circuitpython/shared-module/displayio/Bitmap.c

272 lines
10 KiB
C
Raw Normal View History

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/displayio/Bitmap.h"
#include <string.h>
#include "py/runtime.h"
enum { ALIGN_BITS = 8 * sizeof(uint32_t) };
static int stride(uint32_t width, uint32_t bits_per_value) {
2018-09-06 17:49:49 -04:00
uint32_t row_width = width * bits_per_value;
// align to uint32_t
return (row_width + ALIGN_BITS - 1) / ALIGN_BITS;
}
void common_hal_displayio_bitmap_construct(displayio_bitmap_t *self, uint32_t width,
uint32_t height, uint32_t bits_per_value) {
common_hal_displayio_bitmap_construct_from_buffer(self, width, height, bits_per_value, NULL, false);
}
void common_hal_displayio_bitmap_construct_from_buffer(displayio_bitmap_t *self, uint32_t width,
uint32_t height, uint32_t bits_per_value, uint32_t *data, bool read_only) {
self->width = width;
self->height = height;
self->stride = stride(width, bits_per_value);
if (!data) {
data = m_malloc(self->stride * height * sizeof(uint32_t), false);
}
self->data = data;
self->read_only = read_only;
2018-09-06 17:49:49 -04:00
self->bits_per_value = bits_per_value;
if (bits_per_value > 8 && bits_per_value != 16 && bits_per_value != 32) {
mp_raise_NotImplementedError(translate("Invalid bits per value"));
2018-09-06 17:49:49 -04:00
}
// Division and modulus can be slow because it has to handle any integer. We know bits_per_value
// is a power of two. We divide and mod by bits_per_value to compute the offset into the byte
// array. So, we can the offset computation to simplify to a shift for division and mask for mod.
self->x_shift = 0; // Used to divide the index by the number of pixels per word. Its used in a
// shift which effectively divides by 2 ** x_shift.
uint32_t power_of_two = 1;
while (power_of_two < ALIGN_BITS / bits_per_value) {
self->x_shift++;
power_of_two <<= 1;
}
self->x_mask = (1u << self->x_shift) - 1u; // Used as a modulus on the x value
self->bitmask = (1u << bits_per_value) - 1u;
self->dirty_area.x1 = 0;
self->dirty_area.x2 = width;
self->dirty_area.y1 = 0;
self->dirty_area.y2 = height;
}
uint16_t common_hal_displayio_bitmap_get_height(displayio_bitmap_t *self) {
return self->height;
}
uint16_t common_hal_displayio_bitmap_get_width(displayio_bitmap_t *self) {
return self->width;
}
uint32_t common_hal_displayio_bitmap_get_bits_per_value(displayio_bitmap_t *self) {
return self->bits_per_value;
}
uint32_t common_hal_displayio_bitmap_get_pixel(displayio_bitmap_t *self, int16_t x, int16_t y) {
2018-08-31 17:21:48 -04:00
if (x >= self->width || x < 0 || y >= self->height || y < 0) {
return 0;
}
int32_t row_start = y * self->stride;
uint32_t bytes_per_value = self->bits_per_value / 8;
if (bytes_per_value < 1) {
uint32_t word = self->data[row_start + (x >> self->x_shift)];
return (word >> (sizeof(uint32_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value)) & self->bitmask;
} else {
uint32_t *row = self->data + row_start;
if (bytes_per_value == 1) {
2021-03-15 09:57:36 -04:00
return ((uint8_t *)row)[x];
} else if (bytes_per_value == 2) {
2021-03-15 09:57:36 -04:00
return ((uint16_t *)row)[x];
} else if (bytes_per_value == 4) {
2021-03-15 09:57:36 -04:00
return ((uint32_t *)row)[x];
}
}
return 0;
}
void displayio_bitmap_set_dirty_area(displayio_bitmap_t *self, const displayio_area_t *dirty_area) {
if (self->read_only) {
mp_raise_RuntimeError(translate("Read-only"));
}
displayio_area_t area = *dirty_area;
displayio_area_canon(&area);
displayio_area_union(&area, &self->dirty_area, &area);
2021-11-12 11:30:40 -05:00
displayio_area_t bitmap_area = {0, 0, self->width, self->height, NULL};
displayio_area_compute_overlap(&area, &bitmap_area, &self->dirty_area);
}
void displayio_bitmap_write_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) {
// Writes the color index value into a pixel position
// Must update the dirty area separately
// Don't write if out of area
if (0 > x || x >= self->width || 0 > y || y >= self->height) {
return;
}
// Update one pixel of data
int32_t row_start = y * self->stride;
uint32_t bytes_per_value = self->bits_per_value / 8;
if (bytes_per_value < 1) {
uint32_t bit_position = (sizeof(uint32_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value);
uint32_t index = row_start + (x >> self->x_shift);
uint32_t word = self->data[index];
word &= ~(self->bitmask << bit_position);
word |= (value & self->bitmask) << bit_position;
self->data[index] = word;
} else {
uint32_t *row = self->data + row_start;
if (bytes_per_value == 1) {
2021-03-15 09:57:36 -04:00
((uint8_t *)row)[x] = value;
} else if (bytes_per_value == 2) {
2021-03-15 09:57:36 -04:00
((uint16_t *)row)[x] = value;
} else if (bytes_per_value == 4) {
2021-03-15 09:57:36 -04:00
((uint32_t *)row)[x] = value;
}
}
}
2020-08-13 21:57:17 -04:00
void common_hal_displayio_bitmap_blit(displayio_bitmap_t *self, int16_t x, int16_t y, displayio_bitmap_t *source,
2021-03-15 09:57:36 -04:00
int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint32_t skip_index, bool skip_index_none) {
// Copy region of "source" bitmap into "self" bitmap at location x,y in the "self"
2020-08-13 20:56:45 -04:00
// If skip_value is encountered in the source bitmap, it will not be copied.
// If skip_value is `None`, then all pixels are copied.
// This function assumes input checks were performed for pixel index entries.
// Update the dirty area
2021-03-15 09:57:36 -04:00
int16_t dirty_x_max = (x + (x2 - x1));
if (dirty_x_max > self->width) {
dirty_x_max = self->width;
}
2021-03-15 09:57:36 -04:00
int16_t dirty_y_max = y + (y2 - y1);
if (dirty_y_max > self->height) {
dirty_y_max = self->height;
}
2021-11-12 11:30:40 -05:00
displayio_area_t a = { x, y, dirty_x_max, dirty_y_max, NULL};
displayio_bitmap_set_dirty_area(self, &a);
2021-02-25 15:16:40 -05:00
bool x_reverse = false;
bool y_reverse = false;
// Add reverse direction option to protect blitting of self bitmap back into self bitmap
if (x > x1) {
x_reverse = true;
}
if (y > y1) {
y_reverse = true;
}
// simplest version - use internal functions for get/set pixels
2021-03-15 09:57:36 -04:00
for (int16_t i = 0; i < (x2 - x1); i++) {
2021-02-25 15:16:40 -05:00
2021-03-15 09:57:36 -04:00
const int xs_index = x_reverse ? ((x2) - i - 1) : x1 + i; // x-index into the source bitmap
const int xd_index = x_reverse ? ((x + (x2 - x1)) - i - 1) : x + i; // x-index into the destination bitmap
2021-02-25 15:16:40 -05:00
2021-03-15 09:57:36 -04:00
if ((xd_index >= 0) && (xd_index < self->width)) {
for (int16_t j = 0; j < (y2 - y1); j++) {
2021-02-25 15:16:40 -05:00
2021-03-15 09:57:36 -04:00
const int ys_index = y_reverse ? ((y2) - j - 1) : y1 + j; // y-index into the source bitmap
const int yd_index = y_reverse ? ((y + (y2 - y1)) - j - 1) : y + j; // y-index into the destination bitmap
2021-02-25 15:16:40 -05:00
2021-03-15 09:57:36 -04:00
if ((yd_index >= 0) && (yd_index < self->height)) {
2021-02-25 15:16:40 -05:00
uint32_t value = common_hal_displayio_bitmap_get_pixel(source, xs_index, ys_index);
2021-03-15 09:57:36 -04:00
if ((skip_index_none) || (value != skip_index)) { // write if skip_value_none is True
displayio_bitmap_write_pixel(self, xd_index, yd_index, value);
}
}
}
}
}
2020-08-21 15:28:24 -04:00
}
void common_hal_displayio_bitmap_set_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) {
// update the dirty region
2021-11-12 11:30:40 -05:00
displayio_area_t a = {x, y, x + 1, y + 1, NULL};
displayio_bitmap_set_dirty_area(self, &a);
// write the pixel
displayio_bitmap_write_pixel(self, x, y, value);
}
2021-03-15 09:57:36 -04:00
displayio_area_t *displayio_bitmap_get_refresh_areas(displayio_bitmap_t *self, displayio_area_t *tail) {
if (self->dirty_area.x1 == self->dirty_area.x2) {
return tail;
}
self->dirty_area.next = tail;
return &self->dirty_area;
}
void displayio_bitmap_finish_refresh(displayio_bitmap_t *self) {
self->dirty_area.x1 = 0;
self->dirty_area.x2 = 0;
}
2020-04-09 11:37:07 -04:00
void common_hal_displayio_bitmap_fill(displayio_bitmap_t *self, uint32_t value) {
2021-11-12 11:30:40 -05:00
displayio_area_t a = {0, 0, self->width, self->height, NULL};
displayio_bitmap_set_dirty_area(self, &a);
2020-04-09 11:37:07 -04:00
2020-04-13 19:48:27 -04:00
// build the packed word
uint32_t word = 0;
2021-03-15 09:57:36 -04:00
for (uint8_t i = 0; i < 32 / self->bits_per_value; i++) {
word |= (value & self->bitmask) << (32 - ((i + 1) * self->bits_per_value));
2020-04-13 19:48:27 -04:00
}
// copy it in
2021-03-15 09:57:36 -04:00
for (uint32_t i = 0; i < self->stride * self->height; i++) {
2020-04-13 19:48:27 -04:00
self->data[i] = word;
2020-04-09 11:37:07 -04:00
}
}
int common_hal_displayio_bitmap_get_buffer(displayio_bitmap_t *self, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
if ((flags & MP_BUFFER_WRITE) && self->read_only) {
return 1;
}
bufinfo->len = self->stride * self->height * sizeof(uint32_t);
bufinfo->buf = self->data;
switch (self->bits_per_value) {
case 32:
bufinfo->typecode = 'I';
break;
case 16:
bufinfo->typecode = 'H';
break;
default:
bufinfo->typecode = 'B';
break;
}
return 0;
}