0f)); // column address set lower
last_page = page;
}
int chr = lcd_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int i = 0; i < 8; i++) {
lcd_data_out(chr_data[i]);
}
}
if (did_new_line) {
delay_ms(200);
}
}
static void lcd_init() {
// set the outputs high
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN;
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN;
// make them push/pull outputs
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_CS1_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_RST_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_A0_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SCL_PIN, 1, 0, 0, 0);
gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SI_PIN, 1, 0, 0, 0);
// init the LCD
delay_ms(1); // wait a bit
PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_RST_PIN; // RST=0; reset
delay_ms(1); // wait for reset; 2us min
PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN; // RST=1; enable
delay_ms(1); // wait for reset; 2us min
lcd_comm_out(0xa0); // ADC select, normal
lcd_comm_out(0xc8); // common output mode select, reverse
lcd_comm_out(0xa2); // LCD bias set, 1/9 bias
lcd_comm_out(0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_comm_out(0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_comm_out(0x81); // electronic volume mode set
lcd_comm_out(0x34); // electronic volume register set, 0b110100
lcd_comm_out(0x40); // display start line set, 0
lcd_comm_out(0xaf); // LCD display, on
// clear display
for (int page = 0; page < 4; page++) {
lcd_comm_out(0xb0 | page); // page address set
lcd_comm_out(0x10); // column address set upper
lcd_comm_out(0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_data_out(0x00);
}
}
for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
lcd_buffer[i] = ' ';
}
lcd_line = 0;
lcd_column = 0;
lcd_next_line = 0;
}
void __fatal_error(const char *msg) { void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14); lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg)); lcd_print_strn(msg, strlen(msg));
@ -369,10 +185,10 @@ void __fatal_error(const char *msg) {
for (;;) { for (;;) {
led_state(PYB_LED_R1, 1); led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0); led_state(PYB_LED_R2, 0);
delay_ms(150); sys_tick_delay_ms(150);
led_state(PYB_LED_R1, 0); led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1); led_state(PYB_LED_R2, 1);
delay_ms(150); sys_tick_delay_ms(150);
} }
} }
@ -384,7 +200,7 @@ void __fatal_error(const char *msg) {
#include "runtime.h" #include "runtime.h"
py_obj_t pyb_delay(py_obj_t count) { py_obj_t pyb_delay(py_obj_t count) {
delay_ms(rt_get_int(count)); sys_tick_delay_ms(rt_get_int(count));
return py_const_none; return py_const_none;
} }
@ -436,60 +252,37 @@ void nlr_test() {
} }
*/ */
int main() { void fatality() {
// TODO disable JTAG led_state(PYB_LED_R1, 1);
led_state(PYB_LED_G1, 1);
led_state(PYB_LED_R2, 1);
led_state(PYB_LED_G2, 1);
}
qstr_init(); static const char *fresh_boot_py =
rt_init(); "# boot.py -- run on boot-up\n"
"# can run arbitrary Python, but best to keep it minimal\n"
gpio_init(); "\n"
led_init(); "pyb.source_dir('/src')\n"
sw_init(); "pyb.main('main.py')\n"
lcd_init(); "#pyb.usb_usr('VCP')\n"
storage_init(); "#pyb.usb_msd(True, 'dual partition')\n"
"#pyb.flush_cache(False)\n"
// print a message "#pyb.error_log('error.txt')\n"
printf(" micro py board\n"); ;
// flash to indicate we are alive!
for (int i = 0; i < 2; i++) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
delay_ms(100);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
delay_ms(100);
}
// turn LEDs off
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 0);
led_state(PYB_LED_G1, 0);
led_state(PYB_LED_G2, 0);
// get lots of info about the board
static void board_info() {
// get and print clock speeds // get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
/*
{ {
RCC_ClocksTypeDef rcc_clocks; RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks); RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu H=%lu P1=%lu P2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency); printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
delay_ms(1000);
}
*/
// USB
if (1) {
void usb_init();
usb_init();
} }
/*
// to print info about memory // to print info about memory
for (;;) { {
led_state(PYB_LED_G1, 1);
delay_ms(100);
led_state(PYB_LED_G1, 0);
extern void *_sidata; extern void *_sidata;
extern void *_sdata; extern void *_sdata;
extern void *_edata; extern void *_edata;
@ -498,25 +291,142 @@ int main() {
extern void *_estack; extern void *_estack;
extern void *_etext; extern void *_etext;
extern void *_heap_start; extern void *_heap_start;
if (sw_get()) { printf("_sidata=%p\n", &_sidata);
printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata);
printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata);
printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss);
printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss);
printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack);
printf("_estack=%p\n", &_estack); printf("_etext=%p\n", &_etext);
printf("_etext=%p\n", &_etext); printf("_heap_start=%p\n", &_heap_start);
printf("_heap_start=%p\n", &_heap_start); }
delay_ms(1000);
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("free=%u\n", (uint)(nclst * fatfs->csize * 512));
}
}
int main() {
// TODO disable JTAG
// basic sub-system init
sys_tick_init();
gpio_init();
led_init();
// turn on LED to indicate bootup
led_state(PYB_LED_G1, 1);
// more sub-system init
sw_init();
lcd_init();
storage_init();
// Python init
qstr_init();
rt_init();
// print a message
printf(" micro py board\n");
// local filesystem init
{
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
// mount sucessful
} else if (res == FR_NO_FILESYSTEM) {
// no filesystem, so create a fresh one
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// keep LED on for at least 100ms
sys_tick_wait_at_least(stc, 100);
led_state(PYB_LED_R2, 0);
} else {
__fatal_error("could not access LFS");
} }
delay_ms(500); }
// make sure we have a /boot.py
{
FILINFO fno;
FRESULT res = f_stat("0:/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py), &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 100ms
sys_tick_wait_at_least(stc, 100);
led_state(PYB_LED_R2, 0);
}
}
// run /boot.py
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_READ);
UINT n;
char buf[20];
f_read(&fp, buf, 18, &n);
buf[n + 1] = 0;
printf("read %d\n%s", n, buf);
f_close(&fp);
}
// turn boot-up LED off
led_state(PYB_LED_G1, 0);
/*
for (;;) {
led_state(PYB_LED_G2, 1);
sys_tick_wait_at_least(sys_tick_counter, 500);
led_state(PYB_LED_G2, 0);
sys_tick_wait_at_least(sys_tick_counter, 500);
} }
*/ */
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init // USB
//delay_ms(1000); if (0) {
void usb_init();
usb_init();
}
#if 1 //printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//sys_tick_delay_ms(1000);
#if 0
// Python! // Python!
if (0) { if (0) {
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n"; //const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
@ -612,20 +522,20 @@ int main() {
while (!py_lexer_is_kind(lex, PY_TOKEN_END)) { while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
py_token_show(py_lexer_cur(lex)); py_token_show(py_lexer_cur(lex));
py_lexer_to_next(lex); py_lexer_to_next(lex);
delay_ms(1000); sys_tick_delay_ms(1000);
} }
} else { } else {
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler // nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated()); printf("lex; al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000); sys_tick_delay_ms(1000);
py_parse_node_t pn = py_parse(lex, 0); py_parse_node_t pn = py_parse(lex, 0);
//printf("----------------\n"); //printf("----------------\n");
printf("pars;al=%u\n", m_get_total_bytes_allocated()); printf("pars;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000); sys_tick_delay_ms(1000);
//parse_node_show(pn, 0); //parse_node_show(pn, 0);
py_compile(pn, false); py_compile(pn, false);
printf("comp;al=%u\n", m_get_total_bytes_allocated()); printf("comp;al=%u\n", m_get_total_bytes_allocated());
delay_ms(1000); sys_tick_delay_ms(1000);
if (1) { if (1) {
// execute it! // execute it!
@ -639,7 +549,7 @@ int main() {
// flash once // flash once
led_state(PYB_LED_G1, 1); led_state(PYB_LED_G1, 1);
delay_ms(100); sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0); led_state(PYB_LED_G1, 0);
nlr_buf_t nlr; nlr_buf_t nlr;
@ -658,12 +568,12 @@ int main() {
// flash once // flash once
led_state(PYB_LED_G1, 1); led_state(PYB_LED_G1, 1);
delay_ms(100); sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0); led_state(PYB_LED_G1, 0);
delay_ms(1000); sys_tick_delay_ms(1000);
printf("nalloc=%u\n", m_get_total_bytes_allocated()); printf("nalloc=%u\n", m_get_total_bytes_allocated());
delay_ms(1000); sys_tick_delay_ms(1000);
} }
} }
} }
@ -672,11 +582,11 @@ int main() {
// benchmark C version of impl02.py // benchmark C version of impl02.py
if (0) { if (0) {
led_state(PYB_LED_G1, 1); led_state(PYB_LED_G1, 1);
delay_ms(100); sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0); led_state(PYB_LED_G1, 0);
impl02_c_version(); impl02_c_version();
led_state(PYB_LED_G1, 1); led_state(PYB_LED_G1, 1);
delay_ms(100); sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0); led_state(PYB_LED_G1, 0);
} }
@ -713,7 +623,7 @@ int main() {
mma_stop(); mma_stop();
for (;;) { for (;;) {
delay_ms(500); sys_tick_delay_ms(500);
mma_start(0x4c, 1); mma_start(0x4c, 1);
mma_send_byte(0); mma_send_byte(0);
@ -734,69 +644,19 @@ int main() {
} }
} }
// fatfs testing
if (0) {
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
printf("mount success\n");
} else if (res == FR_NO_FILESYSTEM) {
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
printf("mkfs success\n");
} else {
printf("mkfs fail %d\n", res);
}
} else {
printf("mount fail %d\n", res);
}
// write a file
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, "# this is boot.py\n", 18, &n);
printf("wrote %d\n", n);
f_close(&fp);
}
// read a file
if (0) {
FIL fp;
f_open(&fp, "0:/boot.py", FA_READ);
UINT n;
char buf[20];
f_read(&fp, buf, 18, &n);
buf[n + 1] = 0;
printf("read %d\n%s", n, buf);
f_close(&fp);
}
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("free=%u\n", (uint)(nclst * fatfs->csize * 512));
}
// SD card testing // SD card testing
if (0) { if (0) {
//sdio_init(); //sdio_init();
} }
// USB VCP testing
if (0) {
//usb_vcp_init();
}
int i = 0; int i = 0;
int n = 0; int n = 0;
uint32_t stc = sys_tick_counter;
for (;;) { for (;;) {
delay_ms(10); sys_tick_delay_ms(10);
if (sw_get()) { if (sw_get()) {
led_state(PYB_LED_R1, 1); led_state(PYB_LED_G1, 1);
led_state(PYB_LED_G1, 0);
i = 1 - i; i = 1 - i;
if (i) { if (i) {
printf(" angel %05x.\n", n); printf(" angel %05x.\n", n);
@ -807,8 +667,11 @@ int main() {
} }
n += 1; n += 1;
} else { } else {
led_state(PYB_LED_R1, 0); led_state(PYB_LED_G1, 0);
led_state(PYB_LED_G1, 1); }
if (sys_tick_has_passed(stc, 500)) {
stc = sys_tick_counter;
led_toggle(PYB_LED_G2);
} }
} }

View File

@ -56,6 +56,8 @@ extern uint32_t USBD_OTG_EP1OUT_ISR_Handler (USB_OTG_CORE_HANDLE *pdev);
/* Cortex-M Processor Exceptions Handlers */ /* Cortex-M Processor Exceptions Handlers */
/******************************************************************************/ /******************************************************************************/
extern void fatality();
/** /**
* @brief This function handles NMI exception. * @brief This function handles NMI exception.
* @param None * @param None
@ -73,6 +75,7 @@ void NMI_Handler(void)
void HardFault_Handler(void) void HardFault_Handler(void)
{ {
/* Go to infinite loop when Hard Fault exception occurs */ /* Go to infinite loop when Hard Fault exception occurs */
fatality();
while (1) while (1)
{ {
} }
@ -86,6 +89,7 @@ void HardFault_Handler(void)
void MemManage_Handler(void) void MemManage_Handler(void)
{ {
/* Go to infinite loop when Memory Manage exception occurs */ /* Go to infinite loop when Memory Manage exception occurs */
fatality();
while (1) while (1)
{ {
} }
@ -99,6 +103,7 @@ void MemManage_Handler(void)
void BusFault_Handler(void) void BusFault_Handler(void)
{ {
/* Go to infinite loop when Bus Fault exception occurs */ /* Go to infinite loop when Bus Fault exception occurs */
fatality();
while (1) while (1)
{ {
} }
@ -112,6 +117,7 @@ void BusFault_Handler(void)
void UsageFault_Handler(void) void UsageFault_Handler(void)
{ {
/* Go to infinite loop when Usage Fault exception occurs */ /* Go to infinite loop when Usage Fault exception occurs */
fatality();
while (1) while (1)
{ {
} }
@ -144,15 +150,6 @@ void PendSV_Handler(void)
{ {
} }
/**
* @brief This function handles SysTick Handler.
* @param None
* @retval None
*/
void SysTick_Handler(void)
{
}
/** /**
* @brief This function handles EXTI15_10_IRQ Handler. * @brief This function handles EXTI15_10_IRQ Handler.
* @param None * @param None

View File

@ -49,7 +49,6 @@ void UsageFault_Handler(void);
void SVC_Handler(void); void SVC_Handler(void);
void DebugMon_Handler(void); void DebugMon_Handler(void);
void PendSV_Handler(void); void PendSV_Handler(void);
void SysTick_Handler(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -46,9 +46,11 @@ static uint8_t *cache_get_addr_for_write(uint32_t flash_addr) {
} }
void storage_init() { void storage_init() {
cache_flash_sector_id = 0; if (!is_initialised) {
cache_dirty = false; cache_flash_sector_id = 0;
is_initialised = true; cache_dirty = false;
is_initialised = true;
}
} }
void storage_flush() { void storage_flush() {

50
stm/systick.c Normal file
View File

@ -0,0 +1,50 @@
#include <stm32f4xx.h>
#include "misc.h"
#include "systick.h"
volatile uint32_t sys_tick_counter;
void sys_tick_init() {
// sys-tick interrupt called at 1ms intervals
sys_tick_counter = 0;
SysTick_Config(SystemCoreClock / 1000);
}
// called on SysTick interrupt
void SysTick_Handler() {
sys_tick_counter++;
}
void sys_tick_delay_ms(uint32_t delay_ms) {
sys_tick_wait_at_least(sys_tick_counter, delay_ms);
}
// waits until at least delay_ms milliseconds have passed from the sampling of sys_tick_counter in stc
// handles overflow properl
// assumes stc was taken from sys_tick_counter some time before calling this function
// eg stc <= sys_tick_counter for the case of no wrap around of sys_tick_counter
void sys_tick_wait_at_least(uint32_t stc, uint32_t delay_ms) {
// stc_wait is the value of sys_tick_counter that we wait for
uint32_t stc_wait = stc + delay_ms;
if (stc_wait < stc) {
// stc_wait wrapped around
while (stc <= sys_tick_counter || sys_tick_counter < stc_wait) {
}
} else {
// stc_wait did not wrap around
while (stc <= sys_tick_counter && sys_tick_counter < stc_wait) {
}
}
}
bool sys_tick_has_passed(uint32_t stc, uint32_t delay_ms) {
// stc_wait is the value of sys_tick_counter that we wait for
uint32_t stc_wait = stc + delay_ms;
if (stc_wait < stc) {
// stc_wait wrapped around
return !(stc <= sys_tick_counter || sys_tick_counter < stc_wait);
} else {
// stc_wait did not wrap around
return !(stc <= sys_tick_counter && sys_tick_counter < stc_wait);
}
}

7
stm/systick.h Normal file
View File

@ -0,0 +1,7 @@
extern volatile uint32_t sys_tick_counter;
void sys_tick_init();
void SysTick_Handler();
void sys_tick_delay_ms(uint32_t delay_ms);
void sys_tick_wait_at_least(uint32_t stc, uint32_t delay_ms);
bool sys_tick_has_passed(uint32_t stc, uint32_t delay_ms);

View File

@ -17,6 +17,6 @@ void usb_init() {
void usb_vcp_send(const char* str, int len) { void usb_vcp_send(const char* str, int len) {
if (is_enabled) { if (is_enabled) {
VCP_fops.pIf_DataTx((const uint8_t*)str, len); //VCP_fops.pIf_DataTx((const uint8_t*)str, len);
} }
} }