circuitpython/atmel-samd/access_vfs.c

190 lines
6.4 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "access_vfs.h"
#include "autoreset.h"
#include "asf/common/services/usb/class/msc/device/udi_msc.h"
#include "extmod/fsusermount.h"
#include "lib/fatfs/diskio.h"
#include "py/mpconfig.h"
#include "py/mphal.h"
#include "py/mpstate.h"
#include "py/misc.h"
#define VFS_INDEX 0
//! This function tests memory state, and starts memory initialization
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status vfs_test_unit_ready(void)
{
if (VFS_INDEX >= MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
return CTRL_FAIL;
}
DSTATUS status = disk_status(VFS_INDEX);
if (status == STA_NOINIT) {
return CTRL_NO_PRESENT;
}
return CTRL_GOOD;
}
//! This function returns the address of the last valid sector
//! @param uint32_t_nb_sector Pointer to the last valid sector (sector=512 bytes)
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
Ctrl_status vfs_read_capacity(uint32_t *last_valid_sector)
{
if (disk_ioctl(VFS_INDEX, GET_SECTOR_COUNT, last_valid_sector) != RES_OK) {
return CTRL_FAIL;
}
// Subtract one from the sector count to get the last valid sector.
(*last_valid_sector)--;
return CTRL_GOOD;
}
//! This function returns the write-protected mode
//!
//! @return true if the memory is protected
//!
bool vfs_wr_protect(void)
{
if (VFS_INDEX >= MP_ARRAY_SIZE(MP_STATE_PORT(fs_user_mount))) {
return true;
}
fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[VFS_INDEX];
if (vfs == NULL) {
return true;
}
// This is used to determine the writeability of the disk from USB.
if (vfs->writeblocks[0] == MP_OBJ_NULL ||
(vfs->flags & FSUSER_USB_WRITEABLE) == 0) {
return true;
}
return false;
}
//! This function informs about the memory type
//!
//! @return true if the memory is removable
//!
bool vfs_removal(void)
{
return true;
}
bool vfs_unload(bool unload)
{
return unload;
}
// TODO(tannewt): Transfer more than a single sector at a time if we need more
// speed.
//! This function transfers the memory data to the USB MSC interface
//!
//! @param addr Sector address to start read
//! @param nb_sector Number of sectors to transfer (sector=512 bytes)
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status vfs_usb_read_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
DRESULT result = disk_read(VFS_INDEX, sector_buffer, addr + sector, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
if (!udi_msc_trans_block(true, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
}
return CTRL_GOOD;
}
//! This function transfers the USB MSC data to the memory
//!
//! @param addr Sector address to start write
//! @param nb_sector Number of sectors to transfer (sector=512 bytes)
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! Memory unplug -> CTRL_NO_PRESENT
//! Not initialized or changed -> CTRL_BUSY
//! An error occurred -> CTRL_FAIL
//!
Ctrl_status vfs_usb_write_10(uint32_t addr, volatile uint16_t nb_sector)
{
uint8_t sector_buffer[FLASH_BLOCK_SIZE];
for (uint16_t sector = 0; sector < nb_sector; sector++) {
if (!udi_msc_trans_block(false, sector_buffer, FLASH_BLOCK_SIZE, NULL)) {
return CTRL_FAIL; // transfer aborted
}
uint32_t sector_address = addr + sector;
DRESULT result = disk_write(VFS_INDEX, sector_buffer, sector_address, 1);
if (result == RES_PARERR) {
return CTRL_NO_PRESENT;
}
if (result == RES_ERROR) {
return CTRL_FAIL;
}
// Since by getting here we assume the mount is read-only to MicroPython
// lets update the cached FatFs sector if its the one we just wrote.
fs_user_mount_t *vfs = MP_STATE_PORT(fs_user_mount)[VFS_INDEX];
volatile uint16_t x = addr;
(void) x;
#if _MAX_SS != _MIN_SS
if (vfs->ssize == FLASH_BLOCK_SIZE) {
#else
// The compiler can optimize this away.
if (_MAX_SS == FLASH_BLOCK_SIZE) {
#endif
if (sector_address == vfs->fatfs.winsect && sector_address > 0) {
memcpy(vfs->fatfs.win, sector_buffer, FLASH_BLOCK_SIZE);
}
}
}
autoreset_start();
return CTRL_GOOD;
}